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are still far from being Goulombic, ' we have re-
examined the problem of hadronic transitions in
QCD. Our goal is to go beyond the usual pertur-
bation theory in the coupling constant. Instead,
we rely on the small size of the heavy-quark sys-
tem. The multipole expansion of'QCD is derived
in Sec. II. It begins with a brief review of Pes-
kin's' perturbative analysis. We find that his re-
sult can be represented by a gauge-invariant ef-
fective action for the heavy-quark system; it also
suggests a natural variable for a constituent quark
[see Eq. (2.10)]. Generalizing this observation,
we use a gauge-invariant effective action to sum-
marize the complicated interactions between
heavy quarks and the couplings of heavy quarks to
gluons. " In terms of the constituent-quark field,
a gauge-invariant multipole expansion of QCD
follows.

The relative importance of the multipoles is
estimated by dimensional analysis. When a multi-
pole dominates a transition, application of the
Wigner-Eckart theorem gives many predictions.
For example, there are six relations for the nine
transitions 2'P~. -1'P~+2n' in the Y family. De-
tails of these predictions are presented in Sec.
III.

In Sec. gf we combine the soft-pion technique
with the QCD multipole expansion to predict the
mass and angular distributions for two-pion emis-
sions. In some cases these distributions are
uniquely determined, only the overall normaliza-
tion is unknown. For example, the 2n system
in a transition 'D, -'S, +2r has unique mass and
angular distributions, distinct from those in a
2r transition between two spin-triplet S states.
If the 2r emission is observable, this property
can be used to decide whether $(3.772) is indeed
a D state. It can also help to distinguish a vi-
brational state" expected in the Y spectroscopy
from a predominantly D state.

In Sec. V we discuss our results and make some .

concluding remarks.
Some technical details are relegated to two

appendices. In Appendix A we show that high-
order leading corrections to the Coulomb propa-
gator in an external field form an exponential
series. In Appendix B we give an elementary
derivation of the multipole expansion of QED; the
method is generalized to obtain a similar expan-
sion of QCD.

In (2.1) the contribution from light quarks is un-
derstood to be included, but it is not explicitly
displayed T.he Lagrangian (2.1) is invariant
under the local gauge transformation

A»(x)- V(x)A»(x) V '(x) ——V(x)8» V '(x),

((x)- V(x)g(x) .
(2.3)

At present it is still not possible to derive a
realistic interquark potential from QCD. We
therefore must find an approach which will not
rely on the details of this potential. To motivate
the approach that we shall adopt, we will begin
with a brief review of the perturbative analysis
by Peskin. ' We will then proceed to the general
case.

Consider the amplitude for two-gluon emission
by a bound state of a heavy quark and its anti-
quark. In perturbation theory, this amplitude is
given by the diagrams" in Fig. 3. Peskin' has
calculated the contribution of each diagram, and
the sum is shown to be a gauge-invariant second-

+ three similar diagrams

(a)

+ three similar diagrams

(b)

Here g is the field operator for a heavy quark;
and we have used the matrix notation for the gauge
fields,

II. MULTIPOLE EXPANSION OF @CD

In this section we will derive the multipole ex-
pansion of QCD with the Lagrangian

2 = —g TrE»„E +t/f['/ ($8» -gA») -m](+ ' '
~

(2.1)

(c) (e)
FIG. 3. Lowest-order Feynman diagrams contributing

to two-gluon emission. Coulomb interactions between
the heavy quark and its antiquark are present but not
shown.
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order color -electric dipole transition. Peskin's
analysis' is very difficult to generalize since it
requires the calculation of all diagrams to a given
order in the perturbation. To reveal its general
features we wiQ analyze the problem from a dif-
ferent viewpoint.

First of all, the diagrams in Fig. 3 may be ob-
tained by iterations of the two-particle irreducible
diagrams shown in Fig. 4. The non-Abelian na-
ture of QCD is reflected in Figs. 4(d) —4(g). It is
convenient to combine these diagrams with the
Coulomb-potential term of Fig. 4(a). The results
obtained by Peskin' give the leading contributions

Sum of Figs. 4(a) and 4(d) —4(g)
(e)

(b)

g21 1
1 -gr' QF, A, (D)4mr2

FIG. 4. Trvo-particle irreducible diagrams from
which diagrams in Pig. 3 can be generated by iterations.

where

r =x, -x, ,

+,'~ gr g F, A, (0) ' „-,'g, ,
d

(2.4)

(2.5)

(2.6)

Obviously, Eq (2.4.) exhibits the first three terms
of an exponential series. The Whole series is
readily derived in the Coulomb gauge; this is
shown in Appendix A. Therefore, when higher-
order terms are included, we have

21 2 $ (
a ae b C

(2.7)

This is an interesting result: Contributions from nonlinear couplings of the gauge fields modify the Cou-
lomb potential by an exponential factor. The significance of this result will become clear shortly.

Vfe represent the diagrams of Fig. 4 by an effective Lagrangian for the heavy quarks:

Q= dsx y~ io~ -gA. -m

P exp[ gj-„'dr—2, A, (r, t)
d'xd y x ty'2A, , x t —— --,

b y ty' —,'Ab y t .
ae b Ix-y (2.8)

Here we have replaced the simple exponential in (2.7) by a more accurate version of a path-ordered line
integral. " After rearrangements we may write I. as

] 2

d x y" i8„-gA —m ——— d xd'yp x, t - - p y
a

(2.9)

p (x, t) -=+~(x, t)-,'~P(x, t),
where p, (x, t) is a color charge density, and

e(~) = U-'(x, t)y(x),

X

(x, } Pieip(ii xddx' 'A(x', i}) . =
0

(2.10)

In (2.10) P stands for path ordering, and the line

(2.11)

integral is along the straight-line segment con-
necting the two end points. The origin x =0 will
be identified with the center of the QQ system
Under the local gauge transformation (2.3), the
operators U and 4 respond as follows:

U(x, t) —V(x, t)U(x, t)V '(D, t),
e(x, t) —V(0, t)e(x, t) .

