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Exact Bianchi type-VIII and type-IX cosmological models with matter and electromagnetic
fields
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Exact solutions of the Einstein-Maxwell equations of Bianchi types VIII and IX are derived. The solutions
represent axisymmetric universes with source-free electromagnetic fields and the matter content of the models is a
perfect fluid, with equation of state p = e.

I. INTRODUCTION

The, simplest models of the expanding universe
are spatially homogeneous and isotropic. There
is good observational evidence that at our cosmo-
logical epoch the Universe is fairly homogeneous
on large scales and has been highly isotropic since
the epoch in which it became definitely transparent
to radiation. However, the fact that a Robertson-
Walker model is a good approximation now does
not imply that it has been so at the early stages of
the cosmological expansion.

In recent years there has been considerable in-
terest in spatially homogeneous, nonisotropic,
cosmological models. These are the so-called
Bianchi models. The existence of anisotropy in
such models allows a theoretical discussion of
many important effects. ' A special class of homo-
geneous anisotropic models are the "magnetic"
universes, endowed with a uniform primordial
magnetic field. This gives rise to a preferred spa-
tial direction and so breaks isotropy. The theory
of the magnetic universe has been developed by
several authors. 3~ The interest in these models
was increased by the possible discovery of an in-
tergalactic homogeneous magnetic field of the or-
der of j.o '-10

The idea of a universe with a homogeneous mag-
netic field was proved to be very successful in flat
(i.e. , Bianchi type-I) spaces. '0 However, since
Bianchi type-I models are a very special subset of
spatially homogeneous models, one should consider
more general situations, in order to check what
implications large-scale primordial magnetic
fields would have on the dynamics of the Universe.
The most general sets of homogeneous models are
Bianchi types VI, VII, VIII, and IX.~' However,
the basic work of Hughston and Jacobs" has shown
that the existence of a homogeneous primordial
magnetic field in our universe is limited to Bianchi
types I, II, III, VI (h= —1), or VII (8=0). These
results also hold for pure electric fields. Thus
one is forced to consider models with both a mag-
netic and an electric field.

The equations for anisotropic homogeneous mod-
els for the case when an electromagnetic field is
present have been considered in a number of pa-
pers. In this paper we solve the Einstein-Maxwell
equations for Bianchi type-VIII and type-IX mod-
els. We investigate universes containing electro-
magnetic fields obeying the sourceless Maxwell
equations and matter, with a "stiff" equation of
state. The possible relevance of the equation of
state P =q as regards the matter content of the
Universe in its early stages -has been discussed by
a number of authors, since it was first proposed
by Zel'dovich. ' ' We refer to the recent paper of
Barrow. 0

Perhaps the main difference between type VIII
and type IX is the sign of curvature. For type VIII
this is always negative, whereas for type IX it can
be positive as well as negative depending on the
relations between the cosmic scale factors. For
the most part we use tartan's calculus of differen-
tial forms to obtain the components of the Ricci
and the Einstein tensors and to solve the Maxwell
equations.

II. DERIVATION OF THE CURVATURE

In choosing a local orthonormal basis o", we can
put the metric of space-time in the form

—'Opvo' o

where g,„ is the Minkowski metric tensor. For a
spatially homogeneous model, we take

c =&@ =dt, o'=R;+' (no sum), (2)

where the C»' are the structure constants, y

where &' are the time-independent differential
one-forms and where, because of homogeneity,
the R; are functions of t only. (Here and henceforth
I.atin indices assume the values 1, 2, 3, whereas
Greek indices will assume the values 0, 1, 2, 3.)

The one-forms o', +' obey the relations
i

d(d =-zCr, r 4o
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n) =n2 = -n3 ——1, type VIQ

n, =n2 ——n3 =1, type IX. (5)

the commutation coefficients, and A denotes the
exterior product. The structure constants for
Bianchi type VIQ and type IX can be written as

(4)

where &&» is the totally antisymmetric Levi-Civita
pseudotensor and

8 —pR ~ gO A(7

as an identification scheme. The results are

R 'Ok=&k+&k y

Ok

/n, n, n,R;„=H;Hp+ p;„-,
l p +

2 ' (R; Rk R)

(R ) (R R
IRpR(] &R;R, R)Rp

(13)

(14a)

1
o „„=-.(y„..+ W~„W„o„)o-. (8)

to provide six affine connection one-forms o„„(to
lower or raise an index use pi„„). The results»e

The exterior derivatives of the orthonormal basis
one-forms are readily found by use of Eqs. (2) and
substitution of Eq. (Sa):

do' =0,
(6)

do' =H&o Ao'+ ps f»n, (R,/RpR, )o PA o',
where H, =R,/R, are the Hubble parameters. (A
dot denotes differentiation with respect to time. )

Comparison of these equations with the relation-
ship (Sb) provides immediately the commutation
coefficients

k ~ l
rpp =-Hp, r;p = p;pin-, (R)/RpRi).

