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The Euclidean section of the classical Lorentxian black-hole solutions has been used in approximating the
functional integral in the Euclidean path-integral approach to quantum gravity. In this paper the claim that classical

black-hole uniqueness theorems apply to the Euclidean section is disproved. In particular, it is shown that although
a Euclidean version of Israel's theorem does provide a type of uniqueness theorem for the Euclidean Schwarzschild
solution, a Euclidean version of Robinson s theorem does not allow one to form conclusions about the uniqueness of
the Euclidean Kerr solution. Despite the failure of uniqueness theorems, "no-hair" theorems are shown to exist.
Implications are discussed. A precise mathematical statement of the Euclidean black-hole uniqueness conjecture is
made and the proof left as an unsolved problem in Riemannian geometry.

I. INTRODUCTION

+ r'(d8'+ sin'8dy') (1.2)

by t-iz. z must be identified with period 8m' for
the Euclidean section to be regular. 8 and P are
the usual polar and azimuthal coordinates on a
two-sphere and r c [2m, ~). The manifold is geo-
desically complete and has topology R'~ S'. The
Euclidean Kerr solution

ds'= (dw —a sin'8 dg)'5 /'p

+ [(r' —ct')dy —csdy]'sin'8/p'+ p'dr'/b. + p'd8',

d = x' —2m~ —&' p'= x' —~'cos'8
f

can be obtained from the Lorentzian Kerr solution
describing a rotating black hole of mass m and
angular momentum nil,

(1.3)

ds'= -(dt —asin'8dg)'6/p'

+ [(r'+a')d@ —adt]'si n 8/p' +p'dr'/&+ p'd8',

—2mr+a p =t +a cos ~

This paper considers the uniqueness of the Eu-
clidean black-hole solutions' used in the Euclidean
path-integral approach to quantum gravity. ' "Eu-
clidean" or "Euclidean section" will mean in this
paper that the metric on a four-dimensional mani-
fold is of positive-definite signature. "Solution"
will mean that the metric is Bicci flat. For ex-
ample, the Euclidean Schwarzschild solution can
be written in a local coordinate chart as

ds s = (1 —2m/r) dr'+ dr'/(1 —2m/r)

+ r'(d8'+ sin'8 dp ') .
It can be obtained from the Lorentzian Schwarz-
schild solution describing a nonrotating black hole
of mass m,

ds'= —(1 —2m/r)dt '+ dr'/(1 —2m/r)

by 7. ir-, a- i et—Th. e {y,p}plane must be iden-
tified as {r,P}= {r+P, P + PAn}, where P
=4ttm[m+(m'+ ts')' ']/(m'+ ts')'t' and II„
= a{2[m'+ m(m'+ n')'t']} '. 8 and p are again
the usual two-sphere coordinates and y

c [m+ (m'+ as)' s, ~). The manifold has topology
R' x 8' and is geodesically complete with the met-
ric given above.

The claim has been made' that the classical
black-hole theorems apply to the Euclidean sec-
tion. It is straightforward'to show that Israel's
theorem, ~ which in essence proves that (1.2) is
the unique, static asymptotically flat vacuum solu-
tion of Einstein's equations with a regular fixed-
point surface of the staticity Killing vector, can
be taken over to the Euclidean section essentially
line for line. However, the claim is disproved by
showing that the Euclidean version of Robinson's
theorem' proving the uniqueness of the I orentzian
Kerr solution no longer works on the Euclidean
section. Various implications are discussed.

This paper is divided into seven sections. The
following section briefly reviews the Euclidean
path-integral derivation of the thermal properties
of black holes and the role that Euclidean classi-
cal solutions to Einstein's equations play in quan-
tum gravity. "The boundary conditions relevant
to the Euclidean section that Euclidean solutions
must obey are stated. The physical importance
of the uniqueness of the Euclidean solution is em-
phasized. In Sec. III the Lorentzian black-hole
uniqueness theorems are summarized and their
applicability to the Euclidean section noted. In
Sec. IV it is shown how Israel's theorem, proving
the unitlueness of the Schwarzschild solution (1.1),
works on the Euclidean section while Robinson's
theorem proving the uniqueness of the Lorentzian
Kerr solution (1.4) has no Euclidean analog that
proves the uniqueness of the Euclidean Kerr solu-
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tion (1.3).
In Sec. V we search for possible counterexamples

to the uniqueness conjecture of the Euclidean Kerr
solution. Apart from the Kerr solution, the only
Lorentzian, stationary, asymptotically flat, axi-
symmetric vacuum solution for which the metric
is explicitly known is the Tomimatsu-Sato family
of solutions. ' The Lorentzian Tomimatsu-Sato
solutions suffer from naked ring singularities
(among other things) and hence are not counterex-
amples to the uniqueness of the I orentzian Kerr
solution. The Euclidean section of the Tomimatsu-
Sato solutions is defined and it is shown that the
ring singularities disappear on the Euclidean sec-
tion. However, the north and south poles of the
horizon, which were nonsingular on the Lorentzian
section, develop curvature singularities on the
Euclidean section. Hence the Euclidean Tomimat-
su-Sato solution is not a counterexample to the
conjectured uniqueness of the Euclidean Kerr solu-
tion. Some Euclidean solutions cannot be obtained
from Lorentzian solutions. A sufficient, though
not necessary, condition is that the curvature be
(anti) self-dual. By an argument pa.ralleling an
argument of Gibbons and Pope' ruling out the ex-
istence of asymptotically Euclidean (anti) self-dual
solutions (essentially an application of Lichnero-
wicz's theorem') we similarly rule out (anti) self-
dual asymptotically flat solutions. Hence if there
exist nonsingular, positive-definite-signature,
asymptotically flat, stationary, axisymmetric so-
lutions that satisfy the boundary conditions other
than the Euclidean Kerr solution, then it is not
(anti) self-dual, nor is it the Euclidean Tomimat-
su-Sato solution. In Sec. VI a Euclidean "no-hair"
theorem is proved. A Euclidean version of Car-
ter's Lorentzian no-hair theorem' is not used, as
this approach involves a linearized Robinson iden-
tity and suffers from the same pathologies as the
nonlinear Robinson identity used in attempting to
prove uniqueness. Instead, the perturbation anal-
ysis of Teukolsky xo "and %hald" that employs the
Newman-Penrose formalism is used to show that
the only regular perturbations of the Euclidean
Kerr solution are perturbations in m and a, the
mass and angular momentum parameters. In
Sec. VII a precise statement of the Euclidean
uniqueness conjecture is made. The proof of a
uniqueness theorem is left as an unsolved problem
in classical Riemannian geometry.

