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Some exact inhomogeneous cosmologies with equation of state p =yp
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A new class of exact solutions of the Einstein field equations with perfect fluid source and equation of state p = yp
is presented. These solutions can be interpreted. as spatially inhomogeneous cosmological models. It is shown that
these models do not approach spatial homogeneity at large times or near the singularity.

I. INTRODUCTION

Spatially homogeneous cosmologies have been
studied in great detail over the past 15 years (e.g. ,
Ellis and MacCallum' and Ryan and Shepley ). The
real universe is not exactly spatially homogeneous,
however, and may not have been even approxi-
mately so at early times. Thus in order to under-
stand the evolution of the universe one has also to
consider spatially inhomogeneous models, and
over the past five years relativists have studied
various aspects of such models (e.g. , Szekeres,
Liang, Centrella and Matzne'r, ' and Collins and
Szafron; see MacCaltum' for a recent survey).

This paper deals with exact solutions of the Ein-
stein field equations with 6 rotational perfect fluid
source, which can be interpreted as sPatially in-
Aomogeneous cosmologies. By "spatially inhomo-
geneous" we mean that the dimension of the orbits
of the maximal group of local isometrics is less
than or equal to 2. This means in particular that
the hypersurfaces orthogonal to the fluid flow are
not the orbits of a local group of isometrics, as in
the Bianchi models. ' Relatively few exact solutions
of this type are known. The known solutions either
admit a local group of isometrics with two-dimen-
sional orbits or are algebraic', lly special. A

more serious restriction is that the only equations
of state of the form

near the big bang, and at late times. %e note that
the solutions were derived and the various invari-
ants were calculated using a library of programs
written in the algebraic computing language
CAMAL i3

II. THE SOLUTIONS

The solutions were derived by assuming the
existence of two commuting Killing vector fields
(KVF's) $ and q which are hypersurface orthogonal
and orthogonal to each other and to the fluid four-
velocity u. This implies the existence of local co-
ordinates (t, ,xy, z) such that

ds = e "dt +-e "dx +r(fdy +f dz ),
u=e

Bg'

The Killing vector fields have the form

2 8

By Bg

so that the functions k, h. ,r,f are independent of

y and z. The Einstein field equations

G,„=8m [(p, +p)u, u, +pg„]
were solved by setting 6 =k and assuming that each
metric component was a product of a function of t
and a function of x.

The line element is
p =@p, , y = constant

where p, is the density and P the pressure of the
fluid, are y =0, i.e. , dust (see for example Refs.
3 and 8), and y =1, i.e. , stiff matter (see for'ex-
ample Refs. 10 and ll). In this note we present a
simple class of spatially inhomogeneous solutions
with two commuting Killing vector fields, which
permit an equation of state of the form (1.1) with
0(y (1.

The solutions are given in Sec. II and their curv-
ature singularities are described in Sec. III. In
Sec. IV we discuss the intrinsic and extrinsic ge-
ometry of the hypersurfaces orthogonal to the
fluid flow and compare the results to other spa-
tially inhomogeneous solutions. Section V deals
with the asymptotic behavior of the solutions, i.e.,

ds =S C (-dt'+dx )

+SC "(T"dy2+ T "dz ),
where

S = sinh2qt,

C =cosh(2qx(n),

T = tanhqt,

o. = —(2m+2) f(2m+1),
and q, m, n are constants, with q W 0, m f —1,

The fluid density and pressure are

8m', =q S C r(I —4m-n)C S

—(4m+3/ '],

(2.1)

(2.2a)
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Bvp=q S2™C [(1-4m n-')C'S ' —(4m+3)],
(2,2b)

1 1
[s &0) +e (()] &

n
g [e(0& s (t&] &42 v'2

where

y =(m+1)/(m -1) .
The fluid four-velocity is

g=S C- --ia
at

'

The coordinate ranges are taken to be

Q(t&oo oo(X y g(oo ~

(2.3)

(2.4)

1
m =

&
—[s &2 &

+ ~s &s) l ~g2

The nonzero $„are given by

&j 0
———2mnq X2S ([coth(2qt} —tanh(2qx/n)],

g4
——2mnq X2S ([coth(2qt) + tanh(2qx/n)],

(I&, = -,'q'X'[(2m/o. )C '+ (n' —2m —l)S '],
where

(3.1)

0~&p~& p, (2.5)

over the whole spacetime if and only if the con-
stants m, n satisfy

or

1-4m-n &0, m& —12 (2.6)

It follows from Eqs. (2.2) that the pressure and
density satisfy

x=s'C '.
It can be shown, using the formulas in Ref. 19,

that the Weyl tensor is in general of Petrov type I,
and is of Petrov type D if and only if mn =0. If
m =0, the present solution is equivalent to a solu-
tion found by Allnutt in a systematic search for
type-0 perfect-fluid solutions.

