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It has been suggested that there are two phases of the quantum-chromodynamic vacuum: the perturbative vacuum

and the complex true vacuum. In this framework, I demonstrate a new mechanism for particle production in deep-

inelastic reactions: excitation of pions by the phase change of the vacuum induced by separating quark color

charges. This process, quark-vacuum scattering, is discussed in general, and a simple model is examined in detail.

I. INTRODUCTION

The most important state in any field theory is
the ground state —the vacuum. There are growing
indications that the vacuum of quantum chromo-
dynamics (QCD) is nontrivial and that by under-
standing the vacuum we may explain properties
such as confinement, chiral-symmetry breaking,
and the particle spectrum. A particularly prom-
ising possibility is that there are two phases of
vacuum in QCD. It is already clear that the per-
turbative vacuum, which we know as the ground
state of QED, is not the lowest-energy state in
QCD. ' This result is also suggested by the suc-
cess of the idea of spontaneously broken chiral
symmetry, which requires a nontrivial vacuum. '
The true vacuum is then some configuration, pre-
sumably quite complex, with lower energy than
the perturbative vacuuxn. However, it has been
suggested that in the presence of strong gluon
or quark fields the true vacuum undergoes a phase
transition to the perturbative vacuum. The pheno-
mena has been demonstrated within the context of
the QCD instanton gas. ' It is the basis of the MIT
bag model description of hadrons. ' The success
of the bag model in describing the particle spec-
trum and hadronic properties is then a positive
indicator for the two-vacuum picture.

The vacuum of a theory is that state with zero
particle number. For any a,symptotic particle n
with any momentum p, the vacuum state satisfies

a„(p) io)=0, (1)

where a (p) is the destruction operator for that
particle. This is a strong constraint. It is known
that changes in the vacuum structure generally
lead to the violation of Eq. (1), i.e. , the state now
contains free particles. ' For example, one can
rigorously define the QED vacuum state between
two perfectly reflecting mirrors at rest. If those
mirrors are then moved, changing the boundary
condition on the electromagnetic fields, photons
are produced from the vacuum. ' This property
of vacuum emission of particles has also been

used in general relativity to study particle pro-
duction in expanding universes' and near black
holes. ' It is the object of this paper to study the
particle emissions of a two-phase vacuum, such
as that proposed for QCD. The physical picture
which I have in mind can be illustrated by con-
sidering e'e -qq. . Before the quark pair was
produced the hadronic state was that of the true
vacuum. The quark pair is produced from the
virtual photon and separate, with a gluon flux
(string) connecting the two color charges. In the
presence of the quark and gluon fields, the vacuum
changes phase in a limited region of space. This
phase change leads to the emission of pairs of
pions. The quarks produced in the above reaction
also "fragment" through more conventional pro-
cesses'" into hadrons, but some of the observed
particles will be due to the vacuum emission
stimulated by the quark field, a process which can
be called "quark-vacuum scattering. "

'The idea of quark-vacuum scattering is close
in spirit to the flux-tube model of Casher, Neu-
berger, and Nussinov. " These authors note that
the gluon flux decays into a quark pair, shielding
the original quarks. They build an attractive mod-
el for a particle cascade through the repeated
quark separation, flux generation, and pair pro-
duction. 'The work of the present paper involves
a complementary but distinct physical effect of
the gluon flux. %e will return to discuss this
point later in the paper.

The outline of the paper is as follows. In Sec.
II, I construct a model for quark-vacuum scat-
tering, and sum a particular set of contributions
to pion production. In Sec. III, a specific example
is considered in order to obtain an indication of
the possible importance of this process. A dis-
cussion of the program and of the relation to
other models is given in Sec. IV.

II. FORMALISM

A. The model

The phenomena of two vacua can be simply il-
lustrated by considering the 0 model, "which con-
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sists of massless nucleons, pions, and 0 field
with the mesons interacting through a'potential

V(o, 7)=~(c'+ ~ 7 F-.')

The perturbative vacuum is the one where the
fields are quantized around 0 = 0, ' n= 0. However,
this is not the lowest-energy state. The mini-
mum of V occurs when (a'+w )))=E„', which can
be chosen to correspond to (a)= -F,. Writing
o = (v) + o, and quantizing around o = 0, 7r = 0,
one finds a massless pion, massive a, and mas-
sive nucleon, with the Goldberger-Treiman rela-
tion m~=g, »E,/g„. The ground state has an
energy per unit volume AI",' lower than the per-
turbative vacuum.

