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This paper shows that a small body with possibly strong internal gravity moves through an empty region of a
curved, and not necessarily asymptotically flat, external space-time on an approximate geodesic. By "approximate
geodesic, "one means the following: Suppose the ratio e=m/I. , where m is the body's mass and I. is a curvature

reference length of the unperturbed external field, is a small parameter. Then O(L, ) deviations from geodesic motion

in the unperturbed external field vanish over times of O(I.), with possible O(I.) corrections occurring only over

times of order L/e or longer. The world line is here calculated directly from the Einstein field equation using a
generalized method of matched asymptotic expansions based on a previous paper concerning singular perturbations
on manifolds and related to a technique used by D'Eath. Aside from D'Eath's work, previous results on the motion

of realistic bodies have assumed weak internal gravity, in some cases incorporating additional assumptions such as

perfect fluids or high symmetry. This calculation makes no assumptions about the details of the body, such as weak

fields, symmetry, the equations of state for matter, or even the presence of matter. Most previous treatments assumed

asymptotic flatness of the external field. Here, it is only assumed that, in the region of interest, the external space-

time is empty and free of singularities. The results extend the work of D'Eath to a more general class of objects that
includes nonstationary black holes, naked singularities, and neutron stars, as well as, ordinary astrophysical objects.
This method can be applied to related problems, such as the motion of a charged black hole through an external

gravitational and electromagnetic field. A future paper will combine this method with Burke's method of obtaining

radiation reaction to calculate the orbital-period shortening of gravitationally bound, slow-motion systems, such as

the binary pulsar PSR 1913+ 16, containing objects with strong internal gravity.

I. INTRODUCTION TO THE PROBLEM

The discovery of the binary pulsar PSR 1913+16
has given rise to a flurry of papers' "deriving
observational consequences of general relativity
(and other theories) for this system. However, as
argued by Ehlers et al. ,"the general-relativity'
predictions (in particular) of orbital-period short-
ening due to radiation reaction all rely on a "stan-
daxd" formula that has not yet been derived rig-
orously from general relativity. For gravitational-
ly bound, zoeak-field, slow-motion systems,
Burke"" has derived the radiation reaction direct-
ly from the Einstein field equation (EFE), together
with an outgoing-wave assumption, by the method
of matched asymptotic expansions. His method
produces, via matching to a wave-zone solution,
"resistive potentials" that in the near zone cause
forces of order v' smaller than Newtonian forces.
In order to apply Burke's analysis to systems,
such as the binary pulsar, containing objects with
strong internal gravity, one needs to calculate
the deflections of the bodies, and thus their orbi-
tal-period shortening, due to these resistive poten-
tials.

This paper shows how the deflection of a body
in an external field can also be obtained directly
from the EFE. I will apply the singular-perturba-
tion tools of Ref. 14 to show that a body whose
mass m is small compared to an external curva-

ture reference length I. moves through an external
spacetime on an approximate geodesic, over a time
comparable to L . This calculation assumes that
one is given two solutions of the EFE:

(1) The "external spacetime": an arbitrary,
curved spacetime containing an empty, singularity-
free region.

(2) The "body": an asymptotically flat, possibly
singular spacetime whose matter is confined to a
spatially bounded region and whose field approaches
that of a Schwarzschild solution at large distances.

In effect, I will blend together these two given
spacetimes by using them as the zeroth-order
terms in (respectively) an external and an internal
asymptotic expansion of an assumed "exact" one-
parameter family of spacetimes. I assume that
the first-order corrections are proportional to
m/f. and that these corrections have coordinate
expansions that begin in powers. Section III de-
tails the assumptions and plan of attack.

Section II sketches the history of this problem,
from the pioneering Einstein-Infeld-Hoffman (EIH)
papers, through the various center-of-mass
approaches to the use of singular-perturbation
methods by Burke' ' and D'EBth. "'" Because
of the short curvature length scale associated with
its self-fields, the motion of a body with strong
internal gravity cannot be derived simply from the
principle of equivalence, stress-energy conserva-
tion, or the usual linearization about Qat space.
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In fact, no satisfactory definition of the world line
of such an object has yet been given. previous
definitions of the world line have only been suc-
cessfully applied to objects with weak internal
gravity. Most previous treatments of motion have
also assumed that the external fields are asymp-
totically Qat, a restriction that rules out some
systems of astrophysical interest.

This paper extends the previous results in two
directions: First, it mill be shown that even ob-
jects with strong internal gravity move on approxi-
mate geodesics over times of order L. The cal-
culation will be independent of the internal details
of the object (such as the values of higher mo-
ments), the matter equations of state (or even the
presence of matter), and the presence of event
horizons or internal singularities. Second, I will
calculate the motion of objects through an empty,
but otherwise arbitrarily curved, region of an ex-
ternal spacetime whose fields are not necessarily
asymptotically Qat. The calculation mill be inde-
pendent of how these external fields are produced,
and it will be unnecessary to discuss the behavior
of the fields at "infinity. "

To understand why this problem requires a
singular-perturbation technique, it is useful to
recall the example of a slow-motion, radiating
system. The length scale l' associated with the
source dimensions (e.g. , orbital radius) is small
[O(v)] compared to the wavelength X of the waves.
(The interaction potential C is also small and

scales with v' for a gravitationally bound system. )
However, the slow-motion expansion fails to be
uniformly valid in the wave zone, where time and

space derivatives are comparable, and there a
weak-field but not slow-motion expansion is re-
quired. In the present proble, one can associate
dimensionless parameters with the object by divid-
ing its size (R,), charge, angular momentum,
higher moments, etc. , by its mass ~ to the ap-
propriate power. One can similarly construct
dimensionless parameters from external quanti-
ties, such as curvature gradients, using a curva-
ture reference length L. An observer at some dis-
tance comparable to I from an object with &

rn/L «1 se—es a weak perturbation of the external
field. However, the external expansion may faQ
to be uniform near the object, in particular, when
its mass to size ratio or compactness m/R, is
comparable to unity, as for a black hole or neu-
tron star.

For this reason, the internal region will be giv-
en its own expansion, and the internal and ex-
ternal expansions will be matched as described in
Bef. 14. I will introduce a suitable definition of a
limiting or approximate world line, and I will
then show that a hypothetical nonvanishing zeroth-

order acceleration of this world: line would lead
to violations of the EFE. I will study the system
for a time of order L, and therefore this analysis
w01 be insensitive to the small deflections from
geodesic motion due to spin-curvature and higher-
order couplings, which are expected to become
important over time scales of order L/e" for a
2"-pole moment. (Since & ~ v'~' for a bound sys-
tern of comparable masses, radiation reaction
does not appear at the orders considered. ) How-
ever, I will not assume that these moments van-
ish, but'only that they scale with the appropriate
power of m.

One application of this method was mentioned
above: calculating the response of an object with
strong internal gravity to the resistive potential
that Burke's radiation- reaction calculation pro-
duces. The assumption of parallel transport of
spin" in slow-motion systems containing objects
with strong internal gravity also needs to be veri-
fied, and no obstacles appear to extending the re-
sults of this paper to calculate at least the O(1)
spin precession. It also appears possible to de-
rive the approximate Lorentz force law for smaQ
charged objects using similar methods. Future
applications will be discussed in more detail in
the conclusions.

II. A BRIEF HISTORY OF THE PROBLEM OF MOTION
IN GENERAL RELATIVITY

Early treatments of the problem of motion sought
to calculate the motion of ideal "point singulari-
ties" by describing only the external region of
spacetime. The EIH method" used a slow-motion,
weak-field expansion, while the fast-motion meth-
od" used only a weak-field expansion. Belated
work"'" did not assume weak external fields.
The main shortcoming of all these methods was
their use of a single expansion to describe zones
having qualitatively different behavior. As a re-
sult, none of these early treatments correctly
predicted radiative effects. In the EIH case, the
problem was nonuniformity of the slow-motion
approximation in the wave zone. In the fast-motion
case, taking limits sequentially led to the neglect
of terms as large as those under consideration.
Later explications" used 6 functions, despite the
importance of nonlinearities. All of these expan-
sions became nonuniform near the sources, where
special rules for the addition of singular terms
were needed to obtain unique equations of motion.
These rules in effect restricted the physical ap-
plicability to nearly spherical and nonrotating
bodies. Further discussion can be found in Gold-
berg"; implicit assumptions in. EIH have been
critically examined from a field-theoretic point of
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view by Dresden and Chen. '
A second line of attack sought to generalize the

Newtonian idea. of center of mass and to define a
suitable center-of- mass world line. Dixon"
defined moments of the stress-energy tensor and
showed that stress-energy conservation reduces
to a system of ten first-order ordinary differential
equations for the time de rivatives of momentum
and spin. As painted out by Ehlers and Rudolph, "
however, Dixon's equations cannot yet be used to
predict the motion of an object with significant
self-gravity because of the difficulty (in a nonlin-
ear theory) of separating fields due to external
sources from self-fields. Geroch and Soo Sang"
showed that the (suitably defined) world tube of a
body contains a geodesic, Pxovi de@ the body is
sufficiently small compared to a typical curvature
reference length associated with the total field.
However, a compact object is not small compared
to a typical curvature reference length of the total
field, because the total field includes the object's
self-fields.