II. CLASSICAL SOLUTIONS IN QUANTUM GRAVITY

follow the analysis as reviewed by Hawking in Ref.
2. The essential idea is that the partition function
for a system of temperature 1/P can be repre-
sented as a functional integral over fields periodic
with period P in Euclidean time:

d e-I [e3
C

(2.1)

where G is Newton's constant in natural units, R
is the Ricci scalar, h is the determinant of the in-
duced metric h„on the boundary, K is the trace
of the second fundamental form of the boundary,
and C, is a. constant adjusted to make the action
of flat space vanish. The integral is over all as-
ymptotically flat metrics, periodic in Euclidean
time, which fill in an S'x S' boundary at infinity.
The $'x S' boundary is chosen to represent a large
spherical "box" 8' bounding three-space, cross
the periodically identified Euclidean time axis, $ .

It is impossible to evaluate the functional exactly
and hence a steepest-descents approximation is
employed. That is, one expands the action about
a classical solution- of the field equations,

~classical
gab ab

and integrates over fluctuations away from this
solution. Hence,

and

+classics, l ++

f [g] f [g ciassical ] + f [g ] +. . .

(2.3)

(2.4)

fa[g,a] is quadratic in the fluctuation g, a and has
the form fg, ao'a'sg, sag d'x, where 0'"'s is a sec-
ond-order differential operator in the "background"
metric g,~. Truncation of the expansion at quad-
ratic order is called the "one-loop expansion" and
leads to an expression for lnZ of the form

Z f [g classical ]

Here Z is the partition function, d[p] denotes
functional integration over fields P (indices to be
appropriately added for spinor, vector, tensor),
I[y] is the classical action functional for g on the
Euclidean section, while the subscript C on the
integral denotes the class of fields to be inte-
grated, e.g. , periodic in imaginary time with
Dirichlet boundary conditions.

The appropriate action for gravity is

J s&gd'x fK&ad x+0,'(a2)

The thermal properties of black holes, first
derived by Hawking" in 1975 using a semiclassical
formalism, can be recovered using the Euclidean
path-integral approach to quantum gravity. ' We

+lri d g b e 12&~ab&

where I is the contribution of classical back-

(2.5)
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ground fields to lnZ and the second term (the "one-
loop" term) represents the effect of quantum fluc-
tuations about the background fields. Evaluation
of the second term involves the determinant of the
operator O'"". A convenient definition of
detO'~~ is the g-function definition of Singer. "
Hawking" has employed this definition to calculate
one-loop terms. Gibbons and Perry" have investi-
gated the one-loop term in detail. It should be
noted that more than one background field (classi-
cal solution} may satisfy the boundary. conditions,
and in this event there are contributions to lnZ of
the form (2.5) for each classical background field.

One background field satisfying the boundary
conditions of asymptotic flatness, 8' x S' boundary,
and periodicity P in Euclidean time is flat space

ds'= dv'+ dr'+ r'(d8'+ sin'8dg ') (2.6)

+ x'(d8'+ sin'8 dP'), (2.7}

where regularity requires y=7+ P, P= 8mm. This
has action I = 471m' and a one-loop term'

106, P 4wr. '
45 pa 135p'

for r, » P i.e. , for a box size large compared to
the black hole. P, is related to the one-loop re-
normalization parameter.

Given the partition function one can evaluate rel-
evant thermodynamic quantities such as energy
and entropy in the usual fashion

8
(Z) = —lnZ,

S= P(E)+ lnZ.

(2.8a)

(2.6b)

Applying this to the contribution to lnZ from the
classical action of the Schwarzschild solution
yields

S = 4~m'= ~/4, (2.9)

where A. is the area of the "event horizon, "r = 2m.
Hence the classical background contribution to the
partition function yields a temperature

1 1
P Smm

with r identified with period P. The action (2.2) of
flat space is zero. In the limit of a very large
spherical box S' with radius r, tending to infinity,
the one-loop term can be evaluated exactly" as
4mr, '/135P' The .interpretation is that this is the
contribution to the partion function for thermal
gravitons on a flat-space background. Another
background field satisfying the boundary condi-
tions is the Euclidean Schwarzschild solution,

d 2
ds'= (1 —2m/y)d~'+

11 —2m/r

and an entropy S= 4wm'. These are precisely the
expressions for the temperature and entropy of a
nonrotating black hole that Hawking" first ob-
tained in 1975 by completely different methods.

One can calculate the (unstable} equilibrium
states of a black hole and thermal gravitons in a
large box by including the one-loop terms in the
expression for lnZ. Maximization of the entropy
with fixed energy leads to the conclusion that if the
volume V of the box satisfies

5 7TE'(—(8354.5}V, (2.10)

(i) asymptotic flatness,
(ii} an S' x S' boundary at infinity,
(iii) an identifica. tion of the coordinates (t, 8, p)

=(t+ P, 8, p) on the boundary, and

(iv) nontrivial topology,

and similarly that the Euclidean Kerr solution is
the unique, nonsingular, Ricci flat solution satis-
fying

then the most probable state of the system is flat
space with thermal gravitons, while if the inequal-
ity is not satisfied the most probable state is a
black hole (Schwarzschild solution) in equilibrium
with thermal gravitons.