The properties of chiral-symmetry breaking and
of an energy difference between vacua are the most
important aspects of the suggested QCD structure.
As the o model provides a reasonable description
of the properties of the pion, I will use this mod-
el to describe the pionic behavior in the two phas-
es. For this application, the pions are treated
as elementary particles. The o field represents
the vacuum properties with o = -I,+ o and

&(x) =0, true vacuum, (3)
o(x) =E„perturbative vacuum,

or simply

o(x) = E,e(V),
where V is the space of perturbative vacuum. The
quark or gluon fields which drive the phase change
are treated as external variables whose effect is
manifest only through the value of o(x}.

The coupling constants in the theory are known

from phenomenological considerations. Use of
the Goldberger -Treiman relation yields I,= 93
MeV. The energy per unit volume difference is
well known from the bag model to be given by the

bag constant 8 = (130 MeV} . The effect of the
phase change on the potential is then

V(o=0, n) —V(o= F„~)=B—-,)) ~ n, (4)

and the effective pion coupling given by the phase
change is (for convenience constants a.re ab-
sorbed into v')

Z „,(x) = g'(x)))

where

c'(x)=, e(V).
2B

This, then, is our model for the vacuum interac-
tion.

B. First-order scattering

We wish to calculate the particle production due

to changes in the phase of the vacuum. An exact

solution has not been found but it is possible to
consider the process in a perturbation theory using
the interaction of Eq. (5). To do so, consider
the time evolution operator from t = -~ to t =+~,

U=Texp -i d xX,.„x
If we start with a pure true vacuum in the remote
past, the final state obtained is

with the result that

N,„,= (out i N i out)

gf d =k(DlV a('k)a(k)V ,.lO). ,. (lo)

For no interaction, U=1, this of course yields
W,„,=0. However, for a general interaction N,„,
will be nonzero.

Let us first consider N,„, to lowest order in the
interaction, corresponding to the production of a
single pair, as schematically illustrated in Fig.
1. The figure is meant to represent an overlap
of the out state with itself, with the hatched re-

FIG. 1. The diagram for first-order scattering, repre-
senting the overlap with itself of an out state containing
one pair. The hatched regions are the areas of pertur-
bative vacuum, and the solid lines are pions.

iout) = U i0).
The number of particles produced can be measured
by considering the number operator

)( Qf k'k=a!(k)a,. (k),
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gions denoting regions of false vacuum which can
emit pions (the solid lines). N,„, counts the num-
ber of pions in the central region. To calculate
N,„, it is useful to consider the expansion of the
pion field

e'(x) =f (d )„,(d „,[a,. (e ) e "'*+ a',:(e) e "'*].
2qp

(11)

To first order in the interaction N, „, becomes

or

d'k d' d' 'd'pd'p'
N,„,= d'xd'yo'(x}a (y)

(16qoqa popo)'"

x (0
~ a&(p)a&(p')at(k)a, "(k)at(q)at(q')

~ 0), (12)

Note that this is a relativistically invariant ex-
pression; we have not reintroduced the ether.
The static limit also makes sense. If a (x) is in-
dependent of time, the time integral yields 5(k,
+ko) which produces N,„,=O. This is important
since the usual hadrons are thought to be static
regions of false vacuum. Likewise a bubble of
false vacuum moving with a constant velocity yields
N,„,=0. A nonzero N,„, is produced by time de-
pendent changes in the size or shape of a (x}.

C. Higher orders

Higher-order corrections to this basic ampli-
tude are illustrated in Fig. 2. The diagrams be-
come arbitrarily complicated at high enough order.
However, a class of these diagrams may be cal-
culated. These are the "bubble" diagrams of
Fig. 2(a)-2(c), where the pions always act in

pairs. These may be summed to all orders, as
is demonstrated below.

Consider first the graphs with only real pion
production, as in Fig. 2(a). For a graph with n

I

pairs there is a factor (1/n! )' from the expansion
of U ~ to the nth order. There are n1 ways to com-
bine the pairs. The number operator counts 2n
particles, and each pair has a weight 6K, where

d'k d'k 4 2,{k,k ).
(2)))'2k, (2z)'2k', d x o (x)e'

(14)
The nth-order contribution is

2n (6K))) '
X„=

( ] ), n! (6K)"=12K( ),

When summed, these higher-order corrections
would exponentiate.

