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This paper calculates the secular changes in orbital period, semimajor axis, and eccentricity for a gravitationally
bound, slow-motion system of two compact bodies, directly from the Einstein field equation, using matched
asymptotic expansions. Burke previously derived the radiation damping of a weak-field, slow-motion system, also
using matched asymptotic expansions. However, no previous derivations extend to systems, such as the binary
pulsar PSR 1913+ 16, containing objects with strong internal gravity. This calculation uses distinct wave-, near-,
and body-zone expansions to seek a uniformly valid, one-parameter family of approximate space-times representing
a bound system of compact objects undergoing gravitational radiation reaction. As in Burke s work, matching
outward gives the lowest-order near-zone and radiation fields, and then matching back inward yields near-zone
resistive potentials of 5/2-post-Newtonian order, which contain the lowest-orcler time-odd e6ects of radiation.
Matching inward again using my egrlier technique for the problem of motion in external fields then gives the
resulting deflections of the bodies from the world lines that they would otherwise follow. The secular changes in
orbital parameters derived for the system of compact objects treated here agree with the standard formulas obeyed
by weak-field systems.

I. INTRODUCTION

The detection of gravitational radiation from a
binary system such as the binary pulsar PSR
1913+16 is indirect in the sense that one observes,
not the energy flux of the radiation, but rather the
orbital-period shortening. The gravitational
radiation reaction for a weak-field, slow-motion,
gravitationally bound system was derived directly
from the Einstein field equation (EFE) by Burke'
in a paper that introduced the method of matched
asymptotic expansions to general relativity. For
the systems considered, his paper was the first
to verify directly that the energy flux calculated
from the usual flux integrals agrees with the rate
at which resistive forces extract mechanical en-
ergy from the sources.

Burke's approach needs to be continued on
several fronts: Fir st, observational determina-
tion of the mass ratio and other parameters neces-
sary to predict the binary pulsar's period decrease
depends on a knowledge of the near-zone metric
and of the motion to post-Newtonian (PN) order.
Matching of the radiation fields and the PN metric
terms in the near-zone expansion has not yet been
carried out, and the motion up to PN order of a
system containing compact objects is not yet fully
understood, although D'Eath' has solved the prob-
lem for the special case of two black holes. Sec-
ond, the overall consistency of the slow-motion
expansion up to at least ~-PN order needs to be
checked. The infinities referred to by Ehlers,
et a/. ' must be explained (see Conclusions). Third,
the relation between retarded waves and a condi-
tion for the absence of incoming radiation is still
being investigated. ~"~ This issue is also intimate-

ly connected to the problem of uniformity of the
wave-zone expansion at large distancess (see Con-
clusions).

Leaving these first three problems to future
work, I address a fourth problem: To apply
Burke's method to a system containing objects
with strong internal gravity, such as the binary
pulsar, one needs to calculate the deflections of
the objects due to the "resistive potentials" pro-
duced from matching the radiation fields back to
the near zone. In Ref. 9, I first studied the more
basic problem of the motion of an arbitrary object
with (possibly) strong internal gravity through an
unspecified, curved, matter-free region of an ex-
ternal spacetime. I used a matching technique
based on my earlier paper" concerning singular
perturbations on manifolds (and related to a tech-
nique used by D'Eath") to show, directly from
the Einstein field equations (EFE), that a body
whose mass m is small compared to an external
curvature reference length I, moves on an ap-
proximate geodesic of the unperturbed external
spac ctime.

This paper combines the methods of Refs. 9 and
1 to calculate, directly from the HIE, the resis-
tive accelerations and consequent secular changes
in orbital parameters for a binary system of two
compact objects. The calculation treats a system
with the following properties:

(1) The ratio v —= l/X (where l is a typical separa-
tion, X. is a typical wavelength or period, and G
=c=1) is a small parameter.

(2) The system is gravitationally bound, so that
the Newtonian interaction potentials scale with v .