These quantities enter into the formula

i 4 tp, 5 =- n ~ (14b}

Thus we can easily calculate the Ricci tensor R4v
= -R „„.The nonvanishing components are

Rpp ——-(SH+Hi +Hp +Hp ), (15a)

1
Rqq Hq+SH——H;+ (,p(R; -Rp -R,

2 R(R2R3)2

+2n;6R„R, ), (15b)

where H =-,'(H, +H, +Hp) is the average Hubble pa-
rameter and the i, k, l are in cyclic order. The
Einstein tensor 6„„is computed by

684vv R
I pel & (16)

where &», is the four-dimensional Levi-Civita
pseudotensor with pp&&p

——1. (Vertical bars around
the indices mean summation extends only over
p & v, p & o.) The nonvanishing components are

O'Pk —-~ kO'

/nR, npR, nP l,' '»l&R+, R,R, R,R

Equation (9) implies now

dopp = (Hp+Hp )(7 A (7

np(Rp/R, R„)2Hpo' Ao

(nP i npR p&

RR l(*R,R, &

~&I

(9)

(10a)

(y
Oo g H)II) +i' 2 p Rp;~g„&R;R(]

(17a)

~ ~ e ( n, 2n, 'i

k, lWi Rs R, ]

R =- -' -45 Z, ' + Z 1, '
) (18)

The three-dimensional curvature R~ is given by

2-
nj nk Rj k.

+~q,.k,
—

2 + —
2 -n, n)0' 0 .

k

as can be easily proved by setting Hk= 0 in Eq.
(17a).

The curvature two-forms

84v =0'4 A Cov + dO'4v

(10b) III. SOLUTION OF THE FIELD EQUATIONS

The Einstein equations considered here are

G,„=8m(E „„+T„„), (19)
can be readily computed by use of Eqs. (6}, (10a},
(10b), and the compatibility equation

1 1 e8H"=—(&~ &. ~.P p& )
4m'

(20)

0 d~4v 04v + Ov4 ~ (12} T z„=(f +P)pp+Q„+ 'g&„P, (21)

Out of this calculation, one reads the individual

components R "v
~ of the curvature tensor by using

the second Cartan equation

where F.„„is the electromagnetic stress-energy
tensor, I'4„ is the electromagnetic field tensor,
T„„is the energy-momentum tensor, u" is the ve-
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P = (y —1}p, 1 & y & 2. (22)

locity four-vector, and & and P are, respectively,
the density and pressure of the fluid. The perfect-
fluid matter is characterized by the equation of
state

a a
E = cos(tp+ rp), B = sin(tp + v'p),

RiR2
' RiR2

(29)

where a =a3. The nonvanishing components of the
electromagnetic stress-energy tensor are

The source-free Maxwell equations are

dF =0, d*F =0, (23)
Epp =~&i =Ep2=-~ps = (E +B }

8m

where the two-form F represents the electromag-
netic field and *F is its dual. In the basis o Ag
we have

~ ia' A 0 + ~g.gi .kg A 0'Q

*F=-B,-O'Ag + —,'E;g;,.ko'Ag .
(24)

(25)

Owing to homogeneity, the electric field E; and
the magnetic field B; depend only on t. By using
Eqs. (2), (3a), and (4) the sourceless Maxwell
equations (23) become

E;R,n; = B,(B;R,R,), B;R;n; = —B,(E;R,R„),
(26)

where B,=B/Bt. It is convenient to introduce the
variables t; by dt; =n;(R;/R;R, )dt. Then Eqs. (26)
take the form

Z;R,R„=&t;(B,R,R„), B,R,R„=—Bt;(E,R,R },
(2"I)

with the solutions

a
Rpp = + 4p(p + 3p)

i 2

a
R)) —— +4m(p -P) =Rp2,

RiR2

a
R33 ——— + 4p(p -P) .

RiR2

(32a)

(32b)

(32c)

We note that the trace F. =g""F.„„ofthe electro-
magnetic stress-energy tensor vanishes.

We now turn to the Einstein equations. Because
of our last remark Eqs. (19)-(21) reduce to the

simple form

(31)

In the local inertial frame determined by (2), an

observer comoving with the fluid is assumed to
have four-velocity u = 5~. The field equations
(31) reduce to the following independent equations:

E
~
= cos(t~ + &~),

R;Rk
(28)

We take the stiff (y =2} equation of matter. The
conservation law for the energy-momentum tensor
Tgv

B, = ' sin(t + 7),
R,Rk

where a;, 7; are constants. Because the Einstein
tensor is diagonal, the electromagnetic stress-
energy tensor must be diagonal too. The off-diag-
onal components of Eq. (20) are

kT;.k ——0,
gives for y =2

1
8 RRR1 2 3

It is convenient to solve the equations

(33)

(34)

FQ2Fi2 +FQ3Fi3 0
& FpiFi2 FO3 23

FpiFi3 +FQ2F23 0
& FpiFO2 i3F23

FpiFp3+Fi2F23 =0
~ p2 p3—

which lead to three possible cases:

(') Ep2 =
pp =E&p =Earp = Ew Epp ~

(U) Epf =Epp =Ejp =Epp = 0 ~ Epp, ~Ef3 e 0,
(111) Epf =Epm

=Earp

=Fpp = 0 ~ EppyEfp 9 0.

