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The low-pr problem of hadron fragmentation is treated in the framework of the quark model. The basic
mechanism of hadronization of quarks is recombination, which is formulated here on a firm basis.
Clustering of quarks in a hadron is discussed in detail. The quark and antiquark joint distribution is derived
systematically with incorporation of quantum-chromodynamics ideas wherever possible. Parameters
describing the distribution are determined by fitting low-Q electroproduction data. No free parameters are
therefore involved in the calculation of the pion inclusive distribution in the fragmentation region. The
result agrees well with data in both shape and normalization. The formalism can be applied to calculate
inclusive distributions of all nucleon- and pion-initiated reactions, while for kaon-initiated reactions it can
be used to extract from low-pT data the quark distributions in kaons.

I. AN OVERVIEW OF THE PROBLEM

Strong interactions in the realm of hard pro-
cesses, such as large-p~ reactions and massive-
lepton-pair production, have in recent years come
within grasps of quantitative theoretical investiga-
tions in the framework of quantum chromodynamics
(QCD). However, soft processes such as Iow-Pr
reactions do not yet enjoy a similar status, since
the long-distance behavior at low momentum trans-
fer is closely enmeshed wite. the confinement pro-
blem which is still unsolved. Nevertheless, de-
spite the lack of a reliable calculational procedure,
significant progress has been made during the past
two years in discovering and understanding the
connection between inclusive cross sections in the
fragmentation region and the momentum distribu-
tions of quarks in hadrons. In this paper we build
upon that connection a formulation of the low-p~
problem at the constituent level. Clearly, we do
not yet have a theory for rigorous calculations
from first principles. But we shall insofar as pos-
sible incorporate into the formulation ideas de-
rivable from QCD and find dynamical description
of quantities that were introduced with some arbi-
trariness in earlier models.

The quark model for inclusive reactions in the
fragmentation region that we refer to above is the
recombination model. ' It was Ochs' who first
pointed out the similarity between the inclusive
pion distribution for pp reactions and the structure
function of the proton in deep-inelastic scattering,
although the question of how the quarks turn into
hadrons was left open. Das and Hwa' showed that
the fragmentation model for hadronization is
phenomenologically unacceptable, and suggested a
specific recombination mechanism that can give
good fits to the data. The preoccupation at that
time was to demonstrate that the idea of recom-
bination is phenomenlogically sensible both in nor-

where E(x„x,) is the two-parton joint distribution
for the incident hadron and R(x„x„x)is the re-
combination function. On the basis of the counting
rule' it was suggested that R(x„x„x)for a meson
should have the form

R(x„x„x)=n ' '5(x, +x, -x),x (1.2)

where n is an unknown normalization constant of
order unity. The two-parton distribution is more
difficult to determine precisely. As a simple first
trial the naive factorizable form was suggested:

F(x„x,) =F,(x,)E,(x,)p(x„x,),- (1 3)

where E, and E,—are the distributions of a quark q
and an antiquark q, and p(x„x,) is a, phase-space
factor proportional to 1-X,-x, for proton, but
later extended to a more general form. ' With
these ingredients satisfactory agreement with data
was achieved, ' giving support to the importance of
the recombination mechanism. Later, Duke and
Taylor' succeeded in obtaining detailed fits of
various inclusive distributions, using (1.1)-(1.3).

A major effort in the subsequent development of
the recombination model has focused on various
improved forms of E(x„x,) and their implications.
In place of (1.3) a Kuti-. Weisskopf model' for
E(x„x,) has been suggested. ' " While it succeeds
in satisfying certain kinematical constraints, it
remains a phase-space model with uncertain dy-
namical content. The difficulty is, of course, the
unsolved bound-state problem of the hadrons. A
way to circumvent that difficulty while still exam-
ining the recombination model is to study photon-

malization as well as in x dependence. To that end
a simple formula was proposed':

X GG E(x„x,)R(x„x„x)dxi dx~
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initiated reactions" or quark jets." Within certain
approximations the function E(x„x,) for photon and

quark (or gluon) can be calculated in perturbative
QCD. Our problem at hand is to formulate a way
of calculating E(x„x,) for hadrons by tackling the
bound-state problem on the one hind and incorpor-
ating ideas from the QCD calculations on the other.

In the absence of an adequate understanding of
the confinement problem, the wave function of the
constituent quarks in a hadron must to a large ex-
tent be phenomenological. Since that wave function
must influence the structure function measured at
high Q', it should be possible to extract that in-
formation from recent data. In Ref. 13 we have
adopted the view that the partons in a nucleon
form three clusters, called valons. The momentum
distribution of the valons is determined from the
Q' dependence of the structure functions. This
will be discussed in Sec. II for both nucleons and
mesons. The valon distribution will turn out to
play a crucial role in determining not only E(x„x,),
but also the recombination function R&x„x„x).
Although we cannot at this stage derive it from
first principles, its concept is dynamically sound
and its quantitative features are reliably deter-
mined from phenomenology based on QCD.