One can also consider the partition function for
grand canonical ensembles in which a chemical po-
tential is associated with a conserved quantity.
For example, one can consider a system at a tem-
perature T= 1/P and a given (conserved) angular
momentum J with associated chemical potential,
0, where 0 is the angular velocity. The partition
function would then be given by a functional inte-
gral over all fields with (t, r, 8, P) =(t+P, r, 8, $
+PA). The Euclidean Kerr solution (1.3) would
then be a classical background solution around
which one could expand the action in a one-loop
calculation analogous to the above. It is a major
point of this paper that although a type of unique-
ness theorem exists for the Euclidean Schwarz-
schild solution via a Euclidean Israel theorem,
the Euclidean version of Robinson's theorem does
not allow one to draw similar conclusions con-
cerning the Euclidean Kerr solution.

It is clear from the analysis just reviewed that
the Euclidean black-hole solutions, both Schwarz-
schild and Kerr, play a key role in approximating
the functional integrals occurring in quantum
gravity, and connect in a fundamental way to the
thermal properties of black holes discovered by
Hawking. " It would be valuable to prove that the
Euclidean Schwarzschild solution (1.1) is the unique
nonsingular extremal of the action (2.2) (i.e. ,
Ricci flat metric} satisfying
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(i} asymptotic flatness,
(ii) an S'x 8' boundary at infinity,
(iii) an identification of the coordinates (t, 8, P}

= (t+ P, P+ AP) on the boundary, and

(iv) nontrivial topology.

The requirement of nontrivial topology excludes
flat space from being a counterexample. The class
of metrics contributing to the functional integral
are not necessarily Ricci flat and should satisfy
requirements (i), (ii), and (iii}. The conjectures
above are made more precise in Sec. VII.

If the Euclidean black-hole solutions are not
unique then there exists at least one other Eucli-
dean solution, satisfying the conditions above,
which would necessarily have to be included in the
steepest-descents approximation of the functional
integral. This would mean there exists the possi-
bility of a third phase, in addition to the Euclidean
black-hole solutions and flat space, contributing
to the analysis of the possible states of a gravita-
tional field in a box. One might call such a solu-
tion a new Euclidean black-hole solution. This
new Euclidean black-hole solution would either
not admit a Lorentzian section, or if a Lorentzian
section exists, it would violate the conditions of a
Lorentzian black-hole solution by being, for ex-
ample, singular or perhaps not asymptotically
flat. Hence the nem Euclidean black-hole solution
would play a role somewhat analogous to the in-
stantons of Yang-Mills theory, insomuch as the
Lorentzian sections of such solutions are not phys-
ical objects, although they do have a physical ef-
fect by making a large contribution to the function-
al integral in the quantization of the theory.

III. CLASSICAL BLACK-HOLE UNIQUENESS
THEOREMS

The classical black-hole uniqueness theorems,
proving the uniqueness of the Schwarzschild solu-
tion and Kerr solution for (vacuum} nonrotating
and rotating black holes, respectively, can be
roughly separated into two qualitatively distinct
parts. The first part consists of the assumption
of stationarity (the existence of a Killing vector
which is timelike near infinity) and the use of
global analysis and the causal structure of space-
time to conclude that a stationary black hole must
be either axisymmetric or static. This result is
known as the strong rigidity theorem. ' The sec-
ond part has two subsections. If the black hole is
static, i.e. , if the stationarity Killing vector is
hypersurface orthogonal, then Israel's theorem
essentially proves that the Schwarzschild solution
(1.2) is the unique, nonsingular, asymptotically
flat, static solution which contains an event hori-
zon. If the black hole is rotating, i.e., if the sta-

tionarity Killing vector is not hypersurface ortho-
gonal, then Robinson's theorem' essentially proves
that the Kerr solution (1.4) is the unique, nonsin-
gular, asymptotically flat, axisymmetric rotating
solution which contains an event horizon. The as-
sumption of stationarity is essentially a statement
that one is considering the final state of a black
hole (formed, for example, by a star's collapse)
after all the dynamics has been resolved; while
the physical reason behind the conclusion of axi-
symmetry given rotation is that a rotating nonaxi-
symmetric black hole would eventually become
axisymmetric by gravitationally radiating away its
asymmetries.

Both Robinson's and Israel's theorems do not
explicitly involve causal structure even though
the phrase "event horizon" appeared in their de-
scription above. This is because the strong rigid-
ity theorem implies that the event horizon is also
a Killing horizon. That is, the null geodesic gen-
erators of the horizon coincide on the horizon
with a generator of an isometry of the full four-
dimensional spacetime, with the Killing vector of
the isometry becoming null on the horizon. It is
this geometric property of the event horizon,
rather than its causal properties, which is utilized
in the Israel-Robinson theorems. Since it is only
these theorems that do not explicitly involve causal
analysis we will not review any of the other theo-
rems leading to the conclusion of black-hole
uniqueness, as they would not be applicable on the
Euclidean section. Furthermore, since it is quite
clear that Israel's theorem applys to the Euclidean
section virtually line for line, we mill not review
it in detail, but merely point out enough of the
structure of the proof to enable the reader to
quickly verify the veracity of this statement. |I|I'e

will review Robinson's theorem in somewhat more
detail.