Without loss of generality, we may consider only
case (iii): Epp=Ep=R, E,2=Bp=B. We note that
the electric and the magnetic fields must be paral-
lel and point in the direction of the o3 axis. From
(28) it follows that

S R S R S
(36a)

(
R 2 R S 1 2 2

a2 b2
+2——— -- (S' -46R') =—+ . (36b)RS m4 R4 R'S' '

2 t' 5 2

R iR2 &R iR2R3

for an axisymmetric model. It can easily be seen
that Eqs. (17b) and (19) do not turn into each other
under any permutation of the indices i, j, k for
type VIII, whereas for type IX the intrinsic geome-
try of three-space does not privilege any direction
of space. For type VIII we can equate only Ri with
R2 obtaining a symmetry about the third axis. Here
we set R —=R, =R2, S ~Rp, so that Eqs. (35) take the
form



22 EXACT BIANCHI TYPE-VIII A5 D TYPE-IX. . . 1851

Introducing a new time coordinate dt'=Sdt we ob-
tain from (36a)

d (RS)
(37}

with the general solution

(Rs)' = —5(t' —t,')(t' —t,'), (38)

(t2 —t&') =45(RS)~ + 4(R2S +RRS)

By setting 4q =-(t2 —t&) and introducing another
time coordinate dt =SR d~, we obtain

(39)

where t&, t2 are constants of integration. It follows
then that

—jn(RS) =2(q —45(RS) ) ~~2d
d7

with the solutions

(Rs) =q sinh (q7+u), type VIII

(Rs) =q cosh (qr+u), type IX.

We can manipulate Eq. (36b) to take the form

dS2
SR[ 4(q2 b2 a2S2) S 4]1 / 2

with the solution

(40)

(41b)

(42)

S =2(q —b'ga +(q —b +a )' cosh[2(q —b )' '~+v]/, types VIII, IX, (43)

where u and v are constants of integration. When
we define

y(r) =a +(q2 —b +a4)'~ cosh[2(q —b )t~2&+v],

(44)

the solutions assume the final form
where the momenta p are defined by

(49}

I

times. We will follow the notation of Carter ' fair-
ly closely. The equations of motion can be derived
from the Hamiltonian

sinh ~+ u
q2 Q2

,q' cosh ~(q 7 + u)R =-,~ r)», typeIX
q —5

(45a)
dx

+Qv dg 7 (50)

and X is an affine parameter. The Hamiltonians
for the geodesic equations of the metrics (48) are
given by

(45c)S =2(q —b )& (7'), types VIII, IX.

The differential one-forms &' can be paramet-
rized by the Euler angles ($, 8, g):

p 2+Pe +Pe &(8)Pe] +Pe
R' R'f '(e) s'

The Hamilton-Jacobi equation is

(5I)

~' = —singd8+ costil cosh8dp,

&u = cosgde+ sing cosh8ddtl, type VIII (46a)
8W/ay+a =0, (52)

and we find that the action 8' separates in the form
~~ =dg + sinh8 dQ,

&u' = —sing d8 + costi l sine dp,
&o = cosgd8+ sing sined&j&, type IX

cu'=dtil+cos8dp .
(46b)

d'=--,'sX+ad +lid+ f d'~'dd+ f T'"dv,

(53)

where

If we define

coshe, type VIII
e) -=

sin8, type IX
(47a)

[.a Pa(8)l'—
f'(e)

PRT—=R(R -R e)+

(54)

(55)
sinh8, type VIII

g(8) =-

cos8, type IX,
the metrics can be written as

(47b)
and q, a, P are constants and Z is Carter's "fourth
constant" of motion. The equations of motion are
solved by the quadratures

ds = dr +Rgde +f-(8)df ]
+ s'fdg+a(e}dy1'. (48)

l e 7'

e &~2de— (56)

We finally derive the geodesics of these space- Rd7 (57)
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(58)

The cosmological implications of these geodesics
and the generalization for the motion of a charged
test particle will be discussed in a future paper.

The solutions (45a)-(45c) are new. For b=0
they are, with a change of time variable, the same
as one of those of Cahen and Defrise. 22 The solu-
tions (45b) and (45c) reduce for t/= 0 to a generali-
zation of Brill's23 electromagnetic universe and
are a special case of the solutions of Batakis and
Cohen, 4 who considered in addition to the electro-
magnetic field a scalar field, obeying the Klein-

Gordon equations. For a =0 we obtain the solu-
tions sketched by Maartens and Nel. ' We point
out that further solutions for Bianchi type VIII and

type IX in the presence of matter and an electro-
magnetic field have been obtained by Qzsvath 6 and
by Soares and Assad. 7

Note added in Proof. Dr. M. A. H. MacCallum
kindly pointed out to me that the solutions (45a)-
(45c) may agree with those of V. A. Ruban, in
Report No. 412 of the Leningrad Institute of Nu-
clear Physics, B. P. Konstantinova, 1978 (un-
published). However, in the meantime I have
been able to extend my calculations on electro-
magnetic Bianchi types II, VIII, and IX cosmolo-
gies to include a source term corresponding to a
scalar field obeying the Klein-Gordon equation,
which will be published in a forthcoming paper.
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