(3) The bodies are compact enough so that tidal
slowdown is negligible. -
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(4) Negligible direct mass loss occurs.
This paper actually derives only the first time-odd
correction to the motion; this correction occurs
at —,'-PN order and therefore produces deviations
of order l on time scales of order X/v'.

Although this calculation does not depend on any
definition of energy, it does agree with the
usual" "formulas for energy and angular mo-
mentum losses and therefore makes the usual
predictions for secular changes in orbital parame-
ters over —,'-PN time scales.

The three zones treated in this problem will re-
quire three types of asymptotic expansions. The
gravitational field is weak in both the wave and
near zones. However, in the wave zone both time
and spatial derivatives scale with the wavelength

X, while in the near zone spatial derivatives
scale instead with the typical separation l. Gravi-
tational potentials in the near zone scale with v2.

In the two body zones, where the fields are
strong, appropriate reference lengths are the
masses, which scale as v'l. Body-zone pertur-
bations change only over time scales of order
m/v~, and therefore time enters the body-zone
equations only as a parameter.

The mathematical context for these expansions
is based on Ref. 10. One infers the behavior of a
system with small v from the asymptotic behavior
of a one-parameter family of systems as v-O.
Consider then a five-dimensional manifold M that
can be sliced into exact spacetimes (S„,g„), where
0&v &v, & 1, and in which a11tensors vary smoothly.
I will seek a "global asymptotic approximation"
on M, which in this problem means a collection of
matched asymptotic expansions (in v), whose
errors in approximating the exact spacetimes
(S„,9„) become uniformly small as v - 0.

The scaling assumptions described above lead
naturally to the assumed form of the asymptotic
expansions. I assume as given' two unperturbed
solutions (B„Q"'), (&„9 '

) of the EFE, each
representing one of the bodies as if it were iso-
lated. Each is assumed to be empty outside some
spatially bounded region and to approach a
Schwarzschild solution at large distances. These
given solutions provide the zeroth-order terms
in the two body-zone expansions. Terms of hi.gh-
er order in the small parameter v represent the
mutual perturbing influences. For example, tidal
perturbations of one body by the other would be
expected to scale as v'.

Zeroth-order terms in both the near- and wave-
zone expansions represent Minkowski space. The
near zone has a weak-field, slow-motion expan-
sion, with Newtonian potentials proportional to v .
The possibility of nonanalytic terms in v cannot
be ruled out, but I assume that all the expansions

begin in powers of v; this calculation requires
only an analysis of analytic terms.

The wave zone has a weak-field expansion, with
the first nonflat term entering at 0 (v') (static
monopole} and the first radiative term entering at
O(v'). The condition of outgoing radiation is en-
forced in this paper by allowing only retarded po-
tentials in the O(v') wave-zone potentials. The
purpose of the wave-zone expansion is to produce
an approximation that is uniformly valid (1) out to
radii scaling (in the limit v -0) as some finite
multiple of the wavelength X and (2) over retarded
times of order A/v'. Both these limitations on
uniformity have been sources of confusion in. pre-
vious work and will be discussed further in the
conclusions.

In the context of the near-zone expansion, it
makes sense to define a —,'-PN-approximate world
line. The principal goal of this paper is to calcu-
late the time-odd part of this —,'-PN world line' s
deviation from the world line that would have re-
sulted from including only the terms uy to 2-PN
order in the near-zone metric; this deviation con-
tains the lowest-order secular effects due to ra-
diation reaction. Calculating it requires a know-
ledge of the orbits and fields to only Newtonian
order.

I first derive these orbits and fields from the
E FE by matching the body- and near-zone expan-
sions. (For body- and near-zone matching, I as-
sume coordinate expansions, beginning in powers,
of several of the perturbations. } Matching to the
wave-zone expansion gives a static monopole at
order v' and a radiating quadrupole at order v'.
(Higher moments would enter at higher orders. )

The first time-odd terms that result -from match-
ing the wave-zone expansion back to the near zone
come in at —,'-PN order. Via matching to the body-
zone expansions, the gradients of these —,'-PN cor-
rections induce resistive accelerations of the bod-
ies, just as the gradient of the Newtonian potential
induces the Newtonian motion. Obtaining the re-
sistive acceleration reduces the problem to a
kinematics problem with a well-known solution.