Since the center-of- mass approaches seem .to
founder on the issue of separating out the self-
fields, why not account for self-energy by me ans
of a pseudotensor? For example, one can suc-
cessfully incorporate gravitational stresses with
matter stresses into an approximate, post- Newton-
ian conservation law. However, we are treating
possibly strong internal fields that do not have a
weak-field expansion.

Newman and his co-workers" "developed a third
line of attack using the Newman-Penrose (NP)
formalism. The usefulness of the approach taken
by Lind et a/. "is limited by one's inability to
infer the observed path of a body from the equa-
tions governing quantities defined at null infinity.
Another limitation is that this approach cannot
describe the relative motion of individual compon-
ents of an interacting system, because the system
must be treated as a whole. Objects with no angu-
lar momentum or higher moments were studied
in a related line of research. "' By drawing an
analogy to the behavior of null cones emanating
from accelerated wo rid lines in flat space, New-
man and Posadas obtained certain "equations of
motion. " However, it is not yet possible to inter-
pret these equations in terms of the observed path
of a body moving under the influence of external
fields.

Numerous disagreements have occurred concern-
ing the energy (calculated from linearized theory)
carried by gravitational waves in systems of inter-
est. However, for the binary pulsar and most
other similar sources, one observes not the ener-
gy loss, but the change in orbital period and other
parameters. As yet, no self- consistent argument

allows one to infer the change of a bound system's
orbital period directly from an energy-loss form-
ula. Burke' s' ' "derivation of radiation reaction
requires no definition of gravitational energy; it
seems clear that in any radiation- reaction calcula-
tion, one must discuss the gravitational field in
both the radiation and near zones.

Recognizing the possibility of unexpected effects
due to compactness, Bome r and Rudolph'~' "
studied a static system of two compact bodies
connected by a rod. Up to post-post-Newtonian
order, they found no anomalous forces. However,
effects of compactness may have escaped their
analysis. First, only weak-field expansions were
used. Second, their definitions of force and mass
were somewhat arbitrary, and the presence of a
rod complicated the inte rpretation of higher- order
corrections. Third, there is no direct relation
between their calculated stresses and the motion
of compact objects in a dynamic, gravitationally
bound system.

The first successful approach to the motion of
black holes —an important class of compact ob-
jects —was D'E ath's" analysis of the motion of a
Kerr black hole through an external universe.
D'E ath's use of the method of matched asymptotic
expansions correctly treated the singular nature
of this problem. D' Eath' s inspirational calcul a-
tion depended on the details of the internal struc-
ture of a Kerr black hole and thus cannot be direct-
ly applied to the present problem. D'Eath's suc-
cessful application of his method to the slow-mo-
tion interaction of two black holes" suggests a
similar application of this calculation, as dis-
cussed in the conclusions.

III. METHOD OF ATTACK

The problem is to construct a family of approxi-
mate spacetimes representing an object of mass

propagating through an external spacetime of
curvature reference length L. I seek to show that
the object moves on a world line that deviates
from a geodesic by distances of at most O(a)L
over times of order L, assuming e = m/L «1. —

Mathematically, the world line of a self-gravitat-
ing object has no precise meaning, and so part
of my effort will have to go toward giving a suit-
able, self-consistent, and unambiguous definition
of the world line. To show that this world line is
an approximate geodesic, I will use matched
asymptotic expansions to seek a uniformly valid
family of approximate solutions of the EFE.

The formalism given in Ref. 14 is well suited
to this problem. One ti eats not a single system,
but a family of systems having & in the oPen inter-
val 0 & & & &p each system posed on a four-dimen-



sional manifold S. To study this family of sys-
tems, one introduces a smooth five-dimensional
manifold

where (0, c,) is the open interval containing &.

The dynamics for fixed E takes place on a four-
dimensional slice of M or exact solution manifold
9,.

I assume that on each 8, there exists a smooth,
exact metric tensor 9„varying smoothly, but not
necessarily analytically, with a. (Other represen-
tations of the gravitational fieM mill also be em-
ployed when convenient. ) The matter tensor cor-
responding to each metric 8, will be described
shortly; however, my attention wi11 primarily be
focused on a region of each exact solution manifold
8, in which 9, satisfies the vacuum EFE.

Each "exact spacetime" (S„Q,) is to represent
a fully nonlinear, possibly singular object propa-
gating through a curved, and not necessarily
asymptotically flat, external gravitational field.
The formal task is to construct asymptotic expan-. ,

sions of this family of exact spacetimes, uniformly
valid in the limit &-0. The practical problem is
to extract the object's approximate motion from
the asymptotic behavior of this family of space-
times (S„B,), as c-0.

The first forrnal step will be to give appropriate
mathematical representations for the object and
external spacetime (Secs. IV and V). I assume as
given two exact solutions of the EFE: one repre-
senting the unperturbed object, a possibly singular
solution that is empty outside a spatially bounded
region; the other representing the unperturbed ex-
ternal spacetime, a topologically compact, matter-
free, and singularity-free region of an otherwise
arbitrary spacetime. The important limits to con-
sider correspond physically to "the object's point
of view" and "the external point of view. " The
manifolds of these given solutions will therefore
serve as mode1 manifolds, "and on each wiD be
constructed the first few terms of an asymptotic
expansion of the gravitational field.

The zeroth-order term in each expansion will
represent the aforementioned "given" field. Terms
of first order in & will represent the lowest-order
mutual perturbing inQuences. Higher-order terms
will not explicitly enter this calculation. How-

ever, a slow-time variable will be needed in the
internal expansion, because the time (of order L)
needed to study the system is of order I/e com-
pared to the internal time scale w.

The next step wiD be to match these internal
and external expansions. Matching on manifolds
not only determines the values of unknown con-
stants, functions, etc. , that appear in asymptotic

expansions of tensor fields, but it also restricts
how points in one model correspond to points in
another; in this problem, "points" are spacetime
events. By placing restrictions on how events in
the internal and external model spacetimes' cor-
r'espond, matching will determine the motion of the
object.

However, as discussed in Sec. VI, the motion of
the object is only one of an infinite number of
degrees of freedom in the correspondence between
events in the two model spacetimes. For example,
small strains can occur without affecting the
zeroth-order motion. To show that these higher-
order degrees of freedom do not affect the zeroth-
order motion, I will show first that they can be
represented as gauge transformations of the per-
turbations, and second that these gauge transfor-
mations do not affect any aspect of the calculation.

The most direct way to show gauge independence
in this calculation is to use manifestly gauge-in-
variant perturbation equations whenever possible.
In view of the arbitrariness implicit in the zeroth-
order model spacetimes, it proves convenient to
express the asymptotic expansions of the gravita-
tional field in a Cartan representation. This rep-
resentation was discussed in Ref. 36.

Because of nonlinearity, arbitrariness enters
the perturbation equations in the form of unspeci-
fied coefficients. Nevertheless, by expanding in
an intermediate 1imit process, '~ one can isolate
enough of the generic behavior of the system to
determine an "asymptotic world line. " To justify
this intermediate expansion, certain regularity
assumptions are needed:

(1) The lowest-order corrections in each expan-
sion are of order 4.

(2) The first-order perturbations have coordinate
exp3nsions that start off with powers.

One should be alert for hints of peculiar circum-
stances under which these assumptions of powers
need to be modified. (In future applications in-
volving secular effects, one should also envision
the need for further modifications such as very
slow variables in i he external expansion. )

The last step is to analyze the terms in the in-
termediate expansion that depend on acceleration
in order to show that the zeroth-order acceleration
vanishes. This last step comprises several stages
(Secs. VIII and IX). Suppose the object moves
along a trial world line with nonvanishing zeroth-
order acceleration a,.(t). There are then nonzero
first-order contributions to the internal expansion
of the Einstein tensor, thus violating the vacuum
EFE unless further perturbations generate an
equal and opposite contribution. These further
perturbations are inconsistent with the EFE (and
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Bianchi identities) unless a, (t) .=0. Therefore, the
limiting or asymptotic world line is a geodesic of
the zeroth-order external gravitational field.

In the concluding section, I will discuss the re-
sults and suggest some promising generalizations
and applications.

IV. INTERNAL EXPANSION

In this section, I introduce asymptotic expansions
to represent an object that is slightly perturbed by
the presence of external fields, and I discuss the
zeroth-order terms in detail. Usually in general
relativity, one assumes either weak fields, high
symmetry, or a specific form for the matter ten-
sor (e.g. , perfect fluid). This calculation assumes
only (1}that the zeroth-order internal model
spacetime (C, 9'a') satisfies the vacuum EFE out-
side a spatially bounded region and (2) that it
approaches a Schwarzschild solution at large dis-
tances. The model spaeetime (C, 9'a') represents
the object as if it were isolated from the external
field. The inQuence of the external field will be
seen in first-order perturbations, and these first-
order terms will later tell us the motion of the
object.