'This, however, is modified by the occurrence of
virtual pion emission and absorption as in Figs.
2(b) and 2(c). The virtual graphs involve the com-
bin3tion

L —= (-i)'f d xd x (O ld'(xe, „,(x)xe, ,(x)) la)

= —6 cfxo x d yo y j6zx —y

-6 dk dk
(2]))' k' —m'+is k' —m'+is

2

y4+ +2 + ei (k+k ).„. 16

(a)

{d) (e) (f)
FIG. 2. Several diagrams for higher-order pion pro-

duction: (a), (b), and (c) are representative of the bub-
ble diagrams which are summed in the text, while (d),
(e), and (f) are more complicated processes.

The energy integrals may be explicitly done, with
the result that

L = -6K.
The weight of the virtual graphs is the same as
that of the graphs with real pions, and therefore
they must also be included. The general bubble
graph of Fig. 2(c) contains m (m ) vertices on the
right-hand (left-hand) side, and involves n real
pairs. The expansion of U and U yields a factor
of (1/m! )(1/m'! ). There are

n! (m n)! (m' —n)!—
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ways to combine n real pairs, and

(m n -—1)!!(m' - n —1)!!
combinations of the virtual pairs. Each virtual
pair contributes a factor (-6K) while a real pair
yields (-HiK), The number operator counts 2n,
leading to the result

2n (m —n —1)!!(m —n —1)!!
c m m n! (m -n)! (m' —n}!

x (+6K)n(—5K)((((-n)/2( 6K}(m'm)/2

(6IC)' ' 1 ((-6K)
' ( (-6K)'

where 2l =m -n, 2l'=m'-n. The result for n
real pairs and any number of virtual pairs is then
modified from Eq. (15}to

(19)

and the total multiplicity is given simply by

to the other. This physical picture is similar to
the stringlike states of high angular momentum

. studied in the bag model by Johnson and Thorn. "
The above description is only valid until the two

charges are screened by the production of a quark-
antiquark pair. However, the subsequent develop-
ment of the system will still involve further sep-
aration of color charges and the growth of regions
of false va,cuum between them. This process will
keep repeating until the final hadrons are devel-
oped. The exact space-time behavior of the cas-
cade is not certain, but it is clear that a sizable
region of perturbative vacuum must be produced,
as each of the hadrons generated is itself a bubble
of the false vacuum. A simple model mimicking
this situation is then a long tube of radius p, ex-
panding (with P = 1) in the +g directions from t = 0
to t = &, where p and 7' will be estimated later.
Essentially, the quark jet is drilling a hole in the
vacuum. This situation corresponds to

()'(x)=, 8(t —~z!}8(t)8(r—t)8(p'-x'-y') . (2l)

]2g e6E e 6E

= 12K. (20)

The reader who is not interested in the details of
the analysis may skip to the end of the section
where the parameters p and 7' are estimated and
the analysis is reviewed.

The source function S(q),

Remarkably, the higher-order corrections to the
lowest-order calculation cancel between real and
virtual graphs, leaving the lowest-order result
unchanged. This is similar to what happens in
the photon multiplicity in QED. "

Equation (20) was derived by considering bubble
graphs. More complicated graphs are possible.
However, the individual graphs are small com-
pared to Eq. (20) for both (a) small perturbation
on the vacuum and (b) the example in the next
section. In the latter case the contribution of non-
bubble graphs does not grow linearly with the
length of the tube.

8(q}=—f d'xs'(x)e""

is related to the scattering number K by

d'k d'k
(2~)'2u, (2~)'Zu'

For the long tube

g(q) ~
2pp2 ( qL e(c'l (1. ccc )g(qr c()s8)

2B') J( p) r
&:) qp

where

(22}

(23)

(24}

III. A SPECIFIC EXAMPLE: THE LONG TUBE

In the previous section a genera, l. formula for
particle production, Eq. (20), was derived. Here
I will apply the technique to a simple example de-
signed to have some resemblance to quark jets
in e e annihilation. The initial space-time de-
scription of two quark jets in this model involves
the quarks moving back to back in the center of
mass. Each quark has a, color charge and by
Gauss's law there must be a gluonic electric flux
from ohe charge to another. Whenever the gluon
electric field is strong the vacuum changes phase.
For separations large compared to B ' the flux
will be contained in a tube running from one quark

J(a, x)-=—[jo(a(1 —x)/2) —e"*j,(a(1 + x)/2)],

a,nd with

(25)

Q'=—go ~

q cosH =—q' 8,
q, =- [(q x)'+ (q.y)']'".