II. COORDINATES, EXPANSIONS,
AND APPROXIMATE EQUATIONS

Each of the expansions in this problem can be
thought of as a "model spacetime. " Each model
syacetime will need its own coordinate systems,
asymptotic expansions, and approximate equa-
tions. The model spacetimes will later be glued
together by matching.

Both the wave- and near-zone fields are expand-
ed about Minkowski space, and therefore it is con-
venient to take both expansions on the same mani-
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fold 84, but with different coordinate systems re-
flecting the different scaling assumptions. The
body-zone fields are expanded about the assumed
given solutions (B„B'"),I =1, 2, which serve as
zeroth-order model spacetimes.

For the wave zone, introduce Mnkowskian rec-
tangular coordinates (t, x, y, z) and spherical co-
ordinates (t, r, 8, Q) nondimensionalized by the
wavelength X. The wave-zone metric is expanded
in the form

e, =s/sx'. (2.9)

—v3V;dx',

&o' e'+ v g&u

+v'[-,'Hy; (ok+ ,'(b-H-- ,'P)u-)'],

(2.10)

(2.11)

For matching, I will also need to expand the ortho-
normal basis one-forms,

(u'- [1--,'v'p - ', v'(-5+Hkk+ ', p)—] dt

x -~x„„+ v"(„x„„)v~ ~ ) dx" exx",
n=1

(2.1)
jk (d ' &d =Hgkdx g dx (2.12)

The EFE, together with the gauge conditions

where q~„ is the usual Minkowski metric, and in-
dices are raised and lowered with q„„. The nota-
tion 9 is a shorthand for the pullback of the exact
metric 8„from the 8„ to any of the model space-
times. The P» are assumed to depend function-
ally on the wave-zone coordinates. Since m/X
=O(vk), the static, monopole terms will first ap-
pear at O(v'), while the first dynamic terms will
come in at O(v'). Our' attention will therefore be
focused on the, h&, . -

If one defines

a. -=p,„--,'q„„(p ),
then the EFE translates into the ordinary equa-
tions af linearized gravity, written in the "Lo-
rentz gauge":

(2.2)

Stt Q 0
—0

~V (2.4)

+ [-v'V~+ ~ ~ ~ -v'W+ ~ ](dx' Sdt+dt 8dg)
+[0x~+kV $9;~+V (vb'g. +H',

~
—kH g. )

+v'X;; ~k&k, rt, ,)+ "]dx' edx~. (2.6)

The absence of certain terms such as O(v) and
O(v') in 9«will be verified by matching to the
body expansions. It is convenient to adopt the
conventions

V =—V'e~,
X=-H"e; e&,

(2 7)
(2.8)

Here, the semicolon refers to the flat-space co-
variant derivative expressed in (possibly) curvi-
linear coordinates.

AQ quantities in the near-zone expansion w&ll

depend functionally on coordinates (t, x*') or
(t, r*, 8, P), where

x*' =- x'/v,
(2.5)

r+ = r/v. -
I assume' the near zone has a weak-field, slow-
motion expansion
8- f-I+-.'v'P+-.'v'(I +H* )

+k v'(X', ) + ~ ~ ~ + k v'f] dt 8d t

'7 ~ '0 +8,(=0,
ri'. X+8,g =0,

(2.13)

(2.14)

translates into the following equations for g, 'U,

and +
'V'/= 0

V2'U =0
(2.15)

(2.16)

7'& =[kg"P"+ 2gg" n, k(-'-~4"74+ '0&'l)-]e; e e,
=—1671' 8 . (2.17)