Going from the valon distribution to the quark
and antiquark joint distribution involves gluon
bremsstrahlung and quark-pair production. The
cummulative effect of such conversion processes
is hard to determine at low Q'. In order to arrive
at a reasonable formulation of this problem, it is
useful to recall the parton-model description of
multiparticle production. Feynman invented the
parton model specifically for low-p~ reactions. "

, Scaling of inclusive cross sections was predicted
as a consequence of scale-invariant parton distri-
butions, which in turn were suggested by the struc-
ture functions determined at SLAG. Although the
Q' value was as low as I GeV', the scaling phe-
nomenon was already sufficiently evident to be
called "precocious. " In the context of QCD where
scaling violation is understood as Q' evolution due
to gluon bremsstrahlung, "precocious scaling is
then equivalent to mature evolution. Indeed, if
even at Q'= 1 GeV' the gluons carry nearly half
the nucleon momentum, and the wee parton distri-
bution is already sealing, gluon bremsstrahlung
must be so highly effective for Q'& I GeV' that by
Q'& I GeV' (what is usually called low Q') the
major part of the evolution has already taken place.
It is important to recognize this in order to start
from Feynman's ideas about low-P~ reactions and
develop a more quantitative calculational scheme
such as we shall pursue in Sec. V.

Our aim will be to address the major issues in
formulating the low-p~ problem, without being in-

volved in the detailed fits of various reactions.
Our concern will be the general scheme rather
than specific processes. Thus, for example, we
shall not emphasize the flavor dependence of quark
types or mesons produced, but the question of how
both the normalization and shape of g 'xdo/dx are
to be determined will be examined carefully. The
formulation lends itself in a straightforward way
to more elaborate treatments that account for all
types of beam and detected particles.

It should be pointed out that the approach taken
here is very different from the ones adopted by
the groups at Lund, Orsay, and Saclay. " They
emphasize quark fragmentation and borrow phe-
nomenological description of the fragmentation
functions from hard-scattering processes without
addressing the basic problem of hadronization,
i.e. , how the quarks turn into hadrons.

Another approach to the low-p~ problem is by
means of the counting rules by Brodsky and
Gunion" and more recently by Gunion, "consider-
ing "pointlike" diagrams. They start from the
x-1 limit and examine simple Feynman diagrams
in QCD that are regarded as dominant in the
large-x region.

In our approach we emphasize the main part of
the x region, excluding the extreme limits of
x-0 and x-1. There are a few parameters in our
formulation, but they are completely fixed by the
structure functions of the nucleon. Obviously, we
need some phenomenological input on the quark
distribution, for example. However, after those
parameters are determined, the formalism fully
specifies the low-p~ problem. There are no free
parameters to adjust. Inclusive cross sections of
all reactions can be calculated. Our result for
pion production from proton agrees well with data
in both shape and normalization.

The organization of the paper is as follows. We
first discuss the valons and their momentum dis-
tributions in Sec. II, followed by the determination
of the recombination function in Sec. III. We then
outline the problem of calculating the quark decay
function (Sec. IV), which will serve as a, guide to
the main problem of hadron fragmentation dis-
cussed at length in Sec. V. The conclusion is
given in the final section.

II. VALON DISTRIBUTIONS IN HADRONS

Valence-quark clusters, called valons, "form a
natural bridge between constituent quarks in the
bound-state problem of the hadrons and the par-
tons as probed in deep-inelastic scattering. ' A
valon is defined to be a dressed valence quark in
QCD. That is, it is a valence quark together with
its cloud of gluons and sea quarks which can be re-
solved by high-Q' probes. At sufficiently low Q'
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the internal structure of a valon can no longer be
resolved, but at the hadron mass scale it should
be possible to distinguish individual valons in a
hadron. A nucleon has three valons and a meson
has two valons, just like the constituent quarks. The
momentum distributions of the valons are indepen-
dent of the Q'values of the probe. The structure of a
va, ion itself is, however, Q' dependent. Assuming
that a quark is basically pointlike, at least for the
distance scale that can be probed in the foresee-
able future, the structure functions of a valon are
then completely determined by gluon bremsstrah-
lung and quark-pair creation in the framework of
QCD. Indeed, they are just the "structure func-
tions" of a quark. "

For hadron