Israel's theorem concerns a static spacetime
manifold. In a local coordinate chart the metric
can be written in a form such that the hypersurface
orthogonal Killing vector g= 8/&t is manifest:

ds'= -V'dt'+g ~(x', x', x')dx dx~, V= V(x', x', x'),

where Greek indices run from 1 to 3, and capital
Latin indices are reserved for the range 0 to 3.
Let Z denote the hypersurface t= constant and con-
sider the class of static fields such that

(a) Z is regular, empty, noncompact and "as-
ymptotically flat, " i.e.,

g ~= 5 ~+O(1/r), S„g ~=O(r '),
V= (-g«)'~'= 1 -m/r+ q, m = co~st,
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+ p-'(ep/SV)2], (3.2)

where p= (g»s Vs~V) '~', K„ is the second funda-
mental form of the t= constant, V= constant two-
surfaces, and lover-case Latin letters refer to
coordinates in the two-surfaces. The fourth is the
following equation obtained by projecting the field
equations into the two-dimensional surfaces:

sV [(~8)/P] = o (3.3)

where g is the 2x 2 determinant of the metric g„
on the two-surfaces. Applying conditions (a}-(d)
to equations (3.2) and (3.3) leads to the conclusion
that

S,/p, = 4vm, (3.4)

where S, is the area of the two-surface t= constant,
V= C, and the subscript zero indicates evaluation
as C-0. Manipulation of the identities previously
mentioned leads to

p, & 4m,

So- 7t po
2

with equality if and only if

s,p = 0 = p(K, »
—z g, » K)

(3.5)

(3.6)

everywhere on Z. (3.5) is inconsistent with (3.4}
unless equality holds, and then spherical sym-
metry follows immediately from (3.6). Birkhoff's
theorem applied to this spherically symmetric,
static manifold immediately proves that the unique
solution is the Schwarzschild solution. Condition
(b) has been removed by Robinson. "

in the limit r= (6»x x»)'~'-~ (in suitable coordi-
nates);

(b) the surfaces V= constant, t= constant are
regular, simply connected closed two surfaces;

(c) the four-dimensional invariant R„sc~R"ec~
is bounded on Z;

(d) the intrinsic geometry (characterized by '@R)

of the two-spaces V= C approaches a limit as C
-0', corresponding to a regular compact two-
surface.

Israel's theorem states that the only static space-
time satisfying (a), (b), (c), and. (d) is the
Schwarzschild solution.

The proof utilizes four main equations, two of
which are identities involving geometrical con-
structs of the t= constant, V= constant two-dimen-
sional surfaces, while the third is the following
expression for the four-dimensional invariant
R»~~R" in terms of V and the geometry of
the two surfaces just mentioned:

—,'R R"s =(Vp) '[K K'»+2p 'p p"

Robinson's theorem utilizes work by Carter, "
who shows that the domain of communication (the
-"exterior") of a stationary (rotating), axisym-
metric black hole can be covered globally (apart
from trivial coordinate singularities) by a coordi-
nate system t, p, X, p, in which the metric takes
the form

ds = -Vdt + Wdg dt+Xdg

+ U[dh'/(X' —c') + d p'/(1 —p') ], (3.7)

where V, 8', X, U are functions only of A. and p,.
The ignorable coordinates have ranges -~ & t&~,
0& P & 2v, and the 'two-dimensional subspace

ds'= dX'/(X' —c') + d p, '/(I —p, ') (3.8)

-(~'- c')Y,=XW „-WX „, (3.9)

where a comma denotes partial differentiation.
Carter" has shown that if X, Y satisfy certain
conditions on the axisymmetry axis and horizon
then the four-dimensional geometry will be regu-
lar. These conditions are as follows: As p, -+1,
X and Y are well-behaved functions of A. and p, with

X= O(1 —p'),
X 'X „=-2p(1 —p, ') '+ O(1),

Y ~= O((1 —p')'), Y = O(1 —p'),
(3.10)

and as A. - c, X and Y are well-behaved functions
with

x=o(1.), x-'=o(1),
(3.11)Y,= O(1), Y „=O(1) .

Asymptotic flatness requires that as A. '- 0, Y and
X 'X are well-behaved functi:ons of X ' and p, with

x-'x= (1 —p, ') [l.+ O(x-'}],

Y= 2Jp(3 —p')+O(X '), (3.12}

where J is the angular momentum measured in the
asymptotically flat region.

For a metric of the form (3."t) Ernst" has shown
that Einstein's equations reduce to the expres-
sions, E(X, Y}=F(X,Y)=0, where

E(x Y)=~ (& '~x}+px '(lvxl'+ lvYI')=0
(3.13)

F(X, Y) = v ' (pX 'v Y) = 0.
Here p=(X' —c'}'~'(1 —p')'~' and V denotes the co
variant derivative with respect to the metric (3.8}.
V and U are determined from X, Y by quadrature.

is covered by a standard ellipsoidal coordinate
system with A. c [c,~] and p c [-1,1]. It is con-
venient to introduce the "twist potential" Y by re-
quiring

(1 —p')Y „=XW,—WX „
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The key part of Robinson's proof is the identity'

(X~X2) '(F2 —Y,) [X~ E(X~, Y~) -X2 I'(X2, Y~)] + ~X2 '[(I'2 —Y,)'+X2 -X~ ]E(X„Y~)

+ ~xi [(F2 —Y,) +X, -X2 ]E(X2, F2)+ ~V' pV
2 j.