In order to translate information about the field
quantities into info''mation about the motion of the
bodies, it is necessary to define n-PN-approxi-
mate world lines. I use a criterion' based on
the requirement of uniformity for a global asymp-
totic approximation': For Newtonian accuracy,
let y„(t) be any smooth world line, expressed in
coordinates as x*' =r'(t). [For -', -PN accuracy,
let y„(t) be parametrized by t, ..., t/v' and be ex-
pressed in coordinates as x*' =r'(t, ..., t/v'). ]
Suppose in either case that the domains of validity
S„'"' of the near-zone expansion exclude y„(or y„).
Define

le =X~J y (2.18)
In the Newtonian (-', -PN) case, pick a family of
events p„(p„) with constant coordinates (t, se')
[(t/v5, so')]. If p (p) is eventually in a domain of
validity &„'"' of the near-zone expansion up to
Newtonian (—', -PN) order for sufficiently small v,
then I call y„(y„) a Newtonian-( —', -PN-) approxi-
mate world line, provided that the near-zone do-
mains of validity overlap with the body-zone do-
mains of validiiy. This definition means physical-
ly that the body becomes increasingly localized to
its world line as e-0. Note, however, that this
definition will only be sensitive to those higher-
order effects that produce secular orbital changes.

I choose the origin of the near-zone spatial co-
ordinates (and, consequently, of the wave-zone
spatial coordinates) to be at the "center of mass, "
defined here by the standard Newtonian formula
for two point bodies of masses m, and m, moving
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9 &') -9+g9+6ge")+ ", J = 1, 2

where

g=n [-dT edE+dR @R

+R„'(do W+sin'ed4 dc)]

=O(1),

(2.19}

(2.20)

6g = 2a ~ [R„'dT„dT„+R„dR„dRJ= 0(n), (2.21)

559"&=0(n') (2.22)

and where Xf}t are auxiliary coordinates defined by

along paths r,' and r2( (this definition needs to be
accurate only to Newtonian order, and therefore it
may differ at higher orders from formal defini-
tions"'"}. This choice of origin will simplify the
calculation by eliminating the lowest-order dipole
moments in the wave-zone expansion. (The ab-
sense of dipole terms is peculiar to theories with-
out scalar fields. In the scalar-tensor theory,
the presence of two independent "masses" means
that in general one cannot simultaneously elimin-
ate both dipole moments, and therefore dipole
radiation in general does occur. )

Each of the model spacetimes representing the
body-zone expansions has coordinates (T,R, e, 4)
and (T,X, F,Z) as defined in Ref. 9. As in Ref. 9,
the zeroth-order metric is assumed to have an ex-
pansion of the form

4'( ):Uz N

can be expressed as the composition

(~)—~ (&) p y (~) Q g(~)
o ~u v v

(3 2)

(3.3}

where 4 „' is of an assumed canonical form. It is
convenient to choose

(t, u')=e „"'(X)= p, (v'T, v. 'Aj'X'),

where p. z=-mz/(Av'} and A& is a rotation matrix
that will be chosen to simplify the internal per-
turb ations.

The "„and „will refine this initial, crude
choice for 4 „"' in order to satisfy the require-
ments of matching, as in D'Eath's' analysis of
his Eq. (2.11). For example, the velocity of B's
world line inN induces a boost of the near-zone
coordinates that is not included in 4~ . As part
of the slow-motion assumption, I expand the "„
and Z„as follows (superscripts indicating body
1 or 2 are suppressed below):

A "calculation of a body's world line" is really a
calculation of the constraints imposed by the EFE
and matching on the corresporidence maps'

4„"':U, N, U, c 8, , (X")-(t,w') (3.1)

between the body-zone model manifolds B, and the
near-zone model manifold N =84. An arbitrary
correspondence map

X~ =X~/a, R„—=R/a, a 0. (2.23) (3.5}

These auxiliary expansions express the require-
ment that each body approach a Schwarzschild
solution at large distances.

The metric is expanded about the zeroth-order
term as follows:

Z„ t+v R2(t, W )+' ~ ~,

:„'-w'+v'H2(t, su~)+ ~ ~ ~,

~„:N")- [~:Ã)],
Z" -X'+v4~4 +. -

V

(3 8)

(3.7)

(3.8)

(3.9)
g g(i&+ v4( 1 (I&)+ (2.24)

III. DERIVATION OF NEWTONIAN FIELDS
AND ORBITS

In this section, I match the body- and near-zone
expansions and apply the EFE at Newtonian order
to derive the Newtonian motion. The same method
will later be used at —,'-PN order to derive the re-
sistive acceleration.