At this stage, it is not obvious how one takes the
limit &-0 of an object whose mass ~ is much
smaller than an external curvature reference
length I.. Recall from Sec. III that the compact-
ness, angular momentum/mass, and other inter-
nal quantities have been made dimensionless by
rescaling with the appropriate power of m, while
external quantities, such as the curvature deriva-
tives, have been rescaled with a power of I . 'The

internal solution cannot tell that it is getting
"smaller, " except by comparison to the external
length scale. The zeroth-order terms in each ex-
pansion are unaffected by the process of taking
& -0. However, my scaling assumptions will be
automatically incorporated in the correspondence
maps between the internal and external model
spacetimes.

'The study of isolated objects, in general relativi-
ty usually involves subtleties, such as the defini-
tions of mass arid center of mass, that must be
handled delicately. I sidestep these delicate mat-
ters by studying an object whose gravitational
field approaches that of an ideal monopole —a
Schwarzschild solution —under a limit process
o.'-0, (R, 8, 4) fixed, where R —= nR, and o!&0.
(By analogy, the Newtonian potential of an arbitra-
ry isolated object approaches the field of a point
mass, under this limit process. ) This assumption
applies only to the object's zeroth-order proper-
ties, which do not include the perturbing effects of
the external field.

In Schwarzschild coordinates (T,R, 8, 4) non-

+R2(dB SdB+ sin'Bd4 Sd4) .
Now consider a flat metric

9*=-dTSdT+dR 6dR

+R'(dB SdB+ sin'Bd4 8 d4 )

(4.1)

(4.2)

on the same manifold. Rewrite each metric in
terms of the auxiliary coordinates

T =aT, B =&A (4.2)

and consider the limit &-0. 'The metric 9 then
has an expansion

9-n '[-dT SdT +dR SdR

+R '(dB SdB+sin'Bd4 Sd4)

+2' '(dT SdT +dR SdR )+O(o.")].
(4.4)

Note that the first (flat) term n '[-dT '+dR 2

+R'( ~ ~ ~ )] is simply 9*. One can similarly expand
a set of orthonormal frames &" and the associated
connection and curvature forms ~'„and 8"„.

The first nonQat term in each expansion is down
by a factor of a from the flat term. For conven-
ience, denote the first nonflat terms in the metric,
frames, connection, and curvature by 69*, 5~~,
50~, and 5$*, respectively. The expansions of
the metric, frames, connection forms, and curva-
ture forms can then be written in abbreviated
form (indices suppressed) as

9-9*+59*+0(o.'), (4.5)

(d (0 + + 5CO
+ +0 ((X ),

A -0*+5Q*+O(a')

6t-o+ W.*+O(n') .

(4.6)

(4.7)

(4.8)

I assume that the unperturbed spacetime (C, 9' '}
is close to the Schwarzsehild spacetime (R'&& S', 9)
in the same sense that the Newtonian potential of
an isolated object is close to the potential of an
ideal Newtonian monopole. Denote the basis, con-
nection, and curvature forms of (C, 9'a') by ~' ',
a'~', Bnd S' ', respectively. Suppose that C has
a region that can be covered by a system of co-
ordinates (T, R, 8, 4). One can then define an

auxiliary coordinate system (T,R, 8, 4) exactly
as for the Schwarzschild spacetime. I suppose that
the frame, connection, and curvature forms have
expansions (in the limit o! 0) that agree, to first
order in n, with the Schwarzschild expressions
for ~, 0, and S above:

(d Q7*+ 5(d*+ 5540 (4.9)

dimensionalized by the mass m, the Schwarzschild
metric () is

9=-dTSdT(1 —2R ')+dRSdR(1-2R ') '
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0(~}-0~+ 60* + 650~,

8' '-0+6$*+68R*
(4.10)

(4.ii)

X~ =(T)X, Y, Z),
X =R sine cos4,
7'=R sine sin4,

Z =R cose

(4.12)

Now consider a coordinate transformation of the
form

X'" =A~„X", (4.13)

where A'„represents some combination of boosts
and rotations. As far as the Qat metric 9* is con-
cerned, the X' and X'" coordinate systems are
equivalent, because the frames dX ~ 2nd dX'~ are
both orthonormal in 9*. However, decomposing
A'„ into a product of pure boosts and rotations,
one finds that the rotations leave invariant the
monopole term 69*, while the boosts change the
form of 69*. In this sense, the monopole part of
9' ' distinguishes, up to rotations, an asymPtotic
rest frame dX' [see also Sec. 19.3 of Misner,
Thorne, and Wheeler" (MTW)].

So far, I have been discussing the unperturbed or
zeroth-order internal model spacetime. The in-
ternal expansion will need to be accurate to first
order in e and valid for times comparable to m/e
for this calculation. The metric expansion there-
fore takes the form

go g(c&+ fQ(c) +(X ) gT) +O(f 2) (4.i4)

where the terms up to bc'~, 60~, and M, * agree
with their Schwarzschild counterparts. Aside from
a possible overall scale factor, the terms ~~*,
60~, and M, * are of order n in the limit process
o(-0 (T,B,e, C) fixed. I assume that the terms
56(d~, 550*, and 55R~ are of order n in this limit
process and restrict consideration to the case in
which the spacetime (C, g' ') is matter-free out-
side some fixed value R, pty of the coordinate R.

The category of objects whose gravitational fields
satisfy these assumptions appears to include most
nonpathological asymptotically flat, stationary
spacetimes satisfying the vacuum EFE outside a
spatially bounded region [e.g. , the Kerr, Weyl,
and Tomimatsu-Sato (T-S) solutions] as well as
many nonstationary ones. An object in this cate-
gory need not satisfy any particular symmetry
assumption, equation of state, causality condition,
or topological restriction. It is likely that all
compact objects of astrophysical interest meet
the above assumptions.

It will be important for matching to note that the
monopole part 59* of the internal metric 9' ' de-
termines privileged local coordinates

where the slow-time argument allows the internal
expansion to respond "quasistatically" to changes
on the external time scale I that arise from
matching. The time dependence of these slow
changes enters the first-order internal equations
only as a parameter, however.

The frames, connection, and curvature forms
are similarly expanded in the form

(d*- &d' '+~(()' '+(X', ET)+O(~'),

5*-n"&+ew&'&*(x', f r)+o(~')
st + . Q ( c ) + ~P ( c) g (Xg ~T ) + O (e 2)

(4.is)

(4.i6)

(4.i7)

The curvature due to external fields becomes
large compared to the object's own curvature at
large distances-. The domains of validity' Q', ' of
the internal expansion cannot be expected to cover
the entire internal model spacetime. However, as
& -0, the X),' ' can be expected to increase in size
fast enough to provide an overlap with the external
expansion, which will be introduced in the follow-
ing section.

V. THE EXTERNAL EXPANSION

Just as the world line of a non-test body has no

precise, a priori meaning in general relativity,
so the concept of a ray has no precise, a priori
meaning in electrodynamics. However, one can
operationally define "ray, " "polarization, " "ampli-
tude, " and "phase" in the context of a short-wave-
length expansion of the electromagnetic field (see
Chapter 22 of MTW" or Ref. 36). In this sec-
tion, the approximate world line of a self-gravi-
tating object is defined operationally in the con-
text of an asymptotic expansion of the gravitation-
al field.

The external expansion of this section comple-
ments the internal expansion of Sec. IV. While
neither expansion will be uniformly valid by itself,
I will match them in order to seek, in the language
of Ref. 14, a "global asymptotic approximation. "
Under the external limit process, the size and
mass of the object scale with ~. I therefore rep-
resent the effect of the object on the external fields
by expansions

gag g($) + gI (s&+O(e2)

(d (&) & ~ g~ (&& ) + o (~2)

Q**-A' '+aW' '+O(a'),
&*-61&» ~&s& O(~')

(s.i)

(s.2)

(s.3)

(s.4)

The O(a) terms in these external expansions will
later communicate to the internal expansion, via
matching, essential information concerning the
calibration of clocks and rods in the overlap zones.
For the remainder of this section, however, I
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D($) —E (5.5)

Suppose the domains of validity 0', ' eventually
fill D' '; i.e.,

union over E of x),' '=D' '. (5.5)

Then the external domains of validity X),'~' even-
tually enter every neighborhood of y, and the ob-
ject appears asymptotically localized to y. Now,

suppose that for some trial world line y, one can
indeed construct a first-order global asymptotic
approximation satisfying Eq. (5.6). This trial
world line y is then called an asymptotic seoxld
line.