The operator U '(x, t) transports color from the
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point x to the origin, and 4(x) behaves as if its
color resides at x =0. The significance of the
exponential factor in (2.7) is now clear. It leads
to the introduction of the variable 4; as a con-
sequence of (2.11)Lo is gauge invariant. Also, it
is the quarks and antiquarks repr'esented by 4,
not g, that interact via a Coulomb potential. We
therefore identify 4 with the constituent quark.
This identification conforms with another observa-
tion. In the quark model a meson is interpreted
as a QQ bound state. It also must be a gauge-
invariant-color singlet. Such a state can only be
constructed with 4, not (I)—for example,

where

+m, B,(o, t)+" ],

t), df=d'xp, (r, t),

=g 8 f'rp rp t

ma g d t'zrxja

L = P [-Q,d4„(0, t)+d, E,(0, t)

(2.19)

(2.20)

I()ld) fd xf(x=)P(x, l)IP(0 l)IP),' (2.12)
Equation (2.19) is the multipole expansion of QCD.
We have only displayed the first three terms in
the expansion: the monopole, the electric dipole,
and the magnetic dipole. (Since no confusion will
occur in this paper, we will refer to these multi-
poles by the terminology of their electromagnetic
analogs. We will often omit the modifier "color.")
Apart from the monopole, all the other multipole
interactions are gauge invariant. Again, this is
an important consequence of using the variable 4.

Equations (2.19) and (2.20) are identical to their
counterparts in QED except for the appearance
of color indices. It is important to recognize
that L is an effective action that represents the
result of partial summation of the perturbation
series. It only includes what Peskin' called the
connected pieces of the diagrams. The gauge
fields in L are those generated by light quarks
of ordinary hadrons produced in the hadronic
transitions. Therefore, they may appropriately
be regarded as external fields as far as the heavy-
quark system is concerned. The amplitude for a
hadronic transition is obtained by applying the
perturbation theory to Lz. For example, Peskin's
result corresponds to using the electric dipole
twice.

We now turn to the general case. In order to go
beyond perturbation theory, we will make hypo-
theses concerning the nature of QQ interactions
and the couplings of the heavy quarks to the gauge
fields. The basic idea is to assume that the lower
half of Fig. 2 can be generated by an effective
action. More specifically, we assume the fol-
lowing:

(1) The QQ interaction can be described by a
nonrelativistic (confining) potential, and it can
be represented by a gauge-invariant addition to
the effective action for the QQ system The lat-.
ter is true in the case of the Coulomb potential,
as we have explicitly verified; it must be true
in general if the potential has a physical meaning.

(2) The couplings of the heavy quarks to the

with a matrix I' in spin and flavor. Therefore,
for discussions of hadronic transitions the consti-
tuent-quark field 4 is the natural variable. In

terms of 4 we get

Lo= dsx@ [y "(is„-gA'„)-mj)l

d'xd'X p.(», t) — p. (y, t),24K a lx yl
(2.13)

where

(2.14)A'=U A tf- —U 8 U.

It is shown in Appendix 8 that A'„ takes the more
useful form

1

A'(x, t) = — dssU '(sx, t)xx Il(sx, t)U(sx, t).
0

The color-electric field E and color-magnetic
field 8 are defined by

yk0

t~ll)tft (e123 —1)
(2.16)

Expanding A„' in powers of x, we obtain

I q Lo+L (2.17)

d'x e(y "ie„-m)+

1 2 g fd'xd'y p (xt) p. (y, t), . ,
a lx-yl

(2.18)

1

40(x, t) =A, (0, t) — ds U '(sx, t) x ~ E(sx, t)U(sx, t),
'0

(2.15)
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gauge fields can be represented by effective in-
teractions that are consistent with gauge invar-
iance. Moreover, when the gauge fields carry
sufficiently small momenta, they can be expan-
ded in a Taylor series around the center of the
heavy-quark system. For a nonrelativistic QQ
system, its effective Hamiltonian will have a well
defined limit as the quark mass approaches in-
finity. Consequently, no positive powers of the

heavy-quark mass should appear as coefficients
in the expansion.

The use of an effective action is a common
practice in many branches of physics. These
hypotheses are certainly very natural. The re-
quirement of local gauge invariance severely re-
stricts the form of the effective action. The sim-
plest possible gauge-invariant effective Lagran-
gian for the heavy-quark system is

I q= d'x y" ie„-gA„-m

—
p d xd g 4" x~p g~+ x~ ~p~y x y + ~ ~p~2 x-y +y, &r'2~gay, +

a=

(2.21)

where 0 is the constituent-quark field defined by
(2.10). Equation (2.21) and 4 are defined in terms
of a renormalized coupling constant g appropriate
for the heavy-quark system. The SU(3) color ma-
trices A., in the last term of (2.21) have been ex-
tended to include the identity

2A. p
=1. (2.22)

Compared with (2.9), (2.21) differs only in the
general form assumed for the QQ potential. The
minimum coupling to the gauge field is dictated
by gauge invariance. But other types of gauge-
invariant couplings may also appear; they are
indicated by the dots in (2.21). Later we will dis-
cuss the effects of these possible interactions.
Also neglected in (2.21) are possible three-body
and other many-body potentials. In terms of 4,
(2.21) has the same multipole expansion as that
given in (2.19). A transcription into a nonrela-
tivistic quantum-mechanical Hamiltonian gives

Hgg =H +HI, (2.23a)

2
a= —+V, (~x~)+ g —,'X,—,'X,V, (~x~), (2 23b)

a

H, =Q,A„(0,t)-d, E,(0, t)-m, B,(o, t)+ ~ ~ ~,

(2.23c)

where X,'s are the color matrices for an anti-
quark. In this notation we have'4

Q, =g(2~. +2~,),
d, = ~x(A. , —A. ,), (2.24)

m, = ——,'(X, —E,)(o —o'),
'
~

where xis the relative QQ separationando ando' are
the spin matrices for Q and Q, respectively. We
should emphasize again that the gauge fields in

I

(2.23) are externa, l fields due to the light quarks
produced in hadronic transitions.