Newtonian and —,'-PN perturbations enter at 0(v~)
and 0(v'), respectively. (This expansion assumes
that the —,-pre-Newtonian spin precession vanish-
es, an assumption that will be checked in a future
paper. ) The slow-motion assumption implies that
the internal perturbations depend on one or more
slow-time variables m/v', etc. It is possible that
this expansion might need to be augmented by cer-
tain nonanalytic terms. " However, only analytic
terms enter the present calculation.

(~:)= (t/n, v~'A»-
(3.10}

«'g«v «$
If one were to try to match out the body-zone

metrics using the canonical correspondence maps

[Expansions (3.5)-(3.7) are equivalent to D'Eath's'
Eqs. (2.9), except that he expanded the inverse
maps „'.] The lowest-order corrections to
and ~„are Newtonian, because I have used the
earlier assumption that the ~ -pre-Newtonian spin
precession vanishes. Terms of order v2 in "„'
and v4 in ~„can be represented by Newtonian,
gauge transformations (and so on for higher-order
terms}. The remaining Newtonian degrees of
freedom are already represented by the coordin-
ates of the world line.

For matching, it is convenient to compare the
body- and near-zone expansions under intermedi-
ate limit processes of the form v -0, x„"fixed,
where
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&=4p, i
r* r, i-'+4p, j

r*, -r, i
',

(xg yg x g) (xga)

r, =(r,*), I =1, 2.

(3.11)

Note that no terms of order v or v3 appear in 9«,
verifying the assumption mentioned above in Eq.
(2.6).

Suppose now that body 1 has a coordinate acce-
leration

4 „"', the O (v') part of 9 wouM not be of the as-
sumed form-', v'g in Eq. (2.6). However, the
Schwarzschild part of the body-zone metrics
can be expressed in isotropic coordinates, and
this transformation is equivalent to a gauge trans-
formation of the near-zone metric [i.e., a PN cor-
rection to Eq. (3.7)]. The solution of Eq. (2.15}
that matches to each of the body-zone expansions
and also has the proper behavior at large r—no
growing terms occur at Newtonian order —is

»0(t)
a;(t)=4 8 „,-x y(t)

(3.19)

It is convenient to label the near-zone coordi-
nates so that the Keplerian orbits lie in the x-y
plane; they then satisfy"

(xi' 3I i~ 8 i}=(di cosf i~ di sin/i~ 0)~

(x„y,& e,)= (- d, cosQ„-d, sm(f&„0),

(3.20)

(3.21)

to the Einstein tensor (ET). If the ET at O(v') is
to vanish, then 4G,i must be canceled by a term
,O,u, generated by the O(v'} (intermediate limit}
perturbation ~a, of Eq. (3.13). The arguments of
Ref. 9 applied to 4~. show that such a term G,»
would violate the EFE and Bianchi identities.
Therefore, the Newtonian coordinate acceleration
of the world lines must agree with that predicted
by the geodesic equation expanded to Newtonian
order:

(3.12)

at i =0 (the argument could be repeated at any other
time). Then if the orthonormal frames are expand-
ed in the intermediate limit (3.10}as

(d «(d+VYJ(&K++ K )+~ ~ ~

+ (v'/q}5(o+v'( X + X )+ ~ ~ ~

P, i+ P,2

p. j+ p2

a (1 -e')
1+ecosQ, '

dP, [(p.,+ p, ,}a(1—e')]'i'

(3.22)

(3.23)

(3.24}

(3.25)

a ' ——;
i
x„'dt„=As„dt„, .

1 ski
4 + sxggi g Tl

ex+5

~ =-
[ a --,' Vgi,

(3.14)

(3.15)

(8.16)

where the rotation matrix Az of Eq. (8.4) has been
chosen so that a' -4& g/ex*' is in the x direction.
This quantity represents a trial Newtonian acce-
leration of the body away from the world line that
would be predicted from Newton's law.