Suppose p, is an initial event along an asymptotic
world line y(r} and u, a tangent vector to y(f} at

p, . This calculation will show that y(t} is a geo-
desic, and thus will be uniquely determined, mod-
ulo initial conditions. This "uniqueness" does not,
of course, rule out higher-order corrections to y.
The only eligible trial world lines in E are those
whose accelerations are independent of c; this
restriction is adequately general for an analysis
valid over time scales of 0(L}. Future calculations
of motion valid over times of 0(L/c) or longer
would require a modified definition of the asymp-

discuss only the zeroth-order terms.
The zeroth-order model spacetime (E, 9's)) rep-

resents the external field as if the object were not
present and is assumed to satisfy the following
requirements: (1) E is a, topologically compact
manifold, (2} 9's) is nonsingular in E, and (3)
9'~' satisfies the vacuum EFE in &. Of course,
(E, 9'~)) may have an extension containing matter
or singularities. Assumption (1) implies physically
that the size of the region under consideration
scales with L as c-0, rather than, say, with L/&.
This calculation is therefore insensitive to secular
effects that would create 0(L) deflections only
over times of order L/c As.sumption (2) [together
with (1}]guarantees that the external reference
length I. is in fact weQ defined; relaxing this as-
sumption could lead to nonuniformities. There-
fore, this calculation will not predict either (i)
the motion of an object just before it reaches a
curvature singularity, or (ii) the motionof objects
subject to nongravitational forces; such forces
would obviously violate assumption (3).

In order to define an asymptotic world line,
consider a smooth, timelike, trial N)orld line y(w)

in E. For only certain y will there be approxi-
mate solutions of the EFE such that, as E -0, the
object becomes localized to y; these particular
trial world lines will be called asymptotic zooid
lines. "Localizing the object to y" means the fol-
lowing: Use y to define a region D'~' by

L —= [supremum in E over all p. , v, o.', P

(~R&E)Ri
~

)]-1/3 (5.8)

unless the curvature tensor vanishes identically
in E. This special case in which (E, Q'~)) is flat
can easily be handled separately, and it is as-
sumed from here on that R'~' ' '"" is nonvanishing.

Using L to scale the Fermi coordinates (~, $') de-
fined above, one obtains dimensionless coordin-
ates (t, x') in a neighborhood of y in E; hereafter,
t will be the parameter along y(t). My index con-
vention for these coordinates is

x' = (x, y, z), x' =(t, x, y, z). (5.9)

I express the Fermi expansion in terms of an aux-
iliary coordinate system

(5.10)

where X is not an index, but a parameter in the
range 0&&&~,. When expanded in powers of X

under the limit process )).-0, (t~, x~) fixed, 9'~)
becomes

, 9'~' - )).'(dt„ dt~(1+ )).[2a,.(t)x~] + 0(A.')].

+ (dt„3 dx,'+ dx„'8 dt, )[&v.„„S,(t)x)', +0(&')].
+ 5,.~dxi 8 dx~i+ 0 (X')dxi Sdx f) . (5.11)

This expansion, like the internal expansion of Sec.
IV in powers of n, will later be used for matching.

The metric 9'~' can be repr'esented by an ortho-

totic world line (see the conclusions).
It will be extremely convenient to introduce a

Fermi-normal coordinate system on (E, 9'~)) near
the trial world line y(7) T. his expansion will be
valid at least in a neighborhood of y(r) because
y(r) is smooth and E is free of singularities. In
this coordinate system, the acceleration of y ap-
pears as a readily identifiable parameter a, (v) in
9'~'. The well-known Fermi coordinate construc-
tion and expansion are given in MTW" and in
Ref. 38. Suppose ~ is the proper time along
y(r), with v' =0 at p„which implies that the time-
like orthonormal basis vector e,' ' satisfies

(5.7)

It is convenient to allow the orthonormal bases
~'~', e'~' of forms and vectors to rotate with spin
vector S,(7) (as defined in MTW) with respect to
Fermi-Walker transport along y.

Before proceeding further, one should clarify
the meaning of the reference length L associated
with (E, B'~)): Let R,'„,', ' " be the components of
R' ' ' " in the coordinate basis (d7', d$') (note
that this basis is orthonormal along y). Since
these components are by assumption bounded in

E, one can therefore define
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normal frame ~' '. One obvious choice for ur'~'

is a nearly Cartesian frame having the expansion

(o's"- X(dt's{i+ A[a,.(t)xJ'+ ~ ~ ~ ]
+dxg& [S,.(t)x&e„,]+" })

(o's" - X [dx', +0 (X')dx" ]

(5.12)

(5.18)

A second choice, which will be useful for matching,
is a nearly spherical basis differing only in the
spatial triad and having an expansion

(o' '"-X[dr, +0(X')dx'],

(o' "-X[r„d8+0(X')dx"]
&o's'~ - X [r~ sin8dg + 0 (X')dx~~],

where

(5.i4)

(5.i5)

(5.16)

x =r sin8 cosP,

y =r sin8 sing,

z =r cos8,

r, =r/X.

(5.17)

Henceforth, the notation ~( ' refers to this spher-
ical basis, unless otherwise stated. The connec-
tion and curvature forms corresponding to &'~'

have expansions

0'~&-0 +Xv+0(A.'}
et&a& -o(~')

(5.18)

(5.19)

VI. THE GEOMETRY OF MATCHING

In the next two sections, I describe the process
by which the two asymptotic expansions are
matched to construct a one-parameter family of
approximate spacetimes. Matching not only de-
termines the gravitational perturbations of each
model due to the other, but it also constrains

where the 0(X) connection forms v follow routinely
from the Cartan equations. Note that the explicit
values of (R's& ~„(the curvature forms 6t' ' eval-
uated at y) will not enter this calculation.

So far, I have emphasized the zeroth-order
terms in the internal and external expans'ions.
Each zeroth-order term has itself been expanded
in powers of an as yet artificial small parameter.
Each of these secondary expansions has the effect
of a power-series expansion in the appropriate dis-
tance variable. The artificial parameters & and ~
will shortly be identified with functions of E that
approach 0 with &. These functions arise naturally
in the intermediate limit process to be used in
matching. One can, of course, use any convenient
limit process to study the family of spacetimes
(S„S,), because" a global asymptotic approxima-
tion must be uniform under al/ limit processes.

which events in C can correspond to events in E.
These constraints will eventually determine how
the object moves.

To discuss the geometry of matching requires
some essential formal ideas. " The purpose of the
two model spacetimes C and E is to approximate
the assumed family of exact spacetimes (S„Q,).
C and E are linked to the S, by identification maps

C, (c) ~ ~(c) (
—C

C, (E ) . (z) c- D(E)
6 ' 6 6 p

(6.1)

(6.2)

where the x),' ' and Q,'~' are the "domains of valid-
ity" of the expansions on C and E, respectively.
The formal requirement for uniformity (i.e., a
global asymptotic approximation) is that the union
of the jurisdictions

g(C& c, (C&(~(C&)

go&& c, ($&(~(&&&)

(6.8)

(6.4)

covers the S,. In the regions 0, of intersection or
"overlap" of the 2,' ', Z,' ', the two expansions
should be close to each other, and I assume the
existence of an intermediate limit expansion for
matching.

Fortunately, matching does not require one to
construct explicit identification maps, but rather
"correspondence maps"

~ (g) diffeomorphisms (g )
6 ~ 6 6 (6.5)

where the open sets , ' ' and '4', ' are the inverse
images (under the identification maps C Io& and

4,' ', respectively) of the overlap zones 0,. These
correspondence maps are defined from the identi-
fication maps C,' ', C,(~' by

[(@(z & )-1o C, (o&]
~

(6.6)

where the notation (C,'~) 'o C,'~& means that
(4 's') ' is applied after 4' '

To represent a particular famOy of correspon-
dence mappings 4„one can write the external
coordinates x" a,s functions of the internal coor-
dinates X~:

x' =4", (X), X = (T,X, Y', Z) . (e.v)

x' =4", (X) = eX'. (6.8)

However, clearly an infinite number of different
correspondence maps are also admissible under

Although the coordinates X" and x" need not cover
C and E, respectively, the regions %L,

'~' and M',~'

will be covered by the X' and x" systems, provided
&, is chosen sufficiently small.

A family of correspondence maps is admissible
if it localizes the object to the trial world line y
as a -0. For example one admissible map is given
by
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this standard. Some of the degrees of freedom in
these correspondence maps will be shown to rep-
resent effects that would only be significant be-
yond the order considered here; the remaining
ones are discussed separately in later sections.