This is a good place to comment on the effects
of possible additional gauge-invariant couplings.
Since each multipole coupling except the mono-
pole is gauge invariant by itself, higher-order
QCD effects may modify the numerical coeffi-
cients. This will not effect our later discussion
because we will not be able to compute absolute
rates anyway. However, we will assume that
high-order QCD effects do not change the re
lative importance of the multipole moments from
the natural scaling estimates. " We will call this
the "scaling hypotheses. " For example, accor-
ding to (2.23) and (2.24), the electric dipole is
more important than the magnetic dipole, since
the former scales like x and the latter like m '.
Similar simple dimensional analysis will be used
to estimate the magnitude of other gauge-invari-
ant couplings. Consider a possible coupling of the
form

H~=C(LZ. E )'. . (2.25)

The constant C has the dimension of a length.
There are two dimensional parameters for a
heavy-quark system, the quark mass rn and the
size of the system a. Dimensional analysis gives
C -m ' or C -a. Thus, Hf is of order a' or a'/m.
It is therefore at least smaller by a' compared
with the electric dipole or magnetic-dipole terms.
'Indeed, gauge -invariant couplings other than those
displayed in (2.23) have higher dimensions; there-
fore they are suppressed by powers af m ' and/or
a.

Our scaling hypothesis enables us to determine
which multipole dominates in a particular transi-
tion. As we will. see in the next two sections, the
symmetry and tensor property of this multipole
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will &cad to many interesting experimental con-
sequences.

Hadronic transitions are caused by the pertur-
bation Hz. Since Q, is of order unity we must
treat the monopole to all orders. However, it

annihilates a color singlet; therefore a transition
is produced by other terms in H, . As a concrete
example, consider a transition O'- 4 +h which
utilizes the color-electric dipole twice. Standard
perturbation theory gives the transition amplitude

~„=&cairic')

=p f dt 00 Tt(()0'E,(0)exp —tf dt'p ,toA( ot')) )()-tt) Et(0—t) 0,')
t2g 5 0 C

Equation (2.26) can be simplified by using the relations

(2.26)

(2.27)

[q„d,] =ig Qf' „d, .
C

%e rewrite

(2.28)

g q A., (t,') d,(-t) =. (ig)"g d, (-t)[A,(t,.') ~ ~ A, (t„')]„,
i~& C

where the matrixA0 is defined by

[A,], —= Qf, ,A„. (2.30)

Since both 4 and 4' are color singlets, we may make the replacement

d,'(0)d~(- t)-, g d', (0)d~t( —t)6„,
b

where N=3 is the number of colors. The transition amplitude becomes

(2.31)

M„=, g f dt( ~e(QTd'(0)dt( —t)(e') 0 TE'(0)exp Ef dt'A, (t'))Et(0—t) 0), ,
if 0 a "t

where a short-hand notation is employed:

(2.32)

E'(O)exp(df dt'A, (t') Et(O, —t)=&E',(0)exp( dt A(t ))„Et(O, '—t,).'( 0

b c g

(2.33)

We have written (2.32) in the factorized form to
emphasize the point that the gauge fields which
appear explicitly in (2.32) couple only to the light
hadrons. To simplify (2.32) we will use the sym-
bolic notation

I

The integration over t then gives

E' H B0

(2.36)

0

Et(0)exp(E dt'A, (t'))Et(0, —t)=E'e 'Et,
-t

(2.34)

where E'= E'(x=o, t=0) and D, is t-he gauge-cova-
riant time derivative

(2.35a)

where E' is the energy of 4' and H is the effective
tE)Q Hamiltonian (2.23b). We emphasize again that
D, acts only on the color-electric field E, and
both D, and E are independent of heavy-quark
variables. The color matrices can be eliminated
with the aid of the projection operators I', and T,
into the QQ singlet sector and octet sector, re-
spectively:

D."Et =[s. -gA. (0, t)]"E&(0,t) i, , (2.35b)

S „(~,-X.)Z, (x.-X,)e, =6-N2 -1

Finally, we have
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g 2 1 +Op
pM =i — 4Q x'E, ~ .-- x E @

8 0

where H8 is the octet component of H:

(2.88)

(2.39) (2.43)

pends on the magnitude of the expansion para-
meter ka, where k is the typical momentum of
the emitted gluons and a is the size of the QQ
system. If the gluons were to emerge as real
particles, we would have

I

k --,'(m„- me)

The resolvent

(2.40)

describes the propagation of the intermediate
states between the two color-electric dipole ver-
tices: These are color-singlet states consisting
of the QQ octet, gluons, and light (Iuarks. The
interaction between the QQ octet and gluons as
well as light quarks is represented by A., in the
iD, term. E(luation (2.38) is manifestly ga, uge
invar iant.

In the next section we will present the detailed
predictions that follow from E(I. (2.38). For com-
pleteness, we give the transition amplitudes that
involve two magnetic-dipole transitions (M ) and
that involve one electric-dipole and one magnetic-
dipole transition (M, ):

.g 1
mm 2~ 4 2

x hh (7 —a')'H —, . (v —v)'B-h),~ ~

(2.41)

g2
g Pal 2+

for a two-gluon emission. When E(I. (2.43) is
combined with potential. model estimates' of the
sizes of cc and bb systems, we get for the transi-
tions g' - g + 2m and T ' -T +2)),

(2.44)

(2.45)

It is not clear how confinement affects these es-
timates. However, similar results are obtained
if we choose 1/k-1 fm, the typical size of light
hadrons. We therefore expect the multipole ex-
pansion to work reasonably well for Y particles.
It may also work for P particles. It is known in
nuclear physics that the classification of multi-
pole orders is valid even for ka -1.

III. PREDICTIONS —APPLICATION OF THE
WIGNER-ECKART THEOREM

In this section we present predictions that fol-
low from the Wigner-Eckart theorem" and scaling
properties of the multipole moments. We will
concentrate our discussion on second-order E1
transitions except on one occasion where second-
order M1 transitions are also considered. K the
next section further predictions for soft-pion
emissions will be given.

A. Wigner-Eckart theorem

+x E@, ~ . (a —v') B h').E'-H +iD

(2.42)

We conclude this section with two remarks:
(1) We have assumed that the sum of diagrams

with vertices connected (as defined by Peskin')
to the QQ system can be represented by a gauge-
invariant effective action. Although the cc and
b6 systems are not small enough to permit a per-
turbative analysis of their interactions, it should
be a good approximation to treat the small QQ
states as pointlike in hadronic transitions. The
heavy-quark dynamics is summarized by the mul-
tipole moments. The disparity in the two sizes of
QQ states and light hadrons makes the multipole
expansion converge. In this respect, the multi-
pole expansion is reminiscent of the short-distance
expansion of operator products: The multipole
moments play the roles of coefficient functions.