The Weyl curvature scalars can be expressed '

in terms of the $&, for example,

4m+ 3 =0, n'(4. (2.7)

In particular, if equality holds in the first of the
inequalities (2.()), we obtain an equation of state of
the form (1.2), with y, as given by (2.3), subject
to 0&y & 1. If (2.7) holds, we have stiff matter,
i.e., p = p, & 0. There are no dust solutions.

In general, these solutions only admit a two-
parameter Abelian group of local isometrics, gen-
erated by the KVF's g = B/By and (7 = B/Bz. A third
KVF t; =y B/Bx —xB/By exists if and only if n = 0,
and in this case the solutions are locally rota-
tionally symmetric (LRS), in class II, with K =0,
in the paper of Stewart and Ellis. ' There are no
other possible KVF s. Thus all members of the
class a~e spatially inhomogeneous. We note that
there is a discrete isometry defined by x- -x.
We have also verified that the solutions are not
self-similar. ~ '

HI. CURVATURE SINGULARITIES

With a view to studying the singularities of the
solutions, we now give the curvature scalars con-
structed from the Weyl tensor. In order to do
this, it is convenient to introduce a null tetrad and
calculate the Newman-Penrose' complex null
tetrad components tt)„of the Weyl tensor. The
natural orthonormal frame defined by the line ele-
ment (2.1) is e (» ——u and e «&, 8 &2&, e &» parallel to
the vector fields B/Bx, B/By and B/Bz, respective-
ly. In terms of this frame we define a null tetrad
by

since in this case the P» are real. The required
information about the singularities can, however,
be obtained directly from g2 and the product ~7~054.

The Ricci curvature scalars are constructed from
p. and p, and hence their behavior can be inferred
from the expressions (2.2} for p, and p.

We now discuss the singularities of the solutions.
There are two classes of solutions which satisfy
the physically reasonable requirement (2.5), and
they are defined. by the restrictions (2.6) and (2.7)
on the parameters m and n. In both cases the
metric is regular [i.e., the g, , are of class C and
det(g, ,) e 0] over the coordinate ranges (2.4), but
the Ricci and Weyl curvature scalars become in-
finite as t -0 . Now t does not measure time
elapsed along the fluid flow lines since g004 —1.
However, the integral

f'0
S ~C

0

which measures the time elapsed from t =0 to
t=t0 is finite for m & —1 or 4m+3=0, for any
fixed value of x. Thus boN classes of solutions
ha&&e a big-bang singularity in the finite past.

A significant difference emerges when one con-
siders the dependence on the spatial variable x.
For (2.6) the curvature scalars are bounded on the
set t ~ t„ for any t 0

& 0, i.e., away from the big-
bang singularity, while for (2.7) the curvature
scalars become infinite as x- a~, for any t. One
should, however, consider whether x- & corre-
sponds to infinite spatial distance in terms of the
metric. It follows from (2.1) that the x-coordinate
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curves, i.e. , the curves t,y, z =, const, have infi-
nite length if and only if m & —1, which is satisfied
in case (2.6) but not (2.7). Thus when (2.7) holds,
i.e., when p= p, , a curvature singularity can be
reached in a finite distance along sjacelihe curves
We have not been able to establish whether there
are incomplete geodesics which terminate at these
curvature singularities.

IV. INTRINSIC AND EXTRINSIC GEOMETRY OF
THE SLICES

The spatial inhomogeneity of an irrotational cos-
mological model can be classified by means of the
intrinsic and extrinsic geometry of the spacelike
hypersurfaces (slices) orthogonal to the fluid
flow. We now discuss the solutions from this
point of view. Firstly, the slices are conformally
flat, as can be seen by inspection of the line ele-
ment.

Thus the Cotton- York tensor of the metric induced
on the slices is zero. The slices are not flat,
however. We give the components of the induced
Ricci tensor on the slices relative to the natural
orthonormal frame defined in Sec. III. The non-
zero components are

R(& ——4q Im +C (-2m + 1)/(2m + 2)]X,
(4.1)

R,*,=R,*,

=2q I(m ——,)+C (-2m +m+2)/(2m+2)]Xp,

where

gmc m +f

Thus as regards the intrinsic geometry of the
slices, these solutions are analogous to the
Szekeres inhomogeneous solutions —the slices are
conformally flat and the induced Ricci tensor has
an eigenvalue of multiplicity 2.