To analyze these degrees of freedom, I first
rewrite an arbitrary family 4', of correspondence
maps in terms of the canonical family 4', [Eq.
(6.8)] and reexpress the condition that any admis-
sible 4', should preserve the trial world line y.
Let

yg ~ ~(C) ~ (E)
6 ' 6

(6.20)

lim(:",'(t, 0))=t,

1im(:"',(t, 0))= 0 .
6~0

Next, I assume expansions of the mappings
and Z, :

(6.21)

(6.22)

(7&„]=f:-„(&&,)j
is a sequence of events, where (c„}is a monoton-
ically decreasing sequence and m, is an event on y,
then (v„] must converge to», . In terms of coor-
dinates, Eq. (6.19) says

be any family of correspondence maps. One can
choose a diffeomorphism

=. ", - =. ". (x)+e:","(x)+ ~

Z;-Z,"(X,eT)+aZ,"(X eT)+ ~ ~ ~

(6.23)

(6.24)

e= "eO+6

The diffeomorphisms ",must clearly satisfy

(6.11)

:",j&&z& =4', o4, &. (6.12)

In terms of coordinates x', relations (6.10)-(6.12)
become

(6.13)

Similarly, one can choose a family of diffeomor-
phisms

Z, :C C

such that

(6.14)

(6.15)

(composition on the right). The Z, must satisfy

Z, i~&c& =4', 'oC', . (6.16)

In terms of coordinates, relations (6.14)-(6.16)
become

x' =e;"(X)=e', (Z, (X))=~a;(X).
One can also obtain the 4", from the 4, by compos-
ing diffeomorphisms with the 4, on both left and

right, i.e.,

(6.10)

such that, for each E, 4', is obtained from 4, by
composition on the left:

x~ -x" + e " ~(x)

would induce a gauge transformation

(6.25)

~&E&u ~&E&g +g „(~&Z&g)
1

+ =-"a ya&"

in the first-order external frame perturbations.
This equivalence between gauge transformations
and higher-order terms in ", and Z, allows one to
account for all but a few of the degrees of free-
dom in ", and Z, by gauge invariance of the per-
turbation equations.

The zeroth-order terms -"~ and Z, in each ex-
pansion represent finite motions of E and C, re-
spectively. However, the available freedom in:,and Z, permits simplification of ", and Zp It
is easiest to simplify these zeroth-order terms
under the intermediate limit process (ILP) to be
used for matching. Recall the auxiliary outer co-
ordinates x, of Eq (6.11).. The choice A. =&i(e),
where q(e) is a smooth, monotonic, positive func-
tion satisfying

(6.26)

lim &I = 0, lim c/&I = 0 (6.27)

'The first-order and higher-order terms & "",,
&'Z', in each expansion can be thought of as gener-
ated by vector fields on C and E, respectively.
In turn, these vector fields have the effect of gauge
transformations of the perturbations. For exam-
ple, a mapping ",defined by

4', ==,, o4, o Z, . (6.18)
(e.g. , &I = a'~'), defines an intermediate limit pro-
cess by

lim =,(y) =y. (6.19)

That is, if

The available freedom allows one to compensate
for any change in the ",by a counterbalancing
change in the Z„and vice versa.

The condition that y and the initial event p, be
preserved translates into a condition on the ",
as follows:

e -0& x~ = fixed (&i is not an index). (6.28)

Under the canonical correspondence mappings 4'„
this intermediate limit process can be expressed
as e —0, (e/&I)X" fixed, equivalent to the choice
o. = &/&I for the auxiliary internal coordinates X"
(where again, o.'is not an index). This intermed-
iate limit process takes the external x~ coordin-
ates toward zero while taking the internal X" co-
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ordinates toward infinity.
I assume that the two zeroth-order terms "~o and

Z," themselves have coordinate expansions that
begin in powers . In terms of the above interme-
diate limit process, Z", then has an expansion

-C" +gd x"+g'e" x x + ~ ~ ~~0 i g j0 en (6.29)

Z;(X}=X~. (6.33)

where C', d~, . .. are functions of the time t. The
first term C" must vanish to preserve the location
of the trial world line y(t) and the initial event p„
as follows from Eqs. (6.21) and (6.22}. The suc-
ceeding terms can be absorbed into Z,. The ef-
fect of the linear term d"„can be accounted for by
a linear term in Zo~, to be examined shortly, and
therefore without loss of generality,

(6.30)

The next term p'e~&p~~x„' is equivalent to a revis-
ion of the term &'Z', in Z~. Similarly, order q',
vP, . . . terms in expansion (6.29) for "', can be
replaced by higher-order [O(a'), O(e'), . ..] terms
in a revised Z", expansion. Thus, no generality
is lost by taking

(6.21)

My intermediate expansion of the zeroth-order
internal transformation Z," is

Zo~ - (g/e)D~„(aT)X", )„+1 [Ej~(tT)X~)„X~(„R2]

+(e/q)[E», X~X X' „R ']+ ~ ~ ~ . (6.32)

D"„(0)can be accounted for by the combination of a
boost A~„(n) (where o.'is the rapidity) of the intern-
al coordinates and a trivial coordinate rotation.
However, as shown explicitly in Ref. 36, n g0
would lead to nonuniformity of the external expan-
sion. Time dependence in 3"„is accounted for
already by a, (t) and S, (t)..

The remaining terms in Z," are equivalent to
first- and higher-order gauge transformations of
the external perturbations. One is then left with

Thus, adequate generality is maintained by using
the canonical correspondence maps of Eq. (6.7),
provided one uses gauge-invariant equations.

VII. INTERMEDIATE LIMIT-PROCESS EXPANSIONS

The internal and external expansions used so far
constitute two ways of ordering terms, each way
consistent with its own privileged limit process.
The intermediate expansions to be introduced in
this section preserve both orderings and provide a
format for comparing the two principal expansions.
The usual matching procedure would be to calcu-
late explicit internal and external perturbations
containing unknown constants, functions of integra-
tion, etc. , to be determined by matching. How-
ever, the presence of arbitrary coefficients in
the perturbation equations (due to the general na-
ture of this calculation) forces one to invert the
usual procedure by first expanding in an inter-
mediate limit process and only then analyzing the
solutions. The justification for these intermediate
expansions depends on my assumption that the
first-order internal and external perturbations
have expansions that begin with powers of the ap-
propriate distance variable.

'The two principal expansions exist on different
manifolds. Applying the push- forward mappings

defined by the correspondence maps 4', allows
a comparison and thus matching. It is convenient
to rescale the exact and approximate quantities
as described in Table I and to refer to the order of
a given term in either expansion by its size rela-
tive to the flat-space term in that expansion.

The auxiliary internal and external zeroth-order
expansions of Eqs. (4.9) and (5.11) provide terms
of order (1,~/q, e'/q', ] and 11,q, q', ...], respec-
tively, in the intermediate expansions; the rele-
vant terms for this calculation are defined in
Tables II and III. Note that arbitrariness due to
the object's spin and higher moments first enters
at O(e'/q'), while arbitrariness due to the external
curvature first enters at O(g'}.

TABLE I. Notational conventions for exactquantities: barred quantities are exact. Quan-
tities without asterisk superscripts are rescaled so that they are manifestly of order unity
under the intermediate limit process. Here g, * is the push-forward mapping associated with
the "corresponding map" P, . All quantities depend implicitly on &.

Name of
quantity Rescaled for ILP

Relation to
exact quantity

Relation to
intermediate quantity

Metric

Frame

Connection

Curvature

=&'n 9.*(9')
= e g Q g ((g) +)

=p g(Q+)

=f,*(SQ
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TABLE II. Order unity, &/g, e /q quantities in the intermediate limit process.

g =—~'g 'y, g(8q
~-=~q q, +(~q

0 =—g~g(Q +)

6 =—$~ g($+) = 0

order unity
(flat space)

(5Q =—e q f~g{6g g
6u —= &g II}~g(6Cug

QQ =g~ g(60*)

6g = f~ g(6Q*)

668 —= @2' Q «(Mg «}

66~=—&g ~g, ~{&~~*)

gun +)

65@=—g, ~(65(R*)

order &/q (monopole part of internal
geometry)

order & /q {higher moments, such as spin
dependence, of internal geometry; first
instance of "arbitrarinesss" in object)

(d (d+7/(K +K )+0('g )

+(K/7I)6(o+ s(Z. + X )+0(aq)

+(c'/q') 66(o + (s'/q) (v) + 0(s'), (v.s)

n n+q(-v. +v )+0(q')

+(e/tI) 60+&(p. + p, )+0(cq)

+(t~/q')66Q + (c'/q)(p) + 0(s'), (v.2)

5-0+q(0)+o(q')

The first-order terms in the internal and extern-
al expansions also provide important terms
(X„v,.. . ) in the intermediate expansion. The
intermediate frame, connection, and curvature
expansions become

(u' = a/qy, «(dT) =dt„,
(o" = K/rig, «(da) =dr„,
(us =e/qp, «((oe ) =r„de,

= 4/'gp, «((0 ) =r„sine dQ,
6~' = (-)r„-'dt„,
5('d" = t'~ dt'q

6(d = 6(d =0
&

6Q„'= „~dt„,

5Qq ——t'„d0,
60« =r„' sine dP,
SR~« = (-)r„'dt„&r„sin ed/,

66I~ = ( )r„'dr„~ r„-de,

where

+(s/rt)M+&(s, +s )+0(crt)

+ ( s'/q') MR+ (s'/q)(q) + 0(s'), (v.3)
6$« = (-)r„3dr„n r„sine dQ,

6(R„' =2r„'dt„,n, A„,
SR« =2r„r„d8 ~ r„sinedg,

TABLE III. 0{g) basis and connection forms defined under intermediate limit process.