= p(2X, X,) 'ix, '(Y, —Y,)VY, —VX, +X X,VX, i'

+ p(2x, x,)-'ix (Y, —Y,)vY, +vx, -x,-'x,vx, i'

+ p(4X, X,) ' ~(x, +X,)(X, 'VY, -X, 'VF, ) —(F, —F,)(X, 'VX, +X, 'VX, ) ~'

+ p(4X, X,) '
~(X, -X,)(x, 'VY, +X, 'VF, ) —(F, -F,)(X, 'VX, +X, 'VX, ~'. (3.14)

For fixed parameters c and J there is an asso-
ciated Kerr solution (1.4) with c'= m2 —a' and J
= am. Suppose that (X„F,) corresponds to this
Kerr solution and (X„F,) corresponds to a hypo-
thetical second black-hole solution satisfying the
boundary conditions. Integration of (3.14) over
the two-dimensional manifold (3.8) leads to a
boundary integral on the left-hand side of the iden-
tity which vanishes by the boundary conditions
(3.10), (3.11), (3.12). The integrand of the right-
hand side is a sum of four positive-definite terms
each of which must now necessarily vanish. Sim-
ple manipulation of the resulting first-order par-
tial differential equations soon leads to the con-
clusion that F2= F, and X2=X„ i.e. , that the Kerr
solution (1.4) is the unique stationary, axisymmet-
ric solution satisfying the boundary conditions.

IV. EUCLIDEAN BLACK-HOLE UNIQUENESS
THEOREMS

The first part of the classical black-hole unique-
ness theorems described in Sec. III, that which
assumes a locally timelike Killing vector and
utilizes spacetime casual structure, is clearly in-
applicable to the Euclidean section for two rea-
sons. First', there is no reason for assuming the
existence of a Killing vector as one wishes to in-
clude in the functional integral all positive-definite
metrics satisfying the first three of the four con-
ditions listed previously, i.e. ,

(i) asymptotic flatness,
(ii) an S'x S' boundary at infinity,
(iii) an identification of the metric

(t, r, e, j )=(t+ p, r, e, y),

l

second part of the classical uniqueness theorems,
the Israel~ and Robinson' theorems, would allow
one to draw a more restricted conclusion con-
cerning the extremal metric in the class of met-
rics satisfying conditions (i), (ii), and (iii) and
furthermore possessing either a hypersurface
orthogonal Killing vector (Euclidean analog of
staticity); or a nonhypersurface orthogonal Killing
vector (Euclidean analog of stationarity) that com-
mutes with a second Killing vector generating the
action of SO(2) (Euclidean analog of axisymmetry).

A positive-definite metric possessing a hyper-
surface orthogonal Killing vector 8, can be ob-
tained from (3.1) by t-it,

ds'= V'dt'+ g, (x' x', x') dx~dx',

V= v(x', x', x'). (4.1)

It is clear that Israel's theorem can be transcribed
to the Euclidean section essentially line for line
because, as described in Sec. IlI, much of the
analysis involves the two-geometry V= constant,
t= constant. ,The part explicity involving the four-
geometry and hence the metric signature, for ex-
ample Eq. (3.2), remains unchanged independent
of whether the signature is +2 or +4. The surface
V= 0 is the fixed-point locus of the Killing vector
8, or a "bolt" in the parlance of Ref. 3, and there-
fore the manifold has a Euler characteristic, X
= 2, by the fixed-point theorems. The Euclidean
version of Israel's theorem therefore proves that
the unique, nonsingular, Ricci flat, positive-defi-
nite metric satisfying the conditions of

(i) asymptotic flatness,
(ii) an S'x S' boundary at infinity,
(iii) an identification of the metric

or
(t, r, e, y)=(t+ p, r, e, y), (4.2)

( rt, e, y)=( tp+, r, ye+t)l,p
depending on the physical situation chosen, and
hence the extremal metric need not ab initio have
a Killing vector.

Secondly, there is no casual structure on the Eu-
clidean section. However, one might hope that the

(iv) two-dimensional fixed-point locus of hy-
persurtace orthogonal Killing vector (staticity+
nontrivial topology),

is the Euclidean Schwarzschild solution (1.1) where
p= Bvm.

It is natural to expect a similar Euclidean analog
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v =0,XvW- WAX|
i

c
pvX IXv8 —WvXi'

v +, =0.

The Euclidean equations (W- -iW) are therefore

v
XVN'-WVX&

0
p )'

(
p
X pX'

(4.3)

(4.4)

Introduction of the quantities X= p/X and Y= W(X
leads to

pvX I p(VYIv ~

«

w

~ r

r
~

2
~~ 0 tx i (5)'

(pVF)
(4.5)

of Robinson's theorem, however, we mill now show
that there are grave difficulties with the analogy.
A positive-definite, axisymmetric, "stationary"
(nonhypersurface orthogonal Killing vector) metric
is obtained from (3.7) by t-it and W- iW-T. his
procedure was used in going from the Lorentzian
Kerr metric (1.4) to the Euclidean Kerr metric
(1.3), i.e. , f-it and a- ia-It. is important to
realize that one should not merely put V- -V in
(3.7). Equation (3.9) implies that Y- iY -and,

similarly, in (3.13) and (3.14). Therefore, the
Euclidean Robinson identity (3.14) has a sum of
two positive-definite and two negative-definite
terms on the right-hand side. Hence when one
integrates the Euclidean Robinson identity over
the manifold it is no longer possible to conclude
that each term on the right-hand side must sepa-
rately equal zero. Therefore, one cannot con-
clude from this analysis that the Euclidean Kerr
solution is unique.

One can introduce a nem set of variables for
mhich there exists a Robinson identity mith the
right-hand side being positive definite. " We start
from the Lorentzian field equations in terms of
the metric quantities 8'and X, as given, e.g. , by
Carter, "

tity (3.14} exists on the Euclidean section in terms
of the Euclidean variables X', P. Integration of the
tilded identity over the manifold leads to a sum of
four positive terms on the right-hand side as de-
sired. However, the tilded divergence on the left-
hand side does not integrate up to a boundary term
thai vanishes, in fact, it diverges on the "hori-
zon", i.e., the two-dimensional fixed-point locus
(bolt) of the Killing vector S,. Once again it is
impossible to prove the uniqueness of the Eucli-
dean Kerr black hole using a Euclidean Robinson
theorem. In Sec. V we try (and fail) to disprove
uniqueness by searching for possible counterex-
amples.

