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In the framework of SU(2)&(U(1) electroweak gauge models with standard fermion assignments we derive the
most general expression for the WZH vertex which is the most relevant for the production of charged Higgs
particles. %'e show that the vertex only exists with an appreciable strength in models with a rather complicated
Higgs sector. Experimental detection of charged Higgs particles seems therefore very difficult.

I. INTRODUCTION II. GENERAL FORM OF THE O'ZH COUPLING

The spontaneous-symmetry-breaking mechan-
ism is a cornerstone in our present understand-
ing of unified gauge-field theories. In this con-
text, the standard SU(2) xU(1) Weinberg-Salam
(WS) model' ' has successfully explained a huge
amount of experimental information (for a review
see e. g. , Ref. 3) but one cannot be certain of the
correctness of present-day gauge theories until
the fundamental mechanism of mass generation is
elucidated. For this reason, direct observation
of Higgs bosons and the consequent verification of
its role is an important goal in high-energy phy-
sics research. At present, the Higgs-boson sec-
tor still contains a high degree of arbitrariness
and one is compelled to contemplate and explore
a rich variety of still open options. In particular,
one may enlarge the minimal WS choice (only one
Higgs doublet) to incorporate charged Higgs bos-
ons in the model by introducing extra Higgs mul-
tiplets. The potential phenomenology of this en-
largement has already been discussed in the liter-
ature. ' Since the main reason for the present
experimental elusiveness of Higgs particles is
their extremely weak coupling to fermions, the
most interesting processes from the phenomeno-
logical point of view involve the triple-boson
(WZ&') vertex, exploiting the. fact that Higgs bosons
couple proportionally to the mass of the particles
they couple to. As a consequence, these processes
will become relevant in future accelerator facil-
ities.

In the present paper we focus on the WZH' ver-
tex (see Fig. 1) and derive its value in the most
general case giving an upper bound to its intensity
(Sec. II). We then discuss what possible realistic
models do embody it and determine its strength
in a number of phenomenologically relevant cases
(Sec. III}. Section IV is devoted to the conclus-
ions.

To set up our framework, we consider an SU(2)
x U(1) model with the standard WS assignments
for leptons and quarks but leave open the Higgs-
boson sector which will consist of several mul-
tiplets Q,. belonging to various representations of
SU(2) x U(1).

The piece of the Lagrangian which is relevant
for our purposes is

where in an obvious notation (see e.g. , Ref. 8)

D = s„—i(gT W +g FB„)
= 8„—i(2 '~ g(T W + T,W„')+ega„

+g sec8~[T, —(sin' 8 )Q]Z f,
where Q = T, + 1' is the electric charge operator
and tan6~=g'/g.

After the spontaneous symmetry breaking, the
Higgs fields P acquire nonzero vacuum expecta-
tion values (VEV's} (Q&),. Defining the displaced
fields PI—= P. —(@.), and introducing them in Eq.
(1) we can extract the WZH couplings which are
obtained by replacing one of the Q,. by its VEV.
This suggests immediately the following trick
in order to eliminate redundant degrees of free-
dom.

If there is a subset of identical multiplets we
can always define new rotated fields |It,.=g&B,,Q, ,
where 8,.

&
is a unitary matrix and the indices i,j

run over the subset of repeated multiplets. Ob-
viously, this rotation leaves Eq. (1) unchanged
and we can always choose R,, in such a way that
the VEV of the rotated fields are (g,.),~ 5„., i. e. ,
only P, develops a nonvanishing VEV. The rotated
fields P, , i ~ 2, thus decouple from the vertex we
are interested in. Of course, this can be done
for each subset of repeated multiplets and there-
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FIG. 1. The WZH~ vertex.

fore, in order to obtain the 8'ZH vertex, we can
take without loss of generality all Higgs multiplets
belonging to different representations of SU(2)
x U(1).

An important situation occurs when al, l multip-
lets are identical in which case, for our purposes,
the model is as if it had only one multiplet. In
particular, if they are all doublets the TVZH vertex
does not exist. This is because the model would
be like the standard WS model, the only difference
being the additional doublets g, , i ) 2, which would
not contribute to the WZH' vertex.

At this point it is convenient to distinguish be-
tween multiplets and antimultiplets. We shall
arbitrarily call multiplets (antimultiplets) those
with Y) 0 (Y ~0) or, equivalently, with predom-
inantly positively (negatively) charged fields. Of
cour se, the case F= 0 cor responds to self -con-
jugate multiplets. We shall also classify the
multiplets into two types.

(a) Type I: characterized by either Y=0 (self-
conjugated) or Y= T. In either case they involve
only one field with @=+1.