.+ =-««)~'dt

K' -=~„„S;(t)x&„u'„

0 (q) frame corrections

K~ =0

~+~ =—a cosMt&T

&+g =—-a sin8dt~

0{g) connection form corrections
(note: these are written for the case
ag=a, a„=a~=0)
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TABLE IV. Summary of notation for intermediate expansions.

Basis Connection Order

Exact quantity
Flat space
Monopole correction
Higher moments
Acceleration
Rotation
Outer curvature
Even mode
Odd mode
Coupled mode

K+

K

unspecified
A, +
A

S
S

6$
66$

0
0

o(1)
0(1)

o(~/n)
o(~'/n')

o(n)
o(n)
0(n')
0(~)
o(~)

o ("/9)

~ and v are given in Table III, and the remaining
quantities have not yet been specified. The 0(&)
frame, connection, and curvature terms, respec-
tively X„p.„and s„represent modes due to ac-
celeration (even parity) and rotation of the ob-
ject's asymptotic rest frame with respect to Fer-
mi-Wahr transport (odd parity). The O(e'/q)
terms 0, p, and q represent higher-order effects
of indefinite parity.

Table IV summarizes the intermediate expan-
sions and groups the terms according to their
physical interpretation.

VIII. ANALYSIS OF PERTURBATION EQUATIONS
UP TO O(e2/q)

The remaining degrees of freedom are param-
etrized by the acceleration a, (t) and the rotation
S,(t). As we saw in Sec. VII, these parameters
appear in the O(q) frames v, and connection forms
v, where "+"quantities depend on acceleration
and "-"quantities depend on rotation. In the next
two sections, I examine the vacuum EFE (the
overlap zone in which matching takes place is
matter-free) and BI at O(q), O(t), and O(a'/7)) to
calculate a, (f). As the calc.ulation progresses
through these orders, the equations begin to in-
clude contributions from higher moments (e.g. ,
56&o) of the object's zeroth-order field. However,
the result a,.(t) =0 is independent of the specific
values of these higher moments.

To show that n, (t) =0 all along y, I show. that non-
vanishing at any event on y leads to a contradic-
tion. Suppose then that P, is an event along y at
which a,.(t)40. For convenience, relabel the co-
ordinates so that t = 0 at Po and a,.(0) is in the z
direction, i.e.,

a„(0)=0, a„(0)=0, a,(0) =a.
Unless otherwise stated, all quantities are here-
after evaluated at t =0.

To maintain a certain amount of physical intui-

v,' = ax„cos8dt„~ (8.2)

v.'„=a cos8dt„, v.'~ = (-)a sin8dt„. (8.3)

The O(g) curvature forms vanish as they must,
and thus the EFE and BI (Bianchi identities) are
satisfied. (More generally, orders (I, g, g', . . .].
and fi, c, e'/rP, . . .}are automatically satisfied
due to my assumption that the zeroth-order .

external and internal model spacetimes are given
solutions of the EFE.)

Two kinds of terms contribute to the Einstein
tensor (abbreviated ET) at O(e): Type-I contribu-
tions result from products O(a/q) monopole terms
with O(r)) acceleration (or rotation) terms. Type-
II contributions result from products of 0(&) and
O(1) terms and from differentiation of O(e) terms.
Type-I terms are a direct consequence of the O(q)
perturbations; type-II terms will be chosen, if
possible, to cancel the effect of type-I contribu-
tions to the ET and thus to satisfy the EFE. From
this discussion, one can see why even and odd
modes do not mix at O(e): for both types I and II,

tion, I will describe the successive stages of this
calculation by referring to perturbations of back-
grounds having successively more structure (e.g.:
Qat, +; Schwarzschild, 6(d; higher moments,
65&o). Note that O(c'/g) perturbations are O(c')
under the external limit process (and thus not
described by the first-order external expansion),
while only O(a) under the internal limit process
(and thus described by the first-order internal ex-
pansion).

The purpose of.this section is to obtain a set
of equations that are independent of the object's
higher moments. These equations will then be
used in Sec. IX to show that a, (t) =0 from relatively
simple equations that were originally written to
describe perturbations of an exact Schwarzschild
background.

In the coordinates described above, the nonzero,
O(r)), even-parity basis and connection forms are



MOTIOW OF A SMALL BODY THROUGH A5 EXTERNAL FIELD. . . 1865

all O(s) equations are indistinguishable from those
that would occur if the object were exactly
Schwarzschild, and first-order perturbations of
definite parity on a SchwarzschQd background de-
couple.

I adopt the following notational conventions: Q,
means that Q, is the even-parity part and Q the
odd-parity part of a quantity Q, i.e.,

G+& = (-)ar„' cossdr„ dr„. (8.15)

Note that these even-parity terms do indeed con-
tribute to the O(a) ET.

As an internal check, type-I terms should sat-
isfy the contracted BI at O(e), since if type-I terms
vanished, G+, would be the complete O(a) ET.
Since G+, is already O(E), the contracted BI for
G.& becomes

Q=Q, +9 . (8.4)
V ~ G+q —0, (8.16)

Terms such as p. and s are further subdivided into
type I and II:

~~ = &~Z+ ~+zX y

S+ = S+I + S+II

(8.6)

(s.s)

as discussed above, unless the distinction is al-
ready clear: e.g. , e+ is clearly a type-I quan-
tity.

The O(c} part of the first Cartan structure equa-
tion is

A(d=( —)[5OAK +v A5(d] —[dX +QADI], : (8 7)

Kith the subdivision into type-I and -II terms,
one obtains two equations

p ann& = (-)[5QAK, + v,n5m],

P ~ggn(d = (-)[A~ + flAX~],

(s.s)

(8.9)

each of which can be solved uniquely for the de-
sired quantity p, & or p, +i&. Since ~. and v. are
known, one finds that the only nonvanishing, O(z),
even-parity, type-I connection for~ is

p. +« ——(-)r„'a cos&dt„. (8.10)

sizz = c&~zr + ~+&~rr + ~~tz+~ ~ (s.12)

The nonzero, even-parity, type-I curvature forms
at O(s) are then

s+&„——ah„' cos BCk„&t„,

sag —2ah„' cos ~dt„&r„d0,

s+,~
——2am„cosedt„nr„sinedp .

(8.18)

From these quantities, one can compute the
even-parity, type-I Bicci and Einstein tensors:

Ricci.,= 3am„' cos8[-dt„ dt„—dr„g dr„

+r„(dt lmde+ sin'ed/ @de)],
(s.14)

The O(a) part of the second structure equation
can similarly be divided into type-I and -II con-
tributions to s, :

skI=50n vk+vknon+cp ~I+QA f,I+ pkIAO,

(8.11)

p„n v =(- )[p „A5&u + 50 ny], (8.18)

where V ~ is a flat-space divergence; this equa-
tion is easily seen to be satisfied by substitution
of Eq. (8.15).

At this point, there is a type-I contribution to
the ET; to satisfy the EFE, of course, the total
Einstein tensor at O(a), G+, + G.„must vanish.
The as yet uncalculated term G.,& comes from the
O(c} frame perturbations X. and from the type-II
terms generated by X+. Since the operator that
would produce G+&& from X+ is essentially a flat-
space D'Alembertian, it is clear that such a X.
can be found. (In fact, a class of X+ can be found,
differing from each other by terms that are pure
gauge with respect to a flat background. ) No con-
tradiction to the hypothesis a,(t) v0 is yet evident.

However, X. contributes to the O(z /q) ET and
BI, and therefore I next analyze the O(c '/q) struc-
ture equations, EFE, and BI. Note in this an-
alysis that one cannot simply choose a particular
)+ whose ET contribution G+„cancels G+, . At
O(e /q), the Schwarzschild part of the background
is important for contributions arising from X+,

and terms that are pure gauge in a flat background
are not pure gauge in a Schwartzschild back-
ground.

In the O(e) equations, terms arising from K were
denoted as type-I terms and terms arising from ~
as type-II terms. Now, because 0 will have to be
chosen (in principle) to cancel the O(e /q) ET due
to x and X, third-generation or type-III terms also
arise. At O(e'/q), these three types of terms dif-
fer in their sensitivity to the object's moments:

(1) Type-I terms include products of O(e~/q) mo-
ments of the object (55&a, ~ ~ ) with O(q) (accelera-
tion) terms such as K+.

(2) Type-II terms result from products between
monopole part of the object's field (5ur, ~ . ~ ) with
O(a) corrections such as X..