(2) The validity of the multipole expansion de-

As mentioned in the previous secti.on, the gauge-
field operators in the transition amplitude (2.38)
are independent of heavy-quark variables. There-
fore, the transition amplitude is a reducible se-
cond-rank tensor. It is decomposed into a sum
of irreducible tensors according to

2

T„=x,.G(E')x, = Q T',.", ,
0 o

(3.1)

T =5 T =5 x G(E')xl (3.2)

TII' = 2[x,G(E')xq xqG(E-')x, ],-. (3.3)

T'~ =2 x. G E' x +x. G E' x. —2 5.
~ x, G E' x,

(3.4)

These Cartesian components are related to the
spherical components by
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(3.6a)
7&k)

&
(k) g (k)( 1)eij il ~ q q

(3.6)

7""—g f'~) Z &»( I)~if is
q= 2

(3.6b)

where &,"' and &,",' are components of the irreduc-
ible spherical tensor operators of rank 1 and 2,
respectively, constructed from the unit vector x.
Equations (3.2)-(3.5) can be written in the gen-
eral form

Consider a transition C '- 4+8, where h denotes
n light hadrons. Let the initial QQ state be char-
acterized by its total angular momentum 4', its
z component M', its orbital angular momentum
/', its spin s, and other quantum numbers sum-.
marized by n'. The corresponding quantum num-
bers of the final QQ state are denoted by unprimed
symbols. Since the transition operator is spin
independent, the initial and final spin are the
same. The Wigner-Eckart theorem gives

(Ck ~E,. I &')E, ~@~) =(-1)~ ' ""'"f(2J'+I)(st+I)]' '~ ~ {&ok IIE;T"'E, III'o") ) (3 ~ 7)

(M@M) J's J
where ( ) and f j denote the 3-j and 6-j symbols, respectively. We now introduce the tensors

(a) ~ (n)

f(2a, )(2~,) ~ ~ ~ (2~ )]'&' t' D&,'";,', {«&IIE&T"'E; III' ') ~

'The differential transition rate becomes

(s.a)

di'(4'-4+&) =(2v)t)(E& —E~)(2J+1)(2J'+I) Q Q Q(-I) ' (-1)"' ~
&kk' q q' N i-M &I M') (-M q' M'j

(3.9)

The final heavy particle 4 moves slowly in the rest frame of O'. So its mass-to-energy ratio is ap-

proximately unity: M/E=1. After inserting this factor, the phase-space volume element takes a Lorentz-
invariant form

-=- dk,
6(E; —E~),„, ' =2M dSR 6 (P' —P-K) . . . ' t) iX- Qk, i

l=l l -L 1
(s.lo)

where P', P, and E are the four-momenta of C', 4, and the light hadron system, respectively, and 9g'
=K' is the invariant mass squared of the light hadrons. -

The result simplifies greatly if we integrate over all momenta. Rotational invariance implies

(3.11)

and therefore"

dl'(O'-C +k) ~ k I' l

d% k S j Jt
(3.12)

This is the central result of this section. It fol-
lows from spin independence of H in (2.23b) and

angular momentum conservation. The significance
of spin-dependent forces may be measured by the

spin splittings. " In the cc system, the splitting
of the first P states are of order 100-150 MeV.
The corresponding splittings in the bb system are
expected to be smaller by a factor of ()n,/mk)'
=0.16, or about 20-30 MeV. These splittings are

I

much smaller than the level spacings between
multiplets. Consequently, spin independence
should be a good approximation for the bb sys-
tem.

For emission of a light-hadronic system, such

as 2v, Eq. (3.12) relates mass distributions among

transitions between different states of two multi-

plets. In this section we will consider the appli-
cation of (3.12) to several important transitions.
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For these transitions, (3.12) is the most general
distribution allowed by spin independence; angular
momentum conservation requires that the ampli-
tude, at most, is a comination of an irreducible
second-rank tensor, a vector, and a scalar. Our
predictions are direct tests of spin independence.

B. Transitions between two I = 0 multiplets

When both l and l' are zero, we have

0 0 1
(2d ] )&/2 Ro sz'

s J' (s.is)

Therefore, only the tensor with k =0 contributes.
It follows from (3.9) that

d I'(4 ' (J' = 0)- 4 (J = 0) + h)

= dNC '(J' = 1)- 4 (J = 1)+h), (3.14)

i.e., the differential rate is the same for a, transi-
tion between two spin-triplet S states and that be-
tween the two spin-singlet hyperfine partners.
The most important examples of this kind are

dr(q'- q+2v) =dl'(q, - q, +2m),

dI'(T'- T+2v) =dI'(q,'- q„+2m),

dr (T"-T+2v) =dI'(q„'"-q, +2m),

(s.i5)

(s.i6)

(3.17)

where g„q,', q» g,', and q", are the spin-singlet
partners of g, P', T, T', and T', respectively.
From the known rate for g'- (+2m, we predict

I'(q' —q, +2m) =—110 keV. (3.13)

Furthermore, the angular and mass distributions
of the pions should be identical in both cases. It
is hoped that these predictions will be tested at
SPEAR and CESR in the near future.

C. Transitions between two I = l multiplets

For transitions between two multiplets with
nonzero orbital angular momenta, the transition
amplitude in general contains more than one reduced
matrix element. The most important example in
this category is the transitions between the first
two P multiplets in the bb system. According to
popular potential models, '" these two multiplets
will lie below the Zweig-rule-allowed threshold
and their energy differences are large enough for
two-pion emission. The spin-triplet 2P states
can be populated by photon transitions from the
spin-triplet 3S produced in e'e annihilation.

There are three reduced matrix elements for
the nine transitions between the two spin-triplet
multiplets. There exist, therefore, six con-
straints. First of all, we observe that Eq. (3.12)
implies the reciprocity relation

)
dr(C,', -O, +2m)

( )
dr (O', -C,, +2m)

(s.19)

which gives

dI'(0- 1)= 3dI'(1- 0),
dI'(0-2) =5dI'(2-0),
3dI'(1- 2) = 5di'(2 1) .