(b) Type II: characterized by 0( Y( T. They
involve two distinct fields with @=+1, one con-
tained in the multiplet and the other one in its anti-
multiplet.

The above statement about the nonexistence of
the 8'ZH vertex when all Higgs multiplets are doub-
lets is easily generalized to the case wherein all
the multiplets are identical and of type I. Indeed,
in this case the sole singly charged field of the
first multiplet (the only one with nonzero VEV)
becomes a Goldstone boson which is absorbed to
give mass to the 5' boson. If, instead, the mul-
tiplet is of type II, only one combination of the two
singly charged fields is the Goldstone boson. The
orthogonal combination remains physical and, in

general, coupled to the W and Z bosons.
For definiteness we shall consider the W ZH'

vertex. Let us denote by Q', o. =1,2, . . . , all
singly positively charged fields of the Higgs sector
and by Q the multiplet or antimultiplet which con-
tains Q„'. The VEV of these multiplets are (Q ),
=v X, where v is, in general, a. complex num-
ber and X is a "spinor" with zeros everywhere
except for a 1 in the position of the neutral field
(this guarantees the photon remaining massless).

Notice that, since type II multiplets provide two
charged fields, they both (as well as the multiplet
and antimultiplet they respectively belong to) are
labeled with different values of the subscript a.

It is now straightforward to obtain from Eq. (1)
the explicit form of the W ZQ,' vertex. We find

= 2 g C~5~(2T3 / cos8 ~+ cosg~)

xW„Z"y' (2)

with

C, —= I(T, —T„)(T + T, + I)]'i',
where T and T, are, respectively, the eigen-
values of T and T, corresponding to the neutral
component of &f& .

The g,', however, are not physical fields and
we must diagonalize the Higgs-boson mass matrix
with a unitary transformation to get the physical
mass eigenstates H', namely,

U, ~= Csee/V,

where V -=(Q C '
I v, I

')' ~', which is related to
the W-boson mass through

V= v 2M~/g.

(4)

From Eqs. (2)-(5) we obtain the following expres-
sion for the coupling of the Physical charged Higgs
bosons H', &~2, to S' and Z:

(8)

with'

K~z„——2 sec8~ U, BU*BT,B .
8

In general, we cannot say much about the ma-
trix U of Eqs. (3) and (7) since it depends on the
Higgs potential. Nevertheless, a useful relation
which only involves the first row [given by Eq.
(4)] of the matrix U can be obtained by squaring
Eq. (7) and summing over a ) 2, namely

KWZH '=4sec ew U18 T38
0&2 a 8

—i'Z
I ~„I*7.,)

=4 sec'e~g I U, ~U, ~ (T,g
—T,B ) I',

8C8'

(8b)

O'= U 8B.

where we have ordered our set of mass eigenstates
H' in such a way that the first one B,' corresponds
to the Goldstone boson G' responsible for the gen-
eration of the mass of the W' boson. The Gold-
stone theorem fixes the first row of the matrix
Utobe
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where the last equality (8b) follows, after some
algebra, from Eq. (Ba) by multiplying the first
term inside the brackets by Q IU,BI'=1. Equa-
tion (8) gives an upper bound to each one of the
constants IK«„ I', n ~ 2. It shows explicitly
the already mentioned fact that w'hen all the mul-
tiplets are identical and of type I all the con-
stants K«„vanish. In models with one single

~

~

~

hysical H', Eqs. (7) or (8) determine completely
K«„I. We shall come back to this circumstance

later.

III. PHENOMENOLOGICAL CONSTRAINTS ON
MODELS

We first turn our attention to a very important
phenomenological constraint to the models con-
sidered in this paper. The ratio

p' = 11f~ /—Ma' cos'8~

is predicted to be 1 in the standard WS model. "
For an SU(2) x U(l) model with an arbitrary Higgs
sector the value of p' is given by

p'= Q]r]T, +&] —&,,']l., l* 2(Z &.,*Iu, l ) .

(9)

where, as in Eq. (1), the subscript j runs over
multip/et@ only. T'& and T» are the eigenvalues
of T and T, corresponding to the neutral compon-
ent of the multiplet Q,. whose VEV is v&.

The present experimental value' is p' = 1 + 3%.
If, in general, we require

1 —5 ~p «1+5, (10)

we shall say that the constraint (10) is naturally
satisfied if it is true for any choice of the v& of Eq.
(9}. The following statement is true: Eq. (10) is
nutmally satisfied if and only if

1 —5 &Z &1+5

for all j, where

Tt (T; + 1} Ts I/2 Ts ~ (12

It is easy to see that naturality implies Eq. (11).
Just choose in Eq. (9) all VEV but one equal to
zero.