V. ATTEMPTS AT COUNTEREXAMPLES

The failure of the Euclidean Robinson uniqueness
theorem, discussed in Sec. IV, suggests that per-
haps another Euclidean solution exists satisfying
the boundary conditions. One manner in which
stationary, axisymmetric Euclidean solutions may
be found is by analytically continuing stationary,
axisymmetric Lorentzian solutions to the Euclidean
section. Clearly all Lorentzian solutions, apart
from Kerr, will be pathological in some sense
since the Lorentzian Robinson uniqueness theorem
works. The idea would be that the pathologies
would not be present on the Euclidean section.
Some Euclidean solutions cannot be obtained by
analytic continuation of Lorentzian ones. A suffi-
cient, but not necessary, condition for this is that
the curvature be (anti) self-duaL In this section
we explore examples from both categories.

Apart from the Lorentzian Kerr solution, the
only other stationary, axisymmetric, asymptot-
ically flat solution for which the metric is ex-
plicitly known is the Lorentzian Tomimatsu-Sato
solution. ""There is actually a family of such
solutions, characterized by a parameter 5 taking
integer values mith 6= 1 being the Kerr solution.
The complexity of the metric grows rapidly with
5 and therefore we will only display the metric
for 5= 2. The metric can be written locally as

ds'= m'[e''2dx'+ e'"3dy'+ e'~(dQ —&dt}']
These equations for the Euclidean variables X, 7
are identical to Egs. (3.13) for the Lorentzian
variables X and F. Therefore, the Robinson iden-

I

where

(5.1)

&qC(x,y), (x' —1)B(x,y) „(1-y')D(x, y)
mD(x, y) ' D(x, y)

' 48(x, y)
(5.2)

e'"2= &(x,y)/[4p'(x' —1)(x' —y')'], (5.3)

s
V3 e P2

y2 (5.4)
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B(» y) = [p'(x'+ l)(x' —1) —q (y'+ 1}(1-y'}+2P»(x' —»]'
+ 4q'y'[px(x' —1)+ (px+ 1)(1—y') ]',

g(, y) = p' ( —1)[2(x'+ 1)(x' —1)+ (x'+ 3)(1 -y')]
-p'(»' —1}[4x'(x'-1)+ (3x'+ 1)(1-y')] + q'(Px+ 1}(1-y'),

D(x, y) =)()6(x'-1)(x'+ 28»'+ VO»~+ 28x'+ 1) -16q'(1-y')'
+ p q ((x —1)[32x (x + 4x + 1) -4(1 -y')(x' —1)

+ (-6»'+ 12»'+ 1o)(1-y')'] -4(1-y')'(x'+ 6»'+»)
+p'q'((»' - 1)[64x'+ (1 —y')'(y'+ 14y'+ 1)] —16(1 —y')'(x'+ 20

+ 8p'x(» 1)(x + 6»'+ 1) —32pq x(l —y')

+ 8p'q'x{(x' —1}[Sx'(x'+ 1)+ (1 -y')'(2y' -x'+ 1)] -4(1 -y')']'.

(5.5)

(5.6)

(5.&)

The coordinates x, y are ellipsoidal polar-type
coordinates with x c [1,~) a radial variable and y
c [-1,1] a polar variable. The constants p, q are
constrained by p'+ q'= 1. Analysis of the metric
in the asymptotically Qat region shows that m is
the mass and m'q is the angular momentum. The
surface x= 1 is a Killing horizon, and also an event
horizon for odd 5. However, Gibbons has shown
that the x= 1 surface is not totally null for even 6
and hence not an event horizon for even 5. There
are ring-curvature singularities in the equatorial
plane, y = 0, defined by B(x,y = 0}= 0, which 'for all
5& 1 have at least one ring inside the x= 1 surface
and at least one ring outside. The x, y chart
breaks down at the poles of the Killing horizon,
i.e., x = 1, y = + 1. Tomimatsu and Sato" computed
one component of the Riemann tensor,

Z= [p'(x' -1)+q'(y'-1)+ 2px(x'-1)
—2ipqxy(x' —y')

—2iqy(1-y')]/(x' —y') . (5.9)

Z vanishes nowhere off the equatorial plane y = 0,
while on the plane it vanishes at the two ring sin-
gularities mentioned previously. The resolution
is that when the signature is Lorentzian the curva-
ture invariant contains terms of positive and neg-
ative sign, and thus there must be another diver-
gent term in the invariant, identical to the square
of (5.8), which occurs with the opposite sign. The

(t)(l)(t)( ) t)~2 ( y }(x y } B3 I —, D)l

(5.8)

and claimed that x=1, y= +1 are points of curva-
ture singularity since (5.8} diverges as y'-1 in the
x'= 1 surface. However, Economou and Ernst~
computed the complete Acyl tensor invariants and

showed that curvature singularities occur when-
ever the following complex scalar is zero:

I

poles are, however, still somewhat strange be-
cause the limit of 8 at x=1, y=+1 depends upon
the manner in which they are approached.

