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Parity violation in metric-torsion theories of gravitation
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The general structure of metric-torsion theories of gravitation is shown to allow a parity-violating
contribution to the complete action which is linear in the curvature tensor and vanishes identically in the
absence of torsion. The resulting action involves apart from the Newtonian constant a coupling which
governs the strength of the predicted parity-nonconserving "interactions" mediated by torsion. We consider
this theory in the presence of the Proca field and show that it leads to a parity-violating term in the field
equations in contrast to the Einstein-Cartan-Sciama-Kibble theory, which we use as a particularly simple
example of a metric-torsion theory of gravitation.

I. INTRODUCTION

In 1922, soon after Einstein' put forward his
theory of gravitation based on a pseudo-Rieman-
nian metric of space-time, Cartan' proposed a
generalization which endowed the space-time man-
ifold with a nonsymmetric connection. Cartan's
extension of general relativity was later rediscov-
ered by Weyl' and identified as a gauge theory of
the Poincare group by Sciama' and Kibble' who
generalized the earlier attempt of Utiyama. ' This
theory' pictures space-time as a four-dimensional
manifold with a symmetric tensor (g„„)and a line-
ar connection I', „which is compatible with the
metric (covariant derivative of g„„is zero) but not,
ingeneral, symmetric (I „0I'„). Inthispaper we
shall consider theories based on such connections
and shall motivate a new Lagrangian involving a
parity-violating contribution constructed from the
pseudotensor density p

'" ' and the curvature ten-
sor R„„,. The complete action is still restricted
to be linear in the curvature but leads to new pari-
ty-violating effects in the presence of torsion not
present in the Einstein-Cartan-Sciama-Kibble
(ECSK) theory based as it is on a Lagrangian con-
structed simply from the curvature scalar. The
analog of the additional term our action involves
has been considered before' for the pure Einstein
theory but is known there to vanish identically.

The Lagrangian density we propose for this the-
ory can be written as

S G,
= Zpcsx + Z

tribution that we motivate in the next section.
The standard procedure for accommodating

torsion into Einstein's theory is to work only with

~«~K and does not require the introduction of any
new coupling constants. For Z ~, however, an
additional coupling is seen to be necessary and it
governs the strength of the parity-violating inter-
actions "mediated" by torsion.

The Lagrangian we propose for our theory still
involves torsion in an algebraic form since it does
not contain any terms involving derivatives of the
contortion (once some total divergences have been
removed) —as indeed must be the case for all
theories based on Lagrangians linear in the curva-
ture tensor. .One consequence of this is that for a
theory based on 2 ~ torsion again vanishes by vir-
tue of the field equations in the absence of matter-
as is the case for the ECSK theory. However, if
we accept the view that torsion is the geometric
analog of spin just as curvature represents mass
and if we accept that the graviton is a spin-2 par-
ticle, then we may reasonably require that some
form of dynamic torsion be present even in the
absence of matter. This "vacuum torsion" would,
in some sense, represent the spin effects due to
gravitation. We consider possible ways of achiev-
ing this while still restricting ourselves to La-
grangians that are linear in the curvature tensor.
This leads us to examine a very restricted but
dynamic (in a sense which will become apparent
later) type of torsion which has been motivated
also from totally different points of view in other
works. "

where pcs~ is the usual expression for the ECSK
theory (involving the Newtonian coupling constant)
and &„[-z~ '8, (Ref. 9)t is the additional con-

II. THE NEW LAGRANGIAN

Let us begin by outlining the usual considera-
tions' which lead, for the pure Einstein case, to
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the unitiue (up to a cosmical term) Lagrangian
density

Zg ~gR ~

The proof of this begins by noting that the Rie-
mann-Christoffel tensor

(2)

0 6 g ~ ]6~ + +P V)te ~

where 6„is the Newtonian coupling constant and

is the only tensor that can be constructed from the
metric tensor and its first and second derivatives
and which is linear in the second derivatives. This
tensor is, therefore, the simplest object at our
disposal when we come to write down an action for
gravity. We must now begin to contract indices
and construct all possible scalars linear in the
curvature from R„„„(=g,g, „,"). The most gen-
eral Lagrangian would then just be a sum of these
scalars with appropr iate couplings.

It turns out' that for Einstein's theory only two
such scalars can be constructed. However, one
of them [~"""'R,„„(Ref.12}Jvanishes identically,
and thus only the scalar R (=g'"R"„~)remains.