(3) Type-III terms are sensitive only to the
flat part of the background and arise from O(q /g)
corrections such as 0.

The first structure equation at 0(& /q) gives the
following three equations:

p, n w=(-)[p, , n5&g+ v*55~+ 55Q nK], (8.17)
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p111 nor = ( —)[do + Q A o] . (8.19)

Note that Eqs. (8.17}-(8.19) are progressively
less sensitive to the object's moments. The
second equation [(8.18)] involves quantities i1,»
and g, of definite parity and does not mix these
parities; it is convenient to define p,» satisfying

Pa1n=( )[Pa1&&&+~II n&~] ~ (8.20)

One can also separate the second structure
equation at O(e /ri) into type-I, -II, and -III parts
and the type-II terms into + parity to obtain

~i=dPI+P. I ~Q+~ P.I
+ vh65Q+55Q+ v,

O'II =dP~II+ P+» Q + Q + P I I

+ P, ~I I n QQ + 5Q h P. ~II,

(8.21)

(8.22)

(8.23)Vru =dpr»+ pI» +Q+ Q ~ pIII ~

For the O(e'/1}) part of the BI, abbreviated as

dR =R~ Q -Q ~R, (8.24)

+ s,»g &Q —&Q+ s (8.26)

the type-I, type-II (+), and type-III equations read

dq, =q, nQ —An q, + 65qt n v —v n55%, (8.25)

dq„~=q, i, Q —Qhq~»+ 5RP, Ij,„,+ P~I, +6(R

in ail O(e) and O(e'/1)) equations is insensitive to
the object's higher moments.

IX. COMPLETION OF THE CALCULATION
USING METRIC PERTURBATIONS ON AN EXACT

SCHWARZSCHILD BACKGROUND

The arguments of the preceding section show
that type-II(+) terms obey the first-order pertur-
bation equations up to O(e'/1}) that would occur on an

exactly Schwarzschild background. Terms of higher
order than O(e'/1i) could depend on the object's
higher moments; only the equations up to O(e'/q)
will be needed.

Metric perturbations of Schwarzschild have been
analyzed in a convenient form by Thorne and Com-
polattoro'9 (referred to as TC below). In this
section, I apply their analysis by working with the
O(e) metric corrections corresponding to the O(e}
frame corrections X,. The perturbation equations
up to O(e'/ri) reduce to an overdetermined system
of algebraic equations that can only be satisfied if
the zeroth-order acceleration vanishes.

As in Sec. IV, I denote exact Schwarzschild
quantities with carets (e.g., g). It is convenient
here to work in the internal model spacetime C.
The metric g is, in terms of the internal coordi-
nate system (T,R, e, 4 ),

g = -(1 —2/R)dTSdT+ (1 —2/R) 'dRSdR

de~I» =9'~r»& Q Q4 ~~I» ~ (8.27) +R'(deSde+ sin 'ede Sd@). (9.1)

Similarly, it is routine to separate the O(z /1))
Einstein tensor and contracted Bianchi identities
into Type-I, -II (+), and -III parts.

The following argument shows that type-II+
terms satisfy the contracted BI. If type-II and
-III terms were absent, the type-I terms would
themselves satisfy the contracted BI, because
type-I terms are the direct result of ~. There-
fore, the sum of type-II and -III terms must satis-
fy the O(e /1I) contracted BI. Now type-III con-
tributions to the O(q /1)) ET result from a flat-
space O'Alembertian, just as did type-II con-
tributions to the O(q) ET. Thus, for the same
reason that type-II 0(&} contracted BI terms vanish
identically [Eq. (8.16)], so do type-III O(z /1))
terms. Therefore, type-II terms must themselves
satisfy the contracted BI up to O(e /q). Finally,
since the effective background for type-II terms in
O(z /Z) equations preserves parity, the type-II,
even- and odd-parity terms seParately satisfy
the O(q /1}) contracted BI.

To summarize the most useful results of this
section:

(1) Type-II, even-parity terms themselves
satisfy the co'ntracted BI to O(e /1I).

(2) The effective background for type-II terms

TC showed that the most general, even-parity,
/= 1, first-order metric perturbations of Schwarz-
schild can be written in the form

g+ ~g + gpss+ ~ ~ ~

where

(9.2)

X=(-(1—2/R)HodT S dT —H, (dT dR+ dR SdT)

—(1 —2/R) 'H, dRSdRj Y~

+ r'(E- G)(dede+ sin'ed@ SdC)

-(fodT+f, dR}iS(@„ede+qi„'ed@),

4~ =- vector harmonics, (9 2)

H„H„H„K, G ,f„f, functions 'of (R, T).
Because of the form of the O(e) ET contribution

G.II =6m-2acosedr Sdry (9.4)

-(1 —2/R) 'H, dR S dR}I;„. (9.5)

one only needs to consider l = 1 perturbations in
this scheme. TC showed that the gauge may be
chosen to annul f„ f„and K- G, thus simplifying
3C to

3'.={-(1—2/R) HodT SdT —H, (dT SdR+ dR SdT)
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Since all possible O(e) frame corrections X, gen-
erating the correct ET contribution G„, must be
considered, one must regard the particular 3'. sat-
isfying TC's gauge conditions as merely one rep-
resentative of a class of possible X. If the zeroth-
order internal metric g& ' were an exact Schwarz-
schild metric g, then the effect of a gauge trans-
formation of X on the O(e}~ „~~ET would vanish,
since the zeroth-order ET vanishes; similarly,
the O(e)

~ „~BI would be unaffected. One could
in that case regard BC as representing the entire
class of O(c}~ „~metric perturbations.

However, since the zeroth-order internal metric
g& ' in'general differs from g, the result of a gauge
transformation on the actual background g' ' differs
from the result that would have been obtained on
the purely Schwarzschild background Q. One can
represent an arbitrary gauge transformation in
the form

3:-X+ Z, g«'. (9.6)

If the object's metric were exactly Schwarzschild,
g would produce instead the effect

3C+ Z(g . (9.7)

Suppose $ = P, is chosen to annul unwanted func-
tions ho, h„and K- G in DC. Then the actual ef-
fect of $, is to generate additional unwanted terms
of the form

3C =2 [g(c' —g] (9.8)

in 3'.. It is these extra terms 3."that I now' discuss.
One is interested only in K' of O(e} or smaller,

because X, itself is only O(e). One needs the
largest post-Schwarzschild contributions to the
ET and BI due to 3C'. These contributions involve
products of higher moments with X'. The analysis
of Sec. VIII shows that no type-II terms contain
products with the object's higher moments up to
O(e'/q). The first instance of such products oc-
curs at O(e'/q'). Thus, K' has no effect on the ET
and BI until O(e'/q'). Conclusions about 3C based
on orders e and e'/q will be unaffected by the dif-
ference between g«' and Q.

Since one is only interested in perturbations that
vary on the external time scale, one can assume
a time dependence for H„H„and H, of the form
Ho(R, eT), H, (R,qT), and H, (R, qT). The functions
Hp H] and H, are expanded in the inter mediate
limit process in the manner of Sec. VII:

H,
-

h, (e T) +e/qr„'j, (eT)+

H, h, (-~ T) +&/qr„'j, (~T)+ ~ ~,

H, - h, (eT)+e/q r„'j,(e T) +' ' '.

(9.9)

(9.10)

(9.11)

The relation between h„h„h„and X, is

&u 8&, + A, 8 &o = [-h, (dt„Sdt„)

—h, (dt„S dr„+ dr„S dt„)

—h, (dr„S drq)] Y,„. (9.12)

Note that h„h„and h, are O(e) quantities.
Equations (D2) of TC give the ET at O(e)

~ „~in
terms of B„H„and H, . In order to analyze the
leading terms in the intermediate limit, a few pre-
liminary observations are needed:

(1) Because of the slow time dependence of H„
H„and H„ time derivatives such as (8/&T)
&& [H,(R, e T)] reduce the size of a term by a factor
of c.

(2) Because the leading terms (h„h„and h, ) in
the intermediate limit expansions for Hp Hy and

H, have no radial dependence, a derivative &/&R

raises the order of a term by a factor of e'/q'.

Thus, while multiplication by 8 ' raises the
order by one factor of e/q, differentiation with
respect to 8 raises the order by taboo factors of
~/rl.

As the above observations suggest, the leading
terms in the intermediate expansion of the
O(c) ~ „„ETcomponents due to X, come from
undifferentiated terms. The leading terms are of
O(e), and they are within the precision of the pres-
ent analysis. In terms of the O(e) metric functions
h„h„and h„ the O(e), type-II, even-parity ET is

G+u =r„'f[(h, —h, )dr„Sdr„+ 2h, dt„S dt„+ h, (dt„8dr„+ dr„S dt„)+ -,'(h, —h, }(e Sv + &u~S&u~)]Y,„
', (h, —h, )[%'„'-8(&u8 8 dr„+ dr„S&so)+4„'&(+~8 dr„+ dr„S &u~)]]. (9.12)

The O(e) EFE requires that

G+u = a[6r„'cos&dr„8 dr„]. (9.14)

h, =0, (9.16)

Clearly, only M=0 harmonics enter. Using a
normalization such that &]p cos~, one obtains

. h, =0,
h()- h, = 6a,

h, —h, =0.