(3.2o)

Substituting numerical values for the 6-j symbols, "
we find

dI'(1 - 1)=dI'(0- 0) + —,' dI'(0- 1)+ —,' dI'(0- 2),

dr(1-2) =,5, dr(0- i)+-,' dr (O-2),

dI'(2-2) =dI'(0-0)+ —', dI'(0-1)+ 2' dI'(0-2).

(3.2i)

D. Transitions between l = 2 and 1=0 multiplets

These transitions provide another example where
only one irreducible tensor contributes to the
matrix elements. In the bb system the first D
multiplet is expected to lie below the Zweig-rule-
allowed threshold. The transition to 1'8, by
emission of 2m can be a significant decay made
for these states. The 1'D~ multiplet can be
reached by cascade photon transitions 3'S, -2'P
-1'D~. The transitions 1D-18+2m are con-
trolled by a second-rank tensor. Equation (3.12)
gives

dI'(1'D, -i'S, +2m)= Id'( 'ID,- 'I,S+2)v

= dl" (1 'Di - 1 'Si+ 2v)

=dI'(1'D, —1'S,+2m) .
(3.23)

For completeness we have also included the
prediction for the spin-singlet transition.

In both Eqs. (3.20) and (3.21), we have used the
notation dI'(J'- J) for (dI'/dM, „)(C ~, -@~+2m).

It will be argued in the next section that
dI'(1-0) and dI'(0-1) vanish in the soft-pion
limit. So we expect these rates to be muchsmaller
than others. In that case, Eq. (3.21) can be fur-
ther simplified.

We note in passing that the rate for the spin-
singlet transition 2 'P, - 1 'P, + 2m is given by

dr(i —i)
~ „„„„,=[dr(o- 0)+dr(o-1)

+dF( 2)IS in tri, let ~

However, it would be difficult to observe this
transition since the spin-singlet state 2'P, is hard
to reach in e'e annihilation experiments.
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r(g'- P+2v)
I'(Y' -Y+2') &r '&~, ' (s.24)

v hich agrees with Gottfried's result. Equation
(3.24) neglects the variation of the resolvent.
This is not unreasonable since the level spacings
of low-lying states of the cc and bb system are
quite similar. As will be discussed in Sec. V,
this ratio is sensitive to the spin of the gluon.
For a scalar gluon, it would have been of order
unity instead of 10. It is therefore interesting
to have a direct experimental determination of the
ratio.

We now consider the second example: the tran-
sitions P'- g+ri and T'- Y+q. These transitions
have a different scaling law from that for the 2w

emission. Because q is a pseudoscalar, this decay
is induced by M1-Ml and El-M2 transitions. Both
have roughly the same scaling properties. 'The
matrix element is

E. Scaling laws

The scaling properties of the multipole moments
allow us to .estimate the ratios of transition rates.
Unlike the predictions discussed earlier that fol-
low from spin independence and angular momentum
conservation, these results are model dependent.
They require the dominance of a particular multi-
pole and need a model for numerical estimate.
Furthermore, the naive scaling may be modified
by high-order QCD effects. Nevertheless, these
results are interesting and can be tested experi-
mentally. Two examples will be given.

As the first example we estimate the ratio of
the two transition rates, lp'- /+2m and Y'- Y

+2m. This has been considered by Gottfried. "
These are second-order E1 transitions. The
amplitude (3.1) depends quadratically on the Qg
separation, so we have'

Future experiments will test the validity of these
naive scaling predictions.

IV. SOFT-PION EMISSION

M(C -e+v.(q,)+v,(q,))

q' q'„„&C ~TZ;. (q, )T~',„(q,) ~e&2 (d &2 (02)

V

ab (2' 2~ )1/2 v. v s
(4.1)

where 1;, is the axial-vector current. According
to the PCAC hypothesis, we may neglect the vari-
ation of A „with the pion momenta. Therefore,
the transition amplitude M is homogeneous and
bilinear in q, and q,. To make use of this result,
we will assume that the multipole expansion and
PCAC are compatible. ' Then, the transition
amplitudes in the multipole analysis take the form

Multipole expanding the gauge fields gives the
explicit dependence of the transition amplitude on
heavy-quark variables. Its dependence on the
light-hadron momenta is in general unknown. How-

ever, when the transition involves only soft-pion
emission, its variation with the pion momenta is
constrained by PCAC (partial conservation of
axial-vector current) and current algebra. In
this section we exploit this additional information
in conjunction with the results obtained in the last
section. In some cases the multipole expansion
and PCAC together determine uniquely the shape
of angular and mass distributions; only the overall
normalization is undetermined.

The PCAC and current-algebra approach to
pion emission was first studied by Brown and
Cahn" in their work on ~P'- t/i+2i/. If the o term
is neglected, the transition amplitude has the form

2

M= g& xq* ~ p g
m 2 j

Q

(3.26)

where &', &, and P„are the polarization vectors
of i'' and if' (or T' and T), and the momentum of

q, respectively. Neglecting the variatio~ of the
reduced matrix element A, we find

&l oui, (q, )iib(q, ) ii E,.T"'E, ii I'o. '&

1
2 M&2 (d2)

(l nv, (q, )n „(q,) ii E, T"'E/ [[I'ci'& =. 0,

&I».«,&,,«, & [(E,T" E, [[I'o'&

(4.s)

r(y -y+iI) t'm, ' P„(y) '
r(T —T+n) i~, P„(Y)

(s.26)
2 C

6[ blbi q2 qqili'q2i 36i/(41 '42&j(2 2 'G/2
CO&

(3.27)

For our estimate we have used' m, =5.2 GeV,
m, =1.8 GeV. We see a dramatic difference be-
tween (3.24) and (3.26). Part of the difference is
due to the phase-space suppression

P„(ili).P„(T)

(4.4)

Equation (4.3) is a consequence of Bose statistics
of pions: The amplitude must be symmetric in q,
and q„but the only vector available, fh xfl„ is
antisymmetric. The transition amplitude is now
characterized by three constants, A, B, and C.
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An immediate consequence of Eq. (4.3) is that
in the transitions 2 'P ~, —1 'P ~+ 2 z we have

4 I I

f'~ J/111+ 2n

dI'(0 —1)=-'dl (1 —0)= 0.
Equation (3.21) then simplifies:

dr(1 —1)= dr(0 -0)+ -,' dr(o - 2),
dI'(1- 2) = —', dI'(0- 2),
dI"(2 2)=dr(0-0)+ 2'',0dr(0-2).