As regards the extrinsic geometry of the slices
or, equivalently, the kinematical quantites of the
fluid, we find that the nonzero frame components
of the expansion tensor are

8&& ——- 2mqX coth2qt,

8» + 83, =2ql coth2qt,

8» —8» ——2nqS X .-1
(4.2)

u, =(2m+1)qx ta~(2qx/o) . (4.3)

It follows that the expansion scalar is given by

8 = 2q(1 —m)X coth2qt,

which is positive on the whole spacetime if we as-
sume (2.6) or (2.7) to hold. Thus the fluid is ex-
Panding everysvhere. The fluid congruence has a
nonzero acceleration vector, with nonzero frame
components

V. ASYMPTOTIC BEHAVIOR

In this section we discuss whether or not these
spatially inhomogeneous models can be approxi-
mated by a (nontilted) ' spatially homogeneous
model, either as t-~ or as t-0', i.e. , whether
or not they are "asymptotically" spatially homo-
geneous. We are working with a spacetime which
admits a global coordinate system in which the
line element has the form

d's =gppdt +g ~4x 4x (5.1)

where the hypersurfaces t =const are orthogonal
to the fluid flow, the x, e =1,2, 3, are constant
along the fluid trajectories, and hence gpp ~ 0 In
order that (5.1) admit a three-parameter group of
isometrics with orbits t =const, it is necessary
that Bgpp/Bx = 0, i.e. , that gpp be constant on the
slices. Thus in order that a spatially inhomoge-
neous model with line element of the form (5.1) be
asymptotically spatially homogeneous, it is neces-
sary that gpp be "asymptotically constant" on the
slices. We make this precise as follows. Firstly
it is necessary that the positive-valued function
(-gpp) be bounded above on each slice t = const.
This being assumed, we consider the quantities

Equations (4.1) and (4.2) imply that the 6 p and
R*& have a common eigenframe, which is Fermi
propagated along the fluid flow lines (as can be
verified), so that the present solutions again dis-
play similarity with the Szekeres solutions. One
difference, however, is that in the Szekeres solu-
tions the expansion tensor has a repeated eigen-
value, while in the present solutions this occurs
if and only if n=0, as follows from Eq. (4.2). A
more important difference, however, is that in
the present solutions, the acceleration of the fluid
is aluays nonhero, as follows from Eq. (4.3), since

1m ~~g ~

The metric induced on the slices is sufficiently
simple to enable one to study its geodesics in de-
tail. The curves y, z =const are geodesics, and
it is easi. ly seen that they have infinite length if
and only if m & —1. Thus if m ~ —1, in particular,
for the solutions with P = p. , the slices are geodes-
ically incomplete and cannot be extended since the
curvature scalars of the slices become infinite
along the incomplete geodesics, in both the posi-
tive and negative directions. Thus in this case
the slices are of finite extent in the x direction.
On the other hand, when m & —1, it can be shown
that all geodesics of the slices have infinite
length, so that the slices are geodesically com-
plete. In this case, the curvature scalars of the
induced metric are bounded on each slice.
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m(t)
M(t)

(5.2)

as t approaches the limiting value. It is imme-
diately clear that this necessary condition cannot
be satisfied as t -+~ or t -0' by the spatially in-,

homogeneous solutions presented in this paper,
since if (2.6) holds (-g«) is unbounded, while if
(2.7) holds, m(t) =0. We thus conclude that these
solutions are not asymptotically spatially homoge-
neous as t -+~ or t -O'. Indeed this behavior of
g00 means that we cannot regard the solutions as
being approximately spatially homogeneous at any
time.

VI. CONCLUSION

We have presented a new class of spatially in-
homogeneous irrotational cosmological models,

3f(t)= sup (-gpp),
t =const

m(t)= inf (-g»).
t =const

These quantities are not invariants, since they
are altered by a coordinate transformation of the
form t-f(t}, with f'(t) & 0, which represents the
freedom in choice of the t coordinate. However,
their ratio is invariant. It is thus reasonable to
require as our criterion for gpp to be asymptotical-
ly constant that

containing two essential parameters. If the param-
eters are suitably restricted, the fluid pressure
and density are related by an equation of state of
the form P =yp, with 0&y & 1, andP and p, posi-
tive over the whole spacetime. To the best of the
authors' knowledge, these are the first exact in-
homogeneous models with such an equation of
state —the other exact solutions with an equation
of state have P =0 or p = p, (see Ref. 8 for details) ~

When (2.6} holds, in particular, when P =y p, , the
only curvature singularities occur at t = 0, giving
rise to an initial "big-bang" singularity. In this
case, the pressure, density, and indeed all sca-
lars are bounded away from the initial singularity,
i.e., in any subset t~ to, where to & 0. This means
that 'the pressure and density are bounded on each
slice. Despite this fact, however, the discussion
of Sec. V shows that the solutions cannot be re-
garded as being a small perturbation of a spatially
homogeneous model.
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