The Euclidean section of the Tomimatsu-Sato
solution may be defined by t-it, q- -iq in analogy
with the continuation used to find a Euclidean sec-
tion of Kerr (1.3). The naked ring singularity in
the equatorial plane y=0 at x&1 is no longer pres-
ent since B(x,y = 0), or equivalently Z(x, y= 0), no
longer vanishes for g &1. This is quite encourag-
ing. However, it may be seen that the poles at x
= 1, y= +1 become curvature singularities on the
Euclidean section by noticing that when the metric
signature is positive definite the unboundedness of
the analytic ally continued Rie mann tensor (5.8) at the
poles implies that the complete invariant diverges.
This may be verified from the analytically continued
expression (5.9}and also the directional nature of
the singularity verified. Therefore, although the
5= 2 Euclidean Tomimatsu-Sato solution no longer
suffers from the naked ring singularities, it ac-
quires curvature singularities at the poles of the
Killing horizon g=1, y= +1, and hence cannot be
a counterexample to the conjectured uniqueness
of the Euclidean Kerr solution. Expression (5.8)
(with q-iq) shows that the poles are curvature
singularities for the Euclidean Tomimatsu-Sato
solution for all 5 ~ 2 and therefore these solutions
are not counterexamples either.

A class of Euclidean solutions which cannot be
obtained from Lorentzian solutions are those with
(anti) self-dual curvature. A reasonable physical
requirement to impose on any Euclidean solution
is that the manifold admit spin structure. Gibbons
and Pope' have constructed an argument proving
that self -dual, asymptotically Euclidean solutions
(i.e. , the curvature falls off to zero at infinity in
the four-dimensional sense) with spin structure
cannot exist. Their argument applies equally well
to the asymptotically flat situation (curvature falls
off to zero in the three-dimensional sense) under
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consideration here. The argument proceeds as
follows. The index of the Dirac operator, y'V,
for a manifold with boundary is given by

index [y'v, ]=, R,'AR', d(vol)

sgn(X„)
s=o

(5.11)

where the eigenvalues A,„are eigenvalues of the
Dirac operator restricted to the boundary. q~(0)
measures the "handedness" of the manifold and
vanishes if the boundary of the manifold admits an
orientation reversing isometry as does the bound-
ary 8' ~ S' under consideration here, and also the
8' boundary considered by Gibbons and Pope. The
second term in the index (5.10) vanishes by virtue
of asymptotic flatness while the first vanishes by
the condition of (anti) self-duality. Hence an as-
ymptotically flat, self-dual solution, if it exists,
should admit at least one normalizable spinor.
However, Lichnerowicz's theorem' proves that
spinors on manifolds with R ~ 0 are covariantly
constant and therefore not normalizable if the
manifold is noncompact. Hence one must con-
clude that asymptotically flat, self-dual solutions
do not exist.

g~ Ag&d f g 0i92~

(5.10)

where R, is the curvature two-form in an ortho-
normal basis, 8', is the second fundamental form
of the boundary, and q~(0) is the expression

l'= [(r'+ a')/a, 1,0, a/a],
yp = [r'+ a', -n, 0, a] /2 p',
m'= [ia sin8, 0, l, i/sin8]/2' '(r+iacos8)

(6.1)

ric spacetimes satisfying the usual black-hole
boundary conditions fall into discrete families de-
pending on at most two parameters, the mass m
and the angular momentum J= ma, and that con-
tinuous variations of these solutions are uniquely
determined by continuous variations of m and J.
Hence the only regular perturbations of the Kerr
solution are the "trivial" perturbations in m and
J. A corollary is that the Kerr solution is the
unique family with a regular zero angular momen-
tum (J= 0) limit. The method of proof involves a
linearized version of the Robinson identity (3.14},
where. "linearized" means X„Y,differs from X„
Y, by quantities of the first order. Clearly this
theorem will have the same difficulties on the Eu-
clidean section as the Robinson uniqueness theo-
rem (Sec. IV}. Teukolsky'""' and Wald" have em-
ployed a different method to show that no bifurca-
tions occur off the Kerr sequence. The idea be-
hind their method is to explicitly solve the Teukol-
sky" master equation for perturbations off the
Kerr background solution and thereby show that
the only stationary, regular perturbations are the
trivial perturbations m-m+ 6m, J-J+ 5J. We
shall attempt this method on the Euclidean sec-
tion.

In the Boyer-I indquist coordinate system, (1.4),
Kinnersley's null tetrad" has the following

[t,r, 8, Q] components:

VI. A EUCLIDEAN NO-HAIR THEOREM

The phrase "no-hair theorem" usually refers to
the theorem of Carter": Stationary, axisymmet-

The scalars, $0= -C„,~l'm'l'm~, f4= -&„~n'm'n'm~,
where &,~~ is a perturbation in the %eyl tensor,
satisfy the Teukolsky equation [10],

[(r'+ a')'/n, -a' sin'8], +
8$ 4rnar 8(, . 2 82$, 8 („~8( 1 8 f . 8(1

8$8$ 8$ sr ~ W sin8 88
~

88 j
+ [a'/~ sin '8] + '

I

n'" . —
I

sine

i cos8~ 8$» . 8(-2sl a(r —m)/6+ . , I
—2s[m(r' —a')/d -r -ia cos8) —+(s'cot'8 —s)/= 0 (6.2)sin'8 & ey

where s takes the values 2 and -2 in association
with P representing $0 and $4/(r-ia cos8)4, re-
spectively. For stationary perturbations Sg/st,
O'P/Bt' are zero, and Eg. (6.2) can be separated
by writing g= e'"~S(8)R(r), where S(8) is the spin
weighted spherical harmonic, S',(8) and R satis-
fies

I+ f[a'p'+ 2ia(r -m}s]b, '
d~ k

—(I —s)(l+ s+ 1)}R= 0. (6.3)

(~ ~ )-;appal (~ ~+)-s.,ew&2
(6.4)

where r, = m+ (m' —a').