(4.5)

(4.6)

4E'

4Mmm 2-

In the following we consider a few further appli-
cations of Eqs. (4.2)-(4.4).

A. Transitions with l' = I = 0 or J' =J= 0

These transitions are determined by two con-
stants A and B. A third parameter that appears
in the analysis of Brown and Cahn" is excluded
by the multipole expansion. As noted by Brown
and Cahn, the transition g'-/+2' must be dom-
inated by the parameter A in order to conform
with the observed isotropic angular distributions. "
We will assume that B=0 in both transitions g'- /+2' and T'-T+2v. The mass distribution is
obtained by substituting Eq. (4.2) into (3.6) and
(3.9). It reproduces the result of Brown and
Gahn "

1.0 2.21.2 1.6 1.8 2.O
VVV''

2N~
FIG. 5. Mass distribution of the 27t systexn in the .

transitions g ' J/g+ 27t and &' &+ 2~. The absolute
normalization and relative normalization between the
two transitions are arbitrary. These distributions as-
sume B=0 in Eq. {4.2).

tively. Equation (4.7) is plotted in Fig. 5 for g'
—p+ 2v and T' - Y + 2 v. The shape for g' - tt1+ 22t

agrees reasonably well with data. "
,B. Transitions with I' W I or J' 4J

Only the second-rank tensor contributes to these
transitions, since

= Z(M „,' —4m, ')'~2(M „' 2m, 2)', (4.7)

where K is the recoil momentum of C in the rest
frame of O'. It is given by

0 l' I (-1)'~"
[(2l+ l)(2J+ I)]'i'

s J J'

(l' c I or J' w J) . (4.O)

Z =, [(M'+M)' M„']'~'[(M-' M)' -M „-']'~',

(4.6)

where M
' and M are masses of 4' and 4, respec-

For these transitions Eq. (4.4) determines com-
pletely the shapes of the mass and angular dis-
tr ibutions.

The mass distribution is the same for all tran-
sitions of this type. It is given by

2 K~ 8 4

1I'fl'

(4.10)

Equation (4.10) is shown in Fig. 6 for several choices of the masses M' and M. We observe that Eqs. (4.7)
and (4.10) differ markedly in shapes. Equation (4.7) is sharply peaked at high masses, but Eq. (4.10) is
spread over the whole available mass range. This distinction can be tested at CESR by comparing the 27t
mass distributions in the-transitions of the bb system, Y'-T+ 21T, 2'I'~;12I'~+2v (J'cJ), and D12~-Y +2. v

On the other hand, angular di:stributions'depend on the initial and final values of J and l, and initial
polarizations. %e give two simple examples.

Consider first the transition 2'Po-1'P, +2m. Since the initial state has zero total angular momentum,
there is only angular correlation. Let 8 be the angle between the relative pion momentum in the pg center-
of-mass c.m. system and the recoil momentum K of C. The angular correlation is then given by

0 2 ) ~(M 2 4 2)1/2[(M 2 4 2)2 (M 2 4 2)If'2 ~4
dM d os' 1i'

(nC'+M „'+am, ')(M-„' —4m, ')(+'IM „')cos'S

+(M„' —4m, ')'(K /M„') cos'9]. (4.11)
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This function is plotted in Fig. 7. The angular correlation disappears at both extremes: M„=2m, and

M, =M -M.
Next, consider the transition 1'D, -1'S,+2m. If the 1'D, is produced directly in e'e annihilation, it will

be transversely polarized. The complete angular distributions are rather complicated. But the angular
distribution of the total momentum vector of the 2w system (or the recoil momentum of the 1 S,) with re-
spect to the e'e beam direction is quite simple. If we call this angle 8, we then have

-Z(M,.' 4m, ')'" (Af „'-4m, ')'I I+—,I+—,(Af, :+2~,'M.,'+ Sm, ')

K 4

fl'

M„=2m, : — =1-5 cos'8,dT"

d cos8

M, =M —M:
dr

d cos8

(4.1S)

(4.14)

5- g(S.772)~ J/f+ 2w

This function is shown in Fig. -8. 'We find the spec-
ial cases

I

It is easy to verify that after angular integra-
tions, both Eqs. (4.11) and (4.12) reproduce the
mass distribution given by Eq. (4.10).

As mentioned in the Introduction, we can use
the unique mass and angular distributions of the
2g system in the transition D-S+ 2m to disting-
uish a predominantly D state from an S state. It
has been suggested" that in the 55 system an l
=0 vibrational state is expected at a mass M
-10.4-10.5 GeV. But a conventional potential
model' also predicts a D state nearby. If the 2g
transition is observable, the mass and angular
distributions of the 2p system may reveal the
identity of the state.

I

1.0 1.2 14 1.6 1.8 2.0 2.2 24

X
1T7l'M

2N~

C. Other transitions

Transitions with l' = l c0 and O' = 8 c 0 will in
general depend on all three constants. For these
transitions the multipole expansion does not supply
additional information concerning the mass and

d
dM~ 2-

—2 Po I Pp+2m'
—-2 D)-+'2 S)+2m'

\

l
1

I
I
I
1

d1
d cosa

0.8

0.6

0.2

I a I a

I.O 1.1 1.2 I.'5 I c3 1.5 1.6 0 90o iso )5o' Isoo

x VPP'M

2N~

FIG. 6. (a) Mass distributions of the 2r system in the
transition $(3.772) 4/g+ 2&. The solid line and dashed
line distinguish a pure D state from a pure S state. (b)
Mass distributions of the 2~ system in the transitions
between b5 states: 2 Pp 1 Pg+2r and 2 Dg 23S)+2m'.
The masses are taken from the model of Ref. 9: M(2P)
=10.27 GeV, M(l&)= 9.92 GeV, M(2D)=10.46 GeV, and
M(2S) =10.02 GeV. All normalizations are arbitrary.