(9.16)

(9.17)

(9.ie)
This overdetermined system can only be satisfy''ed
if a=o.
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Since the event p, was arbitrarily chosen, this
result shows that the zeroth-order acceleration
a~(t) vanishes at every event along the trial world
line y(t).

X. CONCLUSIONS

The results of this calculation predict the motion
of a body whose mass m is small compared to an
external curvature reference length L. I have ap-
plied the singular-perturbation formulation of Ref.
14 to define an asymptotic world line y(t), which
represents the zeroth-order world line of the ob-
ject, when measured over time scales of order L.
I have shown by matching that, to 0(e) in both the
internal and external asymptotic expansions, the
EFE can be satisfied only if y(t) is a geodesic of
the zeroth-order or unperturbed external metric.

Formally, this calculation has produced a one-
parameter family of approximate spacetimes obey-
ing perturbation equations and internal uniformity
criteria (such as matching) derived from the re-
quirement that this family be "close to" some ap-
propriate exact family of spacetimes (S„g,). Uni-
formly valid expansions imply that the errors are
uniformly small, even within the fully nonlinear,
possibly singular object and even in the curved ex-
ternal spacetime. Any attempt to construct ap-
proximate spacetimes representing objects with
zeroth-order acceleration leads to violation of the
first-order (in the internal expansion) EFE and BI.

An interpretation of this calculation in terms of
motion rests on the singular-perturbation frame-.
work of Ref. 14 and on my definition ( Sec. V) of an
asymptotic world line. Specifically, the zeroth-
order acceleration a,. (t) vanishes at every event
along the trial world line y(t). Thus, a trial
world line can be an asymptotic world line only if
it is a geodesic of the zeroth-order external me-
tric 9"s' To con.clude that such a y(t) must be an
asymptotic world line, one would need to solve
the EFE to 0(c) in the internal expansion, whereas
this paper has not considered the odd-parity part
of the 0(e) and 0(e'/q) equations, which involve
the zeroth-order rotation S,(t). However, it is ob-
vious that S,.(t) = 0 gives one solution of the internal
perturbation equations at 0(c), since in that case
the first-order internal frame correction zv' ',
which satisfies a sourceless linear equation, van-
ishes. Whether there can be solutions with S,.(f)
4 0 is a question for future work. In any case,
y(t) satisfies my definition of an asymptotic
world line if and only if its zeroth-order accelera-
tion a, (t) vanishes. .

The object's asymptotic rest frame, as defined
in Sec. IV from the Schwarzschild part of its
zeroth-order metric 9+', is unboosted to zeroth

order (c' = 0) with respect to the frame of an ob-
server moving along the asymptotic world line
y(t). Therefore, if an object is placed at an initial
event p, with its preferred time direction parallel
to a given external velocity vector uo, the subse-
quent motion of the object (in the limit e-0) will
be along the particular geodesic that passes
through po with velocity uo.

From these results it is reasonable to infer that
a body of mass m moves through an empty and

singularity-free region of an external spacetime
of curvature reference length I along an approxi-
mate geodesic over times of order L, provided
e —=m/L, is small compared to unity. Deviations
from geodesic motion over times of order I van-
ish up to possible corrections of o(Q, e.g. ,
0(c)L . In order to measure such 0(c) deviations
from geodesicity, one would have to observe the
system over times of 0(L/E).

Note that the motion is approximately geodesic
with respect to the unperturbed external metric
BN'. Thus, the present method effectively sepa-
rates out the self-field of a body whose internal
gravity is too strong to permit the drastic assump-
tion of a test body. This natural separation pro-
vides one of the main advantages over the center-
of-mass approach to motion (cf. discussion of
Sec. II).

These results of this calculation are independent
of the object's higher moments: One does not have

to assume that these moments vanish, but only
that they scale with the appropriate power of the
mass m. These results are also independent of
the external spacetime's curvature gradients: One
does not need to assume that these gradients van-
ish, but only that they scale with the appropriate
power of L. Since the unperturbed object was
specified only up to the Schwarzschild part of its
field, it was unnecessary to discuss its internal
composition, causal structure, etc. Thus, the re-
sults apply to black holes (e.g. , Kerr), singulari-
ties without event horizons (e.g., Weyl solutions),
and neutron stars with arbitrary equations of
state, as well as to "ordinary" astrophysical ob-
jects. Since the unperturbed external spacetime
was characterized only by the curvature in E, it
was unnecessary to discuss either the sources of
the external fields or the fields at infinity. The
results apply even when the external field is not
asymptotically flat and even when no definition of
energy-momentum is available.

As emphasized in Ref. 24, one must always be
on the alert for hints (such as the failure of
matching) of unanticipated subtleties in singular-
perturbation problems. In this calculation, there
was little opportunity for matching to fail because
of my regularity assumptions concerning the
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asymptotic expansions, e.g., the assumption that
the first-order external and internal perturbations
have coordinate expansions that begin in powers.
The possibility of "nonanalytic" behavior, such as
the appearance of logarithmic terms in the pertur-
bations, cannot in general be ruled out. Such
terms occur, for example, in Kapluri's resolution
of the Stokes paradox in Quid mechanics (see also
further examples in the standard singular-pertur-
bation references citied in Ref. 14). One topic for
future research is to look for hints of where these
assumptions of powers need to be modified, par-
ticularly in higher-order calculations (see below).

It is possible that, despite the success of match-
ing, the asymptotic expansions constructed here
may fail to give a uniform approximation to any
exact family of spacetimes. In the absence of an
applicable "linearization stability" proof or an
exact solution, one canot assert that the solutions
of perturbation equations are indeed approxima-
tions to exact solutions. However, matching is
the most reliable method available and has had
enormous success in fluid mechanics and other
fields in which it can be tested by experiments,
numerical solutions, and exact calculations. One
can safely conclude that the results of this paper
are consistent to zeroth order with geodesic mo-
tion and inconsistent with accelerated motion.

Several straightforward extensions of this work

seem feasible. A calculation of the spin-transport
law up to post-Newtonian order for objects with
strong internal gravity is necessary to justify the
assumption of parallel transport of an object's
spin vector in Ref. iV, as mentioned in Sec. I. In
order to calculate the zeroth-order rotation &,. (t)
of the object's rest frame with respect to parallel
transport along the asymptotic world line, one
should ermine the effect of odd-parity perturba-
tions such as ~, which contain S,.(t). Post-New-
tonian corrections to the rotation are of course
beyond the precision of the present zeroth-order
analysis. The problem needs a different ordering
of terms appropriate to a slow-motion, gravita-
tionally bound system of comparable masses, as
in Ref. 3.6.

Another extension is to study secular effects
(occurring over times of O(1/e) or longer), which
depend on corrections of O(c) and higher to the
acceleration. To obtain O(e) acceleration correc-
tions, one needs to examine the O(a') ~,

.„„,„~ EFE

and BI. As mentioned in Sec. I, one expects such
corrections to arise due to a coupling between the
object's spin and the odd-parity part of the unper-
turbed external curvature tensor. These O(e) and
smaller deviations from geodesic motion can best
be discussed within the context of an approxima-
tion using multiple time scales.

Generalizations of the present method include:
(1) obtaining the Lorentz force law for the

zeroth-order motion of an electrically or magneti-
cally charged .object through external. gravitational
and electromagnetic fields.

(2) studying the motion of sources with internal
structure through external fields in various gauge
theories. (A problem of this type has been studied
by Manton. ")

(3) deriving the motion of compact objects in al-
ternate theories of gravity.

An important application of the present method
is to a calculation of the decrease in orbital period
due to the emission of gravitational radiation by a
binary system containing a compact object. As
noted in Sec. I, it would be possible to extend
Burke' s" method, if only one could determine the
deflection of a compact object due to the time-odd,
"resistive potentials" at 5/2-PN (post-Newtonian)
order that Burke's calculation produces. The
much larger but time-even effects up to PPNor-
der also need to be studied. Since the predictions.
of period shortening in the binary pulsar depend
themselves on a correct formula for the motion up
to PN order, PN orbital corrections should be cal-
culated explicitly; it appears possible to calculate
these corrections for systems containing compact
objects by generalizing D'Eath's" work on the
slow-motion interaction of Kerr black holes. The
2-PN terms should be checked for finiteness; pos
sible nonanalytic behavior (such as terms of order
v" inn) has recently been suggested. " However,
only the Newtonian orbits are needed to calculate
time-odd orbital corrections to the PPN motion
due to radiation reaction.
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