The generalization to the case wherein torsion
is present begins with the curvature tensor formed
out of the nonsymmetric connection I'„(the anti-
symmetric part of which is the torsion). The ex-
pression for this is as in (3}with the tildes re-
moved. It is immediately clear from this defini-
tion that the curvature tensor is antisymmetric in
its first two indices. In the general case (i.e. ,
without any assumptions of metricity, etc.) this
is the only" symmetry property of R,„~. If we
demand metricity, we gain, in addition, antisym-
metry in the last two indices.

These two antisymmetry properties are suffi-
cient to ensure that the Ricci tensor (R„~=—R„„~")
and the Ricci scalar (R =—R„")are the only essential
contractions of 8„„~".

Now we come to the important question of wheth-
er we can form a nonzero scalar using the pseudo-
tensor density p "~'.

Recall that the scalar so constructed in the Ein-
stein case vanished identically by virtue of the
cyclicity property of A, „~. When torsion is pres-
ent, no such relation holds and so the scalar

qg V)tlap (4)

is a perfectly good quantity which can contribute
to the total action of a metric-torsion theory. In-
deed, the general structure of such theories allows
this term and, therefore, allows parity-violating
"interactions. "

The new Lagrangian density may therefore be
written as

G~ is the analogous quantity which governs the
strength of the parity-nonconserving interactions
present in Zz."

In the next section we simplify the form of this
expression, and compare and contrast this action
with the one used in the ECSK theory. There, we
will find that when we have removed some total
divergences the Lagrangian contains, apart from
the simple Einstein expression, terms quadratic
in E. Since E is a tensor, one might consider the
most general quadratic expression in E as form-
ing the Lagrangian for contortion. This is also
discussed in some detail.

HI. OTHER LAGRANGIANS

Consider the Lagrangian densities

&scsK v -gR

and

q"""R~V)„~

(6)

I'",„are the components 'of the nonsymmetric con-
nection and can, upon imposition of metricity, be
written as

Ix Ix

where

(6)

Xfy(vv= 2K (8'vv, v+Svv, v -gvv, ,) ~

and

PV PV V 4L VV g VP

L~ (pX pX )

'r 'r

Zg V;)t
=8'g V, )t

—~)t PEn —~)i&i T
= 0 (12)

we have, apart from the ten g, „'s, another 24 in-
dependent components in F"„„. We shall take these
to be the 24 components of the contortion tensor
E

Before plunging ourselves into variation of the
Lagrangians written above, it is advisable to ob-
tain their simplest form using the symmetry
properties of g, „, E,„~, etc. Thus we obtain

RscsK- v —g[R+g""(K„,"K „'—K "K ~')]

+ (total divergence),

which may be written as

is the torsion. Note that the position of the in-
dices is important and we work with the usual"
convention that in all covariant derivatives the
first of the lower indices on the I"s is the differ-
entiating index.

In order to obtain the field equations we must
choose a suitable set of independent fields for var-
iational purposes. Because of metricity
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and

Z~sz -2++ Zc+ (total divergence}

2„-q
' ~~@~@„"K„„'+(total divergence}.

(14)

and

~le v}l, +~}tg v 0

~Std +~A&x 0

(16)

(19)

IV. NO MATTER, NO TORSION

In this section we consider the contortion field
equations for both the ECSK and the new action in
the absence of matter. We have already shown
that SpcsK can be decomposed as in (13).

Taking g„„and K z' as our independent variables,
the field equations obtained by the K variation are

(16)

These are 24 equations because of the antisymme-
try property of K. Contracting g and X (or v and
A.) gives

Using this in (16) we obtain

By cyclically permuting (17) we get the two
equations

(17)

We see that the contortion terms enter both La-
grangians quadratically and that no derivatives of
A appear anywhere once total divergences are re-
moved. This is a general consequence of restric-
tion to theories linear in R and is, therefore, un-
changed even with the addition of Z„. Stated differ-
ently, if we use a linear combination of „and
EcsK as the Lagrangian density of our system, we
will not obtain propagating torsion.

The interesting thing to note, however, is that
the effective contribution of contortion to CEcsK is
a particular linear combination of two of the three
possible scalars quadratic in K (contracting with

g„„), the third beingK„, ~K"'„. One may, at this
point, argue that an equally valid approach to de-
termine an action for the torsion would be to con-
sider all possible linear combinations of quad-
ratics in K and simply add these to &. Such an
approach would, however, necessitate introduction
of at least three other arbitrary parameters.