FjG. 7. Angular correlation in the transition between
b5 states, 2 Pp 1 I'&+ 2~. 8 is the angle between the
momentum of a pion in the 2~ center-of-mass system
and the recoil momentum of 1I' in the rest frame of 2I'.
Masses of the b5 states are the same as those in Fig. 6.
Each curve is labeled by the value of the parameter x
= M~, /2m~. The curves are normalized to unity at 0= 90.
The angular correlation disappears at both kinematic
limits: x=1 and x=x~. Asx increases, the correlation
gets stronger first and then it weakens.
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l,0 3 I"'
dI'(1 —2) = —",, , dI'(0-2),

02
(4.16)

. 0.8 I(0) ., g 1(2)
dI (2-2)=",„dr (0-0)+ —'„', dl'(0-2) .

00 02

0.6

0.4

0.2-

I I I

30 60o 90 l20o l 504 l80'

FIG. 8. Angular distribution of the momentum vector
of the 27t system in the transition between b5 states:
2 Di 2 Si+2&. The (pure) D state is assumed to be
produced in e'e annihilation. The angle ~ is measured
with respect to the colliding-beam direction. Masses
are the same as those in Fig. 6. The number on each
curve is the value of the parameter x= M„/2m, . The
curves are normalized to unity at 0= 90 .

D. Phase-space corrections

Finally, we may use Eqs. (4.2)-(4.4) to correct
for a major effect of spin splittings neglected so
far. The phase space available to the 27t system
is slightly different. As an example, consider
again the transitions 2 'P ~, - 1 'P ~+ 2z. Should the
spin splittings turn out to be significant, Eq. (4.6)
can be improved by including the phase-space ef-
fects. Define

(o) M de

(4.15)

where dI', /dM„and dl, /dM, „are given by (4.7)
and (4.10), and M =M(J), M =M (J'). The im-
proved version of (4.6) is

] I(2)dI'(l-l)= i(o') dI'(0-0)+ — i(,') dr(0-2),
00 02

angular distributions. In all the other cases multi-
pole analysis reduces the number of parameters
needed for describing a transition. For example,
our analysis shows that a transition between two
l =0 states requires two parameters, and the tran-
sition 'D~-'S, +2m requires only one. A general
analysis in PCAC and current algebra would re-
quire three parameters for both transitions.

&»= 2g(X, +X,)A0, (vector gluon),

~q= 2g(&, —X,)g, (scalar gluon).

(5.1)

(5.2)

In a vector-gluon theory the monopole term ~
cannot produce a tra.nsition since it annihilates a
hadron state. So the leading operator for hadronic
transitions is the color-electric dipole. On the
other hand, the monopole term Z ~ in a scalar-
gluon theory is the leading operator for 4l =0

V. DISCUSSION AND CONCLUSIONS

In this paper we have presented a general for-
malism for the multipole expansion of QCD and

its application to hadronic transitions between
heavy-quark states. A detailed analysis is made
for second-order color El transitions. The sig-
ner-Eckart theorem leads to many interesting re-
lations among transitions between two multiplets.
Furthermore, when transitions involve only soft-
pion emission we are able to determine, in some
cases, the mass and angular distributions. The
bb system should be an ideal place to test these
ideas. There are several reasons for this. First
of all, the system is much smaller in size and

much more nonrelativistic than the ev system.
The multipole expansion should work much better
here. Secondly, there should be many more
bound states below the Zweig-rule-allowed thres-
hold, so a great number of transitions will be ac-
cessible. Among these the most interesting are
the transitions between 2'P~, and 1'P~.

The approach developed here is also applicable
to many processes which have not been discussed
in this paper. A particularly interesting and im-
portant process is Y"—1'P, +2m. The singlet P
state is difficult to reach by other means in e'e
experiments. According to conventional wisdom,
the position of 'P, should coincide with the center
of gravity of the spin-triplet states 'P~. As
pointed out by Krammer and Kraseman, '4 the dis-
covery of the spin-singlet P state, together with
the spin-triplet states 'P~, will offer valuable in-
formation in the spin-dependent forces between
heavy quarks.

We now turn to an important question: "Can the
multipole-expansion predictions distinguish a vec-
tor gluon from a scalar gluon?" The answer is
yes. Many features of hadronic transitions are
sensitive to the spin of the gluon. I et us accept
the color hypothesis that all hadrons are color-
singlet states. The multipole expansion then has
a different monopole term for a QQ system:
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transitions. This distinction leads to several dif-
ferent predictions: .

(1) As discussed in Sec. III, the ratio I'(g -
(t

+ 2v)/I'(Y'- Y+ 27)) is about 10 in a vector-gluon
theory. This ratio should be of order 1 in a sca-
lar-gluon theory. That is,

= 10 (vector gluon),
I'()t)' —

(t) + 2 v) (5.3)

=1 (scalar gluon) . (5.4)

Gottfried' has pointed out that the reported large
ratio"

=O 37~0 O4
&(«&dy)(Y —u'V )

(5.5)

implies that the rate I'(Y'- Y+2m) must be much
smaller than I'(g'- g+ 2v). One then infers that
Eq. (5.5) is inconsistent with E(I. (5.4) for a scalar-
gluon theory. The rate I'(Y'- Y+2&) will be soon
measured at CESR; its value will be of great im-
portance to test (5.3) and (5.4).

(2) The two theories give different results for the
transitions 2'P~, -1'P~+2m. In a scalar-gluon
theory only transitions with J'=J are allowed;
those with 8' cJ are smaller by (ka)4=~0 by a
rough estimate. On the other hand, all transitions
are allowed in a vector-gluon theory; they should
all be comparable except for the transitions (4'

= 0)- (J= 1) and (J' = 1)-(J=0) which are predicted
to be much smaller by PCAC.

Since hadronic transitions are soft processes,
they cannot be handled by the usual perturbation
in the coupling constant. In order to make head-
way we have made several assumptions. They
are explicitly stated in Sec. II. Success or failure
of our predictions will be a test of these assump-
tions.