The converse is also straightforward. From
Eqs. (9) and (12) we have

(1

It is then easy to convince oneself that Eqs. (11)
and (13) imply

1 —5 &(a,),.&p' &(],) „&I+ 5.
The condition (11) provides us with a powerful

relation to select phenomenologically allowed
models. The smallest values of T, (T.») allowed
by Eq. (11}are

5=o: 2 (+2), 3 (+2), ~ (+~2},~ ~ ~,

K „=2sec8 IT, ——,'ICv,*v,*/(Iv I'+C'Iv, l'),
where v, (v, ) is the VEV of the doublet (additional
multiplet), T, is the third component of weak iso-
spin of the neutral component of the additional
multiplet, and the constant C is equal to
[T(T+1)j'~' or (2T}'~' depending on whether the
(type I) additional multiplet has Y=0 (self-con-
jugated) or Y= T. The constraint (10) restricts
the range of values of the ratio Iv, /v, I and im-
poses, after some algebra, the following upper
bound to E~«..

K „&(5/2)'~'sec8 (Y=0),
K«„& [(2T —1)6]'t'sec8~ (Y= T),

(14a)

(14b)

where, as before, T and F correspond to the ad-
ditional multiplet. As expected, these couplings
are zero when 5 =0. 'The simplest example of
this situation corresponds to a model with a doub-
let and a triplet. The upper bound (14) for 5=0.03
is, in this case, K«„&0. 15 (&0.20) correspond-
ing to a Y=0 (=1) triplet. As shown by Eq. (14a),

5=0.03: —,
' (~-,'), 3 (~2), 10 (~8), -'P (~-P), . . . .

A look at the above list shows that the most
economical (natural) models are those with a
Higgs sector made of doublets only. We know
however that in this case E~~„=O. Therefore,
in order to have E«„40, the most economical
(natural) model should include at least one 7-piet
(T= 3, T, = +2) which would contain quintuply
charged fields, We conclude, therefore, that a
natural SU(2) x U(1) model with a WZH' vertex
w'ould be very unrealistic.

If we abandon the naturality condition, i.e. ,
we allow for multiplets which satisfy Eq. (9) only
for a specific choice of VEV's, and insist in keep-
ing one doublet to give masses to the fermions
through a Yukawa coupling, we are led to the fol-
lowing discus sion ~

If 5 = 0 it can easily be seen from Eqs. (9) and
(10) that at least two different additional multiplets
(apart from the doublet} are needed. This im-
plies the existence of two or more physical B"s
with K«„given by Eq. (7) for each specific mod-
el.

If 54 0 we can have a model with a doublet plus
an additional multiplet. If this additional multiplet
is of type I there will be only one charged Higgs
particle and, iri this case, we can compute the
coupling exactly. Equation (7) [or Eq. (8}]be-
comes
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the upper bound is independent of T for a self-
conjugated multiplet. This is not the case when
Y = T, although a bound of order -1 would require
T) 12.

If the additional multiplet is of type II, we have
again two or more positively charged Higgs par-
ticles and K«„cannot be calculated without speci-
fying the model. The simplest situation of this
type occurs with a doublet plus a quartet with
Y'= —,'. In this case the bound (8) and the constraint
(10) imply ~E~ss ~

-5.65.

IV. CONCLUSIONS

%e have derived the most general expression,
given by Etls. (6) and (7), for the WZH' vertex
as well as an upper bound [Eq. (8)] to its strength
which depends only on the VEV's of the scalar
fields and not on the specific form of the Higgs
potential. A few points follow from these results.

First of all, in an SU(2) x U(1) model with a
natural Higgs sector (i.e. , with the ratio M~/Ms
independent of the VEV's) the WZH vertex does
not exist unless we allow for very exotic Higgs-
boson representations including fields with elec-
tric charge Q ) 5. In this respect, we stress the
fact that in a standard model with several Higgs

doublets we have K«„+—0.
If we give up the "naturality" condition (this

would be rather unpleasant from the aesthetical
point of view) we can construct phenomenologically
acceptable models with the WZB vertex. However,
the most economical ones (a doublet plus an ad-
ditional multiplet) give only approximately the
standard WS value of p'= M~'/Ms' cos6~ and the
strength of the WZB coupling turns out to be pro-
portional to 6' '. Any improvement on the experi-
mental error 6 of the ratio p' is, therefore, very
de sirabl.

In any case, we conclude that a value of K~~~~
-0 (1), as it is assumed in the literature, ' seems
too optimistic. Of course, it is possible to con-
struct simple models containing charged Higgs
bosons but the above considerations show that,
unless we resort to a rather complicated Higgs
sector, they do not couple directly to the 8' and
Z bosons. This makes the experimental detec-
tion of charged Higgs particles an extremely dif-
ficult task.
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