(25)

Here 8 is not a physical angle in the problem, but
is just a parameter. Since we do not want q =0,
q, tq sin8. For a=qr large, Z(a, x) is O(1/a)
everywhere except near the points x = -1,0, 1,
where it is sharply peaked and O(1). The peaks
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Z(a, x) = -2e"~'"} + O(1/a) .
ax

(27)

This can be simplified by use of the representa-
tion of the Dirac 5 function

at x =+1 correspond to shock waves with both
pions moving directly forward or backward. How-
ever, these cases do not contribute to K because
there is no phase space for this in subsequent in-
tegrations over k and k . Near x=0 (pions pro-
duced with equal and opposite z component of mo-
mentum)

so that

(31)

This isolates the piece of the squared source func-
tion which grows linearly with 7',

~s(q) i'= 4}T' ' ' ' (32)
q,

' q'

Let us choose k, to be in the x direction and de-
fine the differential distribution

dÃ 2n'k' d'k'

to

s lnQx
~ ( )

jrx

J(a, x),~ ——e'' ""'"'5(x).
a

(28)

(29)

(33)

For simplicity I will treat the pions as massless.
Substituting k ' =k'(cos'8„+ z' sin'8~), one obtains

When squared

~'(x) = &(x) =—&(x),
sinax a

7rx 3'
(30)

2 p27

dip d cose 32}}~

with

(34)

zdg 2'
~(x, e) =

(cos'2+s's(n'2}' ' (1+(cos'2+2'sin'2}'I'} I
For small x,

7tx'

2(1+ I cos8 I )

and the distribution is constant in k,

J,'[x sine(1+ g'+ 2z cosP)'~']
(1 + z'+ 2z cosg)

(36)

(37)
1 2B 2 p4r

dkdcose~ ' ' 64m Ii,' (1+ I case~I)

When x is large, the integrand in M(x, e) peaks very sharply near x=1 and cos(t}=-1, where the Bessel
function J, is O(x) [elsewhere it is O(1/3(x)]. The angular integral can be evaluated for x large,

z dz 1 1 H, (2x sin8(1 —z))
(cos'8, + z' sin'8)'~' [1+(cos'8+ z' sin'8)'~']' }(z x sin8(1 —z)' (38)

plus terms which vanish for large x. Above,
H, (z) is the Struve function of order 1. One can
show that

I s

the jet axis.
Interpolating these limits and then integrating

over 8~ yields

a, (2g(1 —z))

This leads to an asymptotic value

M(x, e)„„=—.
'The large-k limit is then

(4o)

and

dS 32s 2' ' 1+2(SS}')'

1-1/~2 2a ',
32 E2 p

(42)

(g& 1 28~ p r
dkdcose„" " 128w Ji,'J (3,

" (41)

The high-k limit is isotropic, while at low 4 the
pions are emitted preferentially perpendicular to

In the large-momentum limit, the treatment of
the pion as a point particle is probably not cor-
rect. Pionic form factors would presumably sup-
press the production of a pair with large relative
momentum. For example, a dipole form factor
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would lead to a high-momentum limit falling like
O'. However, since most of the particles are
produced with energies less than m„ the form
factor leads to only a small suppression of the
total number.

The parameter p (the radius of the tube) and 7
(the half length) must now be estimated. The ra-
dius is simply given by Gauss's Law. The elec-
tric field of color a, assumed to be roughly con-
stant across a tube of cross-sectional area A, is

E'A =gT', (45)

where T' is the color representation matrix for
the source (i.e. , for guarks T'= V/2). The con-
dition for the vacuum to be in the perturbative
phase is

/a y'g&a — Ea ~ Ea ~ g
pV (46)

Assuming a circular tube, the radius is then re-
quired to be

4 2(x 1
p4 .e (47)

w'here C is the Casimir operator for the sources

(quarks)

= 3 (gluons) . (46)

V~=+~ Vo (49)

where n~ is the number of fragments. While this
is probably a considerable underestimate, I will
use it as a rough conservative figure. Note, how-

ever, that the proportionality between the volume
and the fragment multiplicity is probably more
general than the above estimate. One would ex-
pect a given amount of string length to lead to a
fixed number of fragments.