In order to use the arguments of Ref. 9, I first
remove the 4~,' by a gauge transformation

4K 4K+Sg405

4K~ ~ 4K~ 5

0.
(3~ 17)

The frame perturbation 4K, is now of the form K,
of Hef. 9.

This perturbation produces an O(v4) (under the
intermediate limit} contribution

Q, &
=- 6Ar„"~cosedr„ dr„ (3.18)

+ (v'/rP) &~~+ (v'/q), v+ ~ ~ ~, (3.13}

the following perturbations are obtained at O(vq}:

where a is the (nondimensionalized) semimajor
axis, Q, is the angle of body 1 from periastron,
and e is the eccentricity. Over Newtonian time
scales, it suffices to consider constanta, e, and
period, The secular effects of radiation reaction,
which become important over time scales of order
X/v', can be accounted for by allowing the parame-
ters a and e to depend on the slow-time parame-
ter f/v'. While other slow changes, such as the
perihelion precession, come in at lower orders,
radiation reaction produces the lowest-order
changes ina and e.

IV. RADIATION AND RESISTIVE POTENTIALS

In this section, I match the near-zone and wave-
zone expansions to compute the lowest-order ra-
diation and resistive potentials. The lowest-order
radiation is a sum of L=2 multipoles. The lowest-
order, time-odd potentials in the near zone gen-
erated by matching are of —,'-PN order. Two subtle-
ties of the matching should be noted.

(1) Although the gravitational stresses 5 are
important as sources of radiation, it will not be
necessary to compute the X (and &) fields ex-
plicitly, because the s;,. (and I„.} fields to which
they wouM match can be determined from the
gauge conditions (2.13) and (2.14) and from the
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+4p, ,[(-d, cosy, -x*}'
+(-d, sing, -y*)'+a*'] '~'. (4 1)

The static, monopole part of &t matches routinely
to a static monopole in p„„. The dipole part of g
vanishes as explained above. The lowest-order,
time-dependent part of g has a quadrupole depen-
dence

&t -2(&&/30)'~'&&&r '[--,'&& 6 Y2O+-,
' exp(-2ig, )I"»

+ ', exp(2ig-, )y', ,], (4.2)

4p, p, 'a(1 —e')
&&, ,+ p, , I+ecosoc,

(4.3)

and matches to the potential K„defined in Eq.
(2.2).

Outgoing wave solutions of Eqs. (2.3) and (2.4)
having electric parity and 1.=2 are linear com-
binations of

(4.4)

I« = [F„(t r)/r + 3F„(-t r)/r'-
+3F„(t r}/r ]I'2„-,

(4.5}

(4.6)

a;., = (mI)'"(F„& &(t -3r)},(q „„),„
It« = [F'„'(t r)/r+3F'„(t --r)/r'

+3F„(t-r)/r']'&I, „,
where (F„".'},and (F„"'},are defined by

(4.7)

(4.8)

(4 9)

(E'2'} =F"/r+6F'„/r +15F—„/r'+15E ' "/r,
(4.10)

(E&'&},=E'„/r+10E'„/r'+45F„/-r'

+ 10SE„& '&/r4+ 105E„& '&/-r'. -

A solution h„„of the form (4.4)-(4.6) may be

(4.11)

form (2.6) of the near-zone expansion.
(2) The resistive effects generated by straight-

forward matching would come in at —,'-PN order in
the scalar, vector, and tensor potentials. In order
to simplify later computation of the resistive de-
flections, I will use a gauge transformation (sim-
ilar to that of Ref. 1}to transform all the —,'-PN
effects into the scalar potential f.