As regards C„one can also think of three other
scalars quadratic in K (contracting with & and g)
apart from the one selected by 2„, namely,

Thus, the most general such Lagrangian density
for torsion would contain seven contractions all
with different and arbitrary coefficients. In view
of this it seems much simpler, and indeed more
natural, to restrict oneself to Lagrangians obtained
directly by contracting R„„„,in all possible ways
to form a scalar.

Adding (17}, (18), and (19) and using (19) to sim-
plify the sum, one can easily verify that E'""=0.

The same calculation can be repeated for the
theory based on 2~. The analog of Eq. (16) now

reads

~xgv g v}tg ~ Ovg gx g keg u&

2+(qll LSPK x + ~kxdPK v) P (2P)

After a certain amount of tedious algebra and
index manipulation, one can again explicitly verify
the result that torsion vanishes in the absence of
matter. These results follow in fact from quite
general considerations as outlined below.

If one has a Lagrangian which involves the con-
tortion fields in a nondynamic manner (no second
derivatives of E, or equivalently, terms quad-
ratic in the derivatives of K), stationarity under
E variations will give an algebraic equation for K
that can, in principle, be solved for K. The so-
lution of this equation must then be expressible in
terms of the other quantities in the theory. In our
case we have at our disposal only g, „, q„„o,
g,„,and g,„aout of which we must construct
a three-index tensor.

It is clear, since the process of contraction
always removes two indices, that no such object
can be formed from g„„,g„„~, and p„„~only.
Thus, the g„„must enter each term of the ex-
pression for E ~,. But we can always choose a co-
ordinate system where g,„=p since the partial
derivative of the metric is not a tensor. Thus, K
will vanish in this coordinate system and (by vir-
tue of its tensorial character), in all coordinate
systems. It should be noted, . of course, that we
cannot use g„„. since this vanishes because of
metr icity.

It is clear, therefore, that both the (matter-free}
theories are identical to Einstein's theory of gen-
eral relativity. " As long as torsion is algebraic,
this identity between the two matter-free theories
will remain.

However, as remarked in the Introduction, it
is reasonable to expect torsion to be nonzero in
vacuum and to represent the spin effects of gravi-
tation.

In Sec. V we go on to consider possible ways of
implementing these ideas.

V. DYNAMIC TORSION AND FIELD EQUATIONS

We now wish to consider possible ways of in-
corporating dynamic torsion into the matter-free
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theory. One approach is to work with quadratic
8 Lagrangians but these lead to rather cumber-
some equations. Another approach consists es-
sentially in adding to EcsK a Lagrangian density
quadratic in the covariant derivatives of E. How-
ever, the most general such Lagr'angian density,
&~, would contain an enormous" number of inde-
pendent terms (see the Appendix for its explicit
form) involving an equally large number of ar-
bitrary parameters and would be quite useless un-
less one is able to eliminate most of these terms
on some physical grounds —and this seems un-
likely. So how else can one have dynamic torsion?

Recall that torsion vanished by virtue of the
field equations essentially because of the nonex-
istence in the theory of an odd-index object using
which we could construct a three-index tensor.
Since torsion itself is represented by a three-index
tensor, the simplest possibility for having non-
zero torsion is to allow for a new one-index field
in the theory in terms of which E can be expressed.
Coupled with the requirement that this new field
be dynamicai we are led to examine the following
form" for the contortion:

nb» ~bgn» ~»gnb ' (21)

2 = v'-g[A+ g '"(K„,"K„'—K„,"K~')]

+A „(K b"- Pbg" + P~ "g ), (22)

where the A a„are the Lagrange multipliers intro-
duced to ensure satisfaction of (21). Variations
with respect to g„„, K b", and Q yield the follow-
ing equations:

where Q, =—Q~. Note that the form of K is the
same as has been motivated also in other works
on completely different grounds. "

We may now proceed in two different ways. One
is to simply substitute the motivated form of con-
tortion into ~, eliminate E, and obtain the field
equations for g, „and P by variation. We prefer
to avoid this approach and consider it more appro-
priate to treat (21) as a constraint which will be
implemented by introducing an appropriate set of
Lagrange multipliers into &~. I et us, therefore,
consider the following Lagrangian density:

~g(stab &ftgab) +L~g(g abg aX g nag Xb g abg XaXK &K a K &K c) ~ (gn ayb+ pn bya)

(gaba+ pbaa)p + S(& aakaK bK c+ &
&abbK aK a) p

gabe ~+[(Kcab+Kbca K Xbgac K a%gab)+ 2&(~ab»bK c + ~accbK b)] P

and

(a b a .b)„=p,
while the ~ variation yields the desired constraint.
Eliminating E and A from the above equations we
obtain the field equations for Einstein coupled to
a scalar field. Note that there is no parity-vio-
lating term remaining; this is due to the special
ansatz we have taken for the contortion as can be
easily seen, and implies that the vacuum theory
is parity conserving.