The above estimates lead to

(1 —1/~2) (2B
pV,nr . (50)

Using V, given by the pion's volume in the. bag

To obtain the effective half length &, let us es-
timate the total volume of the perturbative vacuum
produced in the jet, and then equate it to the
volume of the tube Vr ——wp'(2r). Since each of the
hadrons produced in the standard fragmentation
process is itself a bubble of volume V, of the high-
er-energy vacuum, the minimum volume produced
ls

model' (E,=O. 7 fm),

X=0.014'

and the number of particles produced is

X,„,=0.16m (52)

N„, =(0.5+0.32lnE) . (54)

If the fragment multiplicity contained a term pro-
portional to ln'E, as has been suggested, "N,„,
would also reflect this. Including the form fac-
tor, Eg. (44), would lead to

N„, = (0.36+ 0. 23 lnE) . (55)

For gluons a similar form would be expected to
hold; however, the fragment multiplicity of a
gluon jet is most likely different from that of a
quark jet.

The long-tube model thus leads to the emission
of pions which are dominantly back to back, and
exclusively low energy. The number of such par-
ticles is estimated to be about —,' of the average
multiplicity at moderate energies. It is difficult
to fully assess the uncertainties in this estimate.
Clearly, numerical uncertainties in the coupling
o'(x) can effect the final result. However, in my

opinion, the most serious unknown is the space-
time development of the hadron jet. The long-
tube example was made as an exploratory cal-
culation, and the above estimate makes clear
that quark-vacuum scattering is capable of pro-
ducing a sizable number of particles. Beyond
this, however, the long-tube model has some de-
fects. The screening of the flux tube by quark
pairs divides the tube into several segments,
which propagate and further divide. To provide
distributions of particles which are to be com-
pared with experiment, one must be more specific
about the fragmentation process, and construct
a full theory of the jet development. This will be
attempted in the future.

IV. DISCUSSION

The preceding sections have outlined a novel
mechanism for particle production in processes
with separating quark or gluon charges, valid' if
the idea of a two-phase vacuum is correct. The
phase change in the presence of quark or gluon
fields excites the quanta of the true vacuum. An

analysis of a simple model has been given in Sec.

In e'e reactions, with beam energy E (in GeV)"
I will use the observed multiplicity as a first esti-
mate of the fragment multip1. icity

ng =2(n, „)=3+21nE,
so that
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III. I argued that the multiplicity from this pro-
cess should be related to the multiplicity of more
standard fragmentation processes (n~) by

where P in our example was 0.16. The precise
value of P has very many uncertainties, but the
estimate suggests that quark-vacuum scattering
may be a sizable contribution to observed proces-
ses. In a measurement of the quark's fragmenta-
tion function this mechanism would populate the
region near @=0. It is interesting to contrast
various dynamical mechanisms for particle pro-
duction in quark jets. At high transverse mo-
mentum we have the perturbative bremsstrahlung
of gluons off of a quark. Brodsky and Gunion have
suggested this mechanism also for low trans-
verse momentum. " A contrasting model is that
of Casher et al."involving the breakup of a flux
tube. The present work is related to the, latter
picture; however, it is distinct. This can be
seen from the lack of leading-particle effect in
quark-vacuum scattering. Pions are always pro-
duced in pairs and the flavor of the quark which
triggered the transition is irrelevant. In the flux-

tube model, each pair-creation event leads to one
extra meson which contains the quark that gen-
erated the original flux. li the ideas of the QCD
vacuum assumed by this paper are in fact cor-
rect, it is clear that each of these three mechan-
isms (gluon bremsstrahlung, flux breakup, and
vacuum transitions) do play a role in producing
particles. It would be attractive, though non-
trivial, to combine them and. attempt a complete
description of jet phenomena.

The production of particles by changes in the
vacuum structure is a necessary consequence of
the two-phase model. Despite the uncertainties
in the magnitude of the signal, it appears that this
process can produce a sizable component in the
hadronic development of quark jets.
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