The Newtonian motion calculated in the preced-
ing section determines the g field over Newtonian
time scales:

$= 4&&, &[(d& cosp &
—x*)

+(d, sing -y*}'+a+'] '~'

transformed into a solution of the form (4.7)-(4.9)
by a gauge transformation that preserves the
Lorentz gauge condition (2.4}. Under this gauge
transformation, the time-time component I«
undergoes the change

(4.12)

In matching the g, '0, and 3C fields, I choose
the form (4.4}-(4.6), because otherwise the h, t
and h;& fields would match to near-zone potentials
of order v and unity, respectively, and such po-
tentials would violate the form of the near-zone
expansion (2.6}. Matching thus determines the
functions E„, leading to the solutions

E;--,' (4&&/—5) '~'Q,

E„=(4~/30)'"q exp(~2iy, ),

(4.13)

(4.14)

E„=O. (4.15)

(4.16)

(4.17)

These .time-odd terms match to the near-zone
potentials X,.&, W, , and f of Eq. (2.6}, which obey
the equations

V'(X, ,) =0,
V'(W, ) = 0,
V f=X&tg&&. (4.21)

(4.19)

(4.20)

X&& and W& are given by Eqs. (4.16) and (4.17),
whereas f is given by

(4.22)

where V'X = -2&t.
It is convenient to gauge transform these resis-

tive potentials to make X,&
and W& vanish. How-

ever, as pointed out by Walker and Will ""one
must be careful to include the effect of this gauge
transformation on the Newtonian potential &t of
Eq. (2.6). It can be shown that this effect pre-
cisely cancels the second term in (4.22). The
gauge-transformed scalar potential, denoted f&&,
becomes

Note that matching could in principle be carried
to higher order in the „k„„,with radiation from
higher multipoles and post-Newtonian terms be-
coming important. However, higher-order terms
in the wave-zone expansion do not apparently af-
fect the lowest-order resistive potentials, al-
though this point should be checked in future work.

One can rewrite the solutions (4.4)-(4.6) in
near-zone coordinates for matching, with the aid
of their Taylor-series expansions for small r.
The lowest-order terms that depend on the out-
going wave condition are

s ~- 'E~"'«-)(-~2o~)&g

I&„-(r/8)E "'(t)(&t„„)„
a„-—(r'/15}F„&5&(t)I;„ (4.18)
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V. RESISTIVE DEFLECTION AND SECULAR

CHANGES

In order to verify the standard formulas for
secular changes in the semimajor axis a,
period P, and eccentricity e, I match f„with the
two body-zone expansions. Although of much high-
er order than the Newtonian potential g, the re-
sistive potential f„also causes the bodies to de-
flect by the analog of Newton's law for a pointlike
body moving through an external potential. The
derivation of changes ina, e, and P is therefore
reduced to a previously solved problem in kine-
matics.

In principle, matching at 2-PN order involves
terms up to:"'„=,', and Z," in Eqs. (3.6}, (3.7},
and (3.9). However, terms beyond order unity in
these expansions actually have no effect on this
calculation. The 2-PN coordinate strains " '„
and ~, can be absorbed into gauge transformations.
The remaining lower-order strains would pre-
sumably be determined in a more complete cal-
culation by matching. Whatever the precise val-
ues of these strains, though, their effect on fs
would not be seen until beyond O(v~} in the body-
zone expansions.

Let y(t, ... , t/v'} be the —', -PN world line that
body 1 would follow in the absence of the resistive
potentials fs. (For example, one could solve the
problem again using a half-advanced, half-retard-
ed boundary condition. ) One expects y to deviate
from geodesic motion due to couplings such as
those analyzed in Ref. 2. Let

8 9 +v P + ~ ~ ~ +v 'h + ~ ~ ~9 (5.1)

be the body-zone expansion for this hypothetical
problem. Let ys(t, . .., t/v') be the —', -PN world
line that body 1 follows with fs taken into account.
Suppose the acceleration ~'a' of y„with respect to
y differs from the value ,'af„/ax*' by an a—mount

i JRBJ+

4 ex+'
Then matching generates an additional O(v') cor-
rection gk / to gk

This correction, h' '~ then satisfies the same
equations as the earlier Newtonian perturbations
P"' of Sec. II. By a similar argument, with, ~„,
Ps, ... in place of,~, ,X, .. . one finds that the
E FE can only be satisfied if