VI. COUPLING TO MATTER FIELDS

In this section we wish to give an example where
our Lagrangian predicts parity-violating effects
but where the ECSK Lagrangian does not. It is
unfortunate that there are not many matter fields
one can study at the Lagrangian level. In conse-
quence, when studying matter fields on a Rie-
mann-Cartan space-time (Ua), we are further re-
stricted. For example, one cannot minimally
couple gauge fields to torsion" in a gauge-invar-
iant manner, so the study of gauge fields on a V~
does not lead to any new physics than on a Riemann

I

space-time (Va). We cannot use the Dirac field
for our present purpose as the ECSK theory al-
ready predicts a parity-violating effect for this
field. So we are left with the Proca (massive-
vector) field, which due to its nonzero mass does
not present problems of gauge (non) invariance
when minimally coupled to torsion. We take the
usual Lagrangian for the Proca field:

= v~g(-a&„„G""+&m'A, A')

with the field strength tensor G„„given by

G „=V'„A„-&„A„

= a A„- ~„A„-2A,S„„'
= v„A„—v„A,—2Ap„„'.

Let us define

B,„=-V'„A„V„A„,
then

and can be written as
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Sng SPY A, AP+ gm'A„A')

or
(27)

or

kji ~i[j+k7

+ 2Si

Let us write for the total Lagrangian

~ =~EcsK + &&+&

As Z does not contain any derivatives of torsion,
the Euler-Lagrange equations obtained by variation
of E,. ' are simply

And since
8gjiE~k, ~ k &8

(24) gives

k k kBE,.j BEij
From Ref. '7 we see again that

(23)
The spin angular momentum tensor is defined by

Qg~g7'a
6K g ~

ij
where Sly denotes the variational derivative.

For the Lagrangian in (23) it has been shown'
that

vg. a 2v, (A. S,")+m'A, = 0. (26)

In order to eliminate the non-Riemannian part of
Eq. (28), we must first invert Eq. (27) for the
torsion. Remembering the definitions of Ti» and

K„„,as given in Eqs. (26) and (10), respectively,
we can write Eq. (27} as

7
Sk ji+Ais f & +jiSk&

=~ a~, + 2ag, a5 «{S»„—S» —S ) . (29)

Now, because of the antisymmetry of q"",, in vX,

cS) p
=

I ieSvp), ~

and antisymmetry of S„» in its first two indices
further implies that

vX v)t
ie Sxpv ~ ify Spv)t '

Substituting this into Eq. (27) gives

v)t ap
Skfi +kiS j& ~fi kf kji 2~~ i ~kf A

At this stage we note that (setting a=0), the ECSK
theory indeed does not predict any parity-violating
effects when coupled to a massive- vector field.
For the purposes of solving Eq. (27) for the
torsion, we simplify Eq. (30) with the help of Eq.
(26) to

Tkji +kji+ 2gg igk jS (31)

As the Proca field is simply a massive Maxwell
field, the field equations can be written down as

V G'+m'A =0
p

or

8ECSK ~gT a
ij

where T, jk is the so-called modified torsion ten-
sor, defined as

Multiplying (31) by qg~ g gives

nkjei'T =7 .nkj i'+2an"X nkj 06"S
fyj kj v)tp '

Now,

2~k jeBgap ~ape/ ~peag
kj

(32)

lT,.ya=S&yg+g(gS y, —gygS, ,

Writing

&„=2aV-gq" »„gg„K. PK'.
»,

it is not difficult to show that

(26)
and

ol

2~vX ~ape/ —2+ ~ vXP~apep

gv)LQgpeg y

Fbi y

K", =2av g(q'», K»'+-q'""~K „).
ij

Therefore, Eq. (25} finally gives

—v'-g T,"+~g7',"+2av-g(q', K» +q' 'K„„)=0

2~PE ~apng — 2g (gap+ngng gap~gnn

+g" g~g"'-g""g"'g"'
+g"gg""g" -g~g" g"') .