Note added. After completion of this work, I
received a report from Dr. K. Shizuya LUniversity
of California Report No. LBL-10714, 1979 (un-
published)] in which he had studied the Qq system
in the Coulombic limit and derived a Hamiltonian
similar to (2.19) by a Foldy-Wouthuysen trans-
formation.
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APPENDIX A: COULOMB PROPAGATOR IN AN

EXTERNAL FIELD

In this appendix we derive Etl. (2.7). We will work in the Coulomb gauge. In this gauge, the third term in
the exponential series (2.4) is entirely given by the diagram of Fig. 9(a). In fact, the exponential series
(2.7) is generated by the diagrams in Fig. 9(b) for the Coulomb propagator in an external field. Let
D„(x,y) be the contribution to the Coulomb propagator from a diagram with n external gluons; then we have

5=( 8)"f ' ' 'd „E( t) t)V (((%, t) V ' ' ' 'K(R„, t)'

(A1)

where

K(R, , t) = g F,A,(ft, , t),

l
given by its connected piece: when all the vertices
x, are close to the heavy quarks. Thus, we set
x& -x -y -0. Using the notation

(A3)

We are interested in the Coulomb propagator for
a small system of heavy quarks. Therefore,

r=x-y (A4)

is small. We will choose a coordinate system
such that both x and y are also small. In Peskin's~
terminology the leading contribution to D„(x,y) is

a =—Q F„A))(0,t),

we find

D„(x,y) =(2g)"(a V)"i„(r),

where

i„(r)=f d'x, ~'x„ 1
" 4&lr-x, )

1 1
X ~ ~ ~

4~ix, -x, I 4r Ix„l

(A5)

(A6)

(A7)
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(-1)"
4v (2n)!

Carrying out the differentiation, we identify the
connected piece of D„with the contribution that is
singular as r -0. Equation (A6) then gives

(A 14)

(a)
Summing over all n, we obtain the Coulomb prop-
agator

D(x, y)= Z D.(x,y)=
„=p

(A 15)

X

I

I

)(x~
I

Xx-&~
X„

The connected piece of I„(r) can be obtained by
dimensional analysis:

1„(r)=C„r'" '. (AB)

FIG. 9. (a) Second-order corztribution to the Coulomb
propagator in an external field. (b) nth-order contribu-
tion to the Coulomb propagator in an external field.
Dashed lines in (a) and (b) are free Coulomb propaga-
tors.

This is the result (2.7). A more complete calcu-
lation' will turn the simple exponential into a
path-ordered line integral.

APPENDIX 8: DERIVATION OF MULTIPOLE
EXPANSION

&,=T()[y'(is„-e&,) -m]!!.
We introduce the new variable

(Bl)

8(~) =U(x, f)~(~),

where

In this appendix we derive Eq. (2.15} in the text.
Our method applies both to Abelian and non-Abel-
ian gauge theories. It is instructive to consider
both cases: the comparison will show how the
non-Abelian character enters the derivation of the
multipole expansion.

We will imagine that the quantum field theory is
formulated in Feynman's path integral. All the
field operators are c-number variables. Since we
do not have to deal with the self-couplings of the
gauge fields, they may be treated as external
fields.

The Lagrangian of a charged fermion field
coupled to an electromagnetic potential is

The equation

-V I =I (A 9)
jf

U(x, )= exp)((x dx' A(x', )))
0

(83)

gives the recursion relation

1
n (2n)(2n 1) ))-t '

Consequently,

(A10}

and the line integral is along a straight path con-
necting the end points; the origin x =0 is chosen
to be the center of the charged-particle system.
In terms of 4, , becomes

since

1 (-1)"
4' (2n)!

(A11) Z, =4 [y"(i8„-eA „') —m]4,

where A„' is given by

(B4)

1
Cp ——-=.

4w

Finally,

(A12) A„'=U'A. U- —U'8 U.
e

Using (B3), we have

(B5)
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A,'(xt)=, A,(x, t)s I dx' A(x't), ,
0

A'(x, t) =A(x, t) —V dx' A(x', t),
0

(88}

Co =4 [y"(iB„-gA„')-m]4', (811)

We repeat the steps leading to (85). The only dif-
ference is that the operator U now is defined in
terms of a path-ordc, red exponential. So we have

x'=sx, 0& s & 1; (87}

where A is the time derivative of A. Let us write A'=UA U- —U 8 U (812)

then
1

A(')(x, t) =A()(0, t) — ds x E(sx, t),
0

(88)

X

V( , x)=toss((td dx. (XA, ))t.
0 )

(818)

To simplify Eq. (812) we establish several identi-
ties satisfied by U. We note first that26

Zo = (t [y"(i8„-gA„)—m])l),

where A„ is now a matrix,

(89)

A'(x, t) =- dssxx B(sx,t),
0

where E and 8 are the electric and magnetic
fields, respectively. Expanding E and 8 in pow-
ers of x around the origin, we obtain the familiar
multipole expansion in electrodynamics.

Next, consider a non-Abelian gauge theory. The
Lagrangian of a heavy quark coupled to a non-
Abelian gauge potential is

VU =igU(x, t} ds U (sx, t}
0

&& s gx VA (sx, t)+A(sx, t)

Introducing

k

& U(sx, t) . (815)

&,U=igU(x, t) ds U '(sx, t)x A(sx, t)U(sx, t),
0

(814)

(810)
a „(s)=U '(sx, t)A ~(sx, t)U(sx, t),

we find

(816)

"=U ~(sx, t}[(x V)A„(sx, t)+ig[A„(sx, t), x A(s1f, t)]]U(sx, t). (817)

Integrating Eq. (817) we get

U '(x, t)A, (x, t)U(x, t) =a,(1)

=As(0 t)+ f ds(t '(sx t)x ( d (xtS)t+ssds(A (sx t)A(sx t)))U(sx t), (818)

U (x, t)A(x, t)U(x, t) =a(1)
i

ds U '(sx, t)A(sx, t)U(sx, t)
0

+ dssU ' sx, t x V A sx, t +ig A sx, t, X ~ A sx, t U sx, t . (819)

When we combine Eqs. (814), (815), (818), and

(819), Eq. (812) finally becomes
1

Ao(x) =AD(0, t) — ds U '(sx, t)x ~ E(sx, t)U(sx, t),
0

1

A'(x)=- dssU (sx, t)x&& B(sx, t)U(sx, t),
(820}

I

which is Eq. (2.15). Equation (820) is the non-
Abelian analog of Eq. (88). It differs from Eq.
(88) in two aspects: the appearance of the oper-
ators U that sandwich the field strength E and B;
when expressed in terms of the gauge potential,
E and B contain nonlinear terms of A,
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