I

There are regular singular points at 5 = 0 and z
= and hence the solution in the neighborhood of
these points can be found in terms of power series.
Near the singular points the dominant behavior of
R(r) is
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If p=o, i.e., if the perturbation is axisymmet-
ric, then the nature of the solution at the singular
points is the same regardless of whether one
chooses the Lorentzian Kerr solution (1.4), or
the Euclidean Kerr solution (1.3). To proceed
further it is necessary to determine the regular
solution at r, . Teukolsky" notes that the Boyer-
Lindquist chart is singular at z, and therefore
transforms to nonsingular Kerr coordinates v, p,

dv = dt+ dr(r'+ a')/b,

dP = dP + adr/6 (6.5)

to determine that the solution with behavior R
-(r r,)-* is the regular solution in a chart regular
at x,. He goes on to show that regular behavior at
r = r„ is incompatible with regular behavior at r
= ~ and hence f4=—0. The Kerr metric (1.4) in
Kerr coordinates (6.5) does not admit an obvious
Euclidean section, however, the geometry at ~=~,
remains perfectly regular regardless of the met-
ric signature (in contrast to the poles in the Tom-
imatsu-Sato solution c.f. Sec. V). We therefore
choose the nondiverging behavior of R at r=x, on
the Euclidean section and similiarly conclude that

44 -=0

Kaid" has shown that the general perturbation
of the Kerr solution with f4=—0 is completely spe-
cified by four perturbation parameters: 5m, 5g,
5l, and 5p. The first two perturbations corre-
spond to the "trivial" perturbations in the mass
m, and angular momentum parameter g. The last
bvo perturbations are perturbations towards the
Kerr-NUT (Newman-Unti-Tambourino) solution

and the "rotating C" metric of IQnnersley, i.e.,
those perturbations obtained by linearizing the
exact Kerr-NUT and "rotating C" metrics about
the Kerr metric. Both the latter perturbations
induce unacceptable angular behavior in the met-
ric, which is inherited from unacceptable angular
behavior of the exact solutions indicating that they
are not asymtotically flat in the usual sense. That
this bad angular behavior is also present on the
Euclidean section is a consequence of Lapedes and
Perry's" investigation of the Euclidean section of
the most general type-D solution. Hence the only
regular, stationary, axisymmetric perturbations
of the Kerr metric (1.3) are the trivial perturba-
tions in m and a. There is no bifurcation off the
Euclidean Kerr sequence.

VII. UNIQUENESS CONJECTURES

The Euclidean Schwarzschild and Euclidean Kerr
solutions (1.1), (1.3) are nonsingular, non-KKhier,
four-dimensional, positive-definite, Ricci flat
metrics. In Sec. II the importance of the unique-
ness of these solutions was outlined and a rough

statement was formulated of the conditions under
which the solutions are suspected to be unique.
In this section we make these conjectures precise.

Conjecture I

Let the pair (II,g,~f represent a noncompact
four-dimensional manifold with an associated pos-
itive-definite metric. The Euclidean Schwarz-
schild solution (A' x S',g,jwith g„given by (1.1)
is the unique solution that satisfies the following
conditions.

(i) Ricci flat.
(ii) Geodesically complete.
(iii) Asymptotically flat, i.e. , the induced metric

g z on a regular noncompact embedded three-di-
mensional hypersurface satisfies

Iimg s= & 8+ O(r '), lim S„g s
= O(r '),

where r'= ~ zX X~ in suitable coordinates.
(iv) An S' x S' boundary at infinity such that in a

suitable chart

ds' = dv'+ dr'+ r'(d8'+ sin'8 dg') + O(1/r),

where 7 is identified with period 8wm. x is a coor-
dinate along a ray and 8, p are the usual polar and
azimuthal angles on S'.

(v) Nontrivial topology.

Condition (v) excludes suitably identified flat space
from being a counterexample.

Note that if one further requires that the metric
admit a hypersurface orthogonal Killing vector then
the Euclidean version of Israel's theorem (Sec.
III) proves this more restricted conjecture.

Conjecture II

Let the pair ]II,g,~f represent a noncompact,
four-dimensional manifold with an associated pos-
itive definite metric as before. The Euclidean
Kerr solution (1.3) is the unitlue solution satisfying
conditions (i), (ii), (iii), and (v) (above) which has
an 8' x 8' boundary at infinity such that in a suit-
able chart

ds'= dr'+ dr'+ r'(d8'+ sin'8'')+ O(1/r),

where the pair jr, P) is identified with (r+ P, P
+ PQ), r is a coordinate along a ray, 8 and P are
the usual polar and azimuthal angles on S', and P
and 0 are constants defined in Sec. I.

Note that if one further requires that the metric
admit two commuting Killing vectors, one of
which is nonhypersurface orthogonal, and the
other is a generator of SO(2) (the Euclidean analog
of stationarity and axisymmetry) then the Ernst,
Carter, Robinson formalism of Sec. III does not
prove this more restricted theorem. The for-
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malism does provide a restatement of the more
restrictive problem as follows.

Conjecture IIa

Subject to the following conditions, the unique
solution X, P, to the coupled set

v (pX vX)+pX (]vx[ —[vr[ )=0,
v (pX-'vr)=0

in the background metric

ds'=dX'/(X'-c')+dp'/(I- p'),

where

p'=(X'-c')(I- p')

1s

X=(1-p, )((X+m)'- n'- n'(1- p')2mr/(r'- n p, ')),
r= 2mnp(2- p')+ 2n pm(l —p')'/[(X+m)' —n'p'] .

The conditions are the following:

(i) In the limit p-al, X and r are well-be-
haved functions of X and p with

x= o(1 —p, '),
x 'x „=-2 p(1 —p') '+ o(l),
r,=o((l- p')'), r, =o(l —y, ').

(ii) In the limit X- c, X and r are well behaved
functions with

x=o(1), x-'=o(1),

r,=o(1), r „=o(1).
(iii) In the limit X '- 0, r and X 'X are well-be-

haved functions of A,
' and p. with

x 'x = (1 —p') [1+o(i. ')],
r= 2mnp(2 —,p')+O(X '),
m and a are constants.

I
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