Therefore, we finally find that
Pg

2qYj. qg jng6PPS 2~Yll ~PPngS 2g (SPn gag Sle gnn +Sngll SnP gag +SgP gnn Sgnn)ei yA. P Oi y XP jQ P P P P

= —2g [2(S g" +Sgg"n -Sngng) j = -4T g



$920 R. HO JMAN, G. MUKKU, AND W. A. SAYED 22

Substituting this result back into Eq. (32) gives

&i inaT +4agngNZ —„&iinii
Aji kji kji

Multiplying (33) by q ~„gives
&j~Bv +n Mo» v — 4 job

~eppes

t Tg ji 4a& g ~eI3pe~ )hji ~k ji~ ~a/pa t

27„i,', =2T,j,.hp, -4aq' p,T„ji,
7 p

' Tp ' 2ag. paTlh j
or

T ',. -2aq'j ~T =v ',kji

From Eq. (33) we see that

2aq'j~~T . +8a'g"og»T . =2a~ .q'j~I'.
kji Oji k ji

Substituting this into Eil. (34),

T ~i+Ba'T I'i -2a7-, .g»~t'=v~t'
kji

T~i, (1 +8a') = r (6~6i +2aii~i~~) .

We have, therefore,

l!ii gAi i7 gii lti (1 +8a2) (6y 5i +2ag ) ~

the presence of a parity-violating interaction
mediated by torsion. This appears to us to be the
most distinctive feature of this theory which could
serve to distinguish it from the pure Einstein case.

In this note we have restricted our attention to
two cases only. Firstly, in the vacuum case we
have shown that the effects of the additional term
vanish even if we allow the simple form of dynamic
"vacuum torsion" we motivated. We have obtained
the field equations for this theory and will consider
some special solutions elsewhere. Secondly, in
order to illustrate the fact that our Lagrangian
may give rise to new parity-violating effects we
considered coupling to a Proca field. In this case
we found that indeed parity-violating effects arise
where the ECSK theory would not predict them.

It is interesting to consider what modifications,
if any, would arise in the theory of supergravity
recently worked out if we include, apart from R,
the &R term we have motivated in the gravity La-
grangian.
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--,'g,.i(v;+2aq„' r ~„)

+ ,'g„(r, +-2aq, "~i'r
~ )j,

where we have used the abbreviations

Ej—=Ej, ' and Kj=gj'E,

for the traces of the torsion and spin angular mo-
mentum tensor s.

It is clear that upon substitution of the expres.-
sion for torsion given in Eil. (36) into Eci. (28) we
shall indeed have parity-violating interaction
terms, which would not be present in the usual
ECSK theory —thus demonstrating that the new
I.agrangian proposed in this paper predicts parity-
violating effects not present in the ECSK frame-
work. In Sec. VII we conclude with a brief discus-
sion and possible further work along these lines.

APPENDIX

with

16vGi

Q =K K1 ya )tag

Q =K ~".~ ii

Qs =K"";.K si"
Q4 =K"';+K~.";i ~

QQ =K~,~K

Q„=K' ",. KJ'...,

@.2=& ". &a Xt

We give below the most general form for Z~
mentioned in Sec. V. The G,. are arbitrary param-
eters and we have only given the terms for the
ordinary Einstein-Cartan theory. Allowing the
additional term 2„ the situation can only get more
complicated:

VII. DISCUSSION

We have shown that the general structure of
metric-torsion theories of gravitation predicts

Q, =xi'-, .K,.', ,

Q6-K ';~K~e,.ii ~

Q, =K '", K~„,~,

QB =K ",4,K, x,g,

Ql~ K, Kq~,~, —

Q.4=K"";.Ki e.i ~

Qi, =K', , K+~.8,

Q, =K+,, K""~,~.
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and

uvre ~ vka
"tv +By " o|3y~

/@very~ 2' gy p

~pvkc ~ 6g 0

avery

y~

&wv) e= —24.uvre

where the tensor 6 ~v&y'.
'. '. is a generalized Kronecker

symbol obeying the following rules: If p, v, A, , ... are
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we propose (by restricting to linear R theories) seems
to us to be a reasonable one.
We may here point out that (21) is not the most general
form for K that we can write if we allow the use of &;&&&.

In fact, it is possible (while still only introducing one-
index fields) te consider the following choice for K:

6
Kat@, = /~goy —Qyg~g+ &

where we have introduced a pseudoscalar field 4' (4'~ be-
ing 0 ~ 6) which, like @, would be a dynamical field once
we incorporate this type of K into our Lagrangian. For
simplicity, however, we do not consider this choice in
the present note.
In this paper we do not consider the modified minimal
coupling for gauge fields proposed in Ref. 10.