(5.2)

j8 0 (5.3)

Thus, the resistive potential f„causes the bodies

(4.23)

The resistive potential fs now contains all the in-
formation needed to calculate the lowest-order ef-
fects of radiation reaction on the orbits.

to deflect according to the acceleration law

»fs
4 ex+'' (5 4)

(5.6)

(5.7)

and these quantities are related to the semimajor
axis and eccentricity by the usual Keplerian ex-
pressions. Substitution of Eqs. (4.23), (5.7), and

(5.8) into Eqs. (5.6) and (5.7} gives the same ex-
pressions for the time-averaged changes of energy
and ax~ular momentum as were derived in Refs.
12 and 14 using the linearized theory. The rates
of change of the semimajor axis, eccentricity,
and period therefore obey the standard formulas
given in Refs. 12, 14, and 20.

Note that the mechanical energy and angular
momentum defined above are not assumed to be
the same as the energy and angular momentum
calculated from integral conservation laws, but
are merely convenient, slowly varying parame-
ters of the motion. However, their rates of
change d.o in fact agree with those given by the
usual pseudotensor fluxes.

VI. CONCLUSIONS

This calculation has treated a binary system
containing two compact objects with negligible
mass loss. If the system obeys my mathematical
assumptions, then the rates of change of orbital
period, semimajor axis, and eccentricity due to
radiation reaction obey the same formulas that
were derived previously using the linearized
theory. Wherea, s the previous derivations were
only valid in the case of objects whose internal
gravity is weak, this calculation has shown that
the standard formulas remain valid even for ob-
jects whose internal gravity is strong, as in the
binary pulsar.

These formulas and those given by Burke' and

The problem of calculating the secular changes
in a, e, and P —which become significant over —,-
PN time scales —has now been reduced to kine-
matics. A convenient approach is to use an in-
direct argument: Translate the acceleration law
(5.4) into a "force" law by taking the Newtonian
law as a definition

E,'. =v p.ra (5.5}

and similarly take Newtonian definitions for mech-
anical energy and ax~'ular momentum. The rates
of energy and ax~ular momentum loss in a New-
tonian system of course satisfy
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MTW (Ref. 20) will be uniformly valid only over
time scales of order (orbital period/v'). Over
still longer time scales, radiation reaction from
higher-order terms in the wave-zone expansion-
due to higher moments, post-Newtonian sources,
etc.—eventually will become important. While
the lowest-order radiation reaction will dominate
the higher-order terms over observational time
scales, there is no a prion justification for ignor-
ing the higher-order terms when studying the en-
tire past history of a system, as was done in Ref.
4

Since the Newtonian orbits and potentials deter-
mine the lowest-order resistive effects, I have
ignored the PN through 2-PN (time-even) correc-
tions to the near-zone fields and motion in cal-
culating the radiation reaction. The PN fields and
motion are used in interpreting observations of
the binary pulsar to compute a mass ratio. These
terms have never been calculated self-consistently
for systems of the type studied here. In particular,
one must show that the PN terms match to the
wave-zone expansion. The higher-order terms
(—,'-PN, etc.) in the near-zone should also be

checked as part of an overall program to show
self-consistency of the slow-motion approxima-
tion. Infinities that occur in some treatments" "
will need to be understood, perhaps, as suggested
in Ref. 1V by introducing nonanalytic terms into.
the near -zone expansion.

Further nonuniformities will occur in the limit
of large radius (at some fixed retarded time),
where the Minkowskian characteristics make
large phase errors; i.e., the radiation is red-
shifted due to, for example, the mass of the sys-
tem. A proper treatment of these phase shifts
using straining techniques requires a study of
higher-order terms in the wave-zone expansion,
because these terms eventually become sensitive
to nonlinearity. [Nonlinear source terms first
enter at O(v ) and become dynamically important
at O(vs). ] This issue and its relation to the re-
tardation boundary condition will be discussed 'in

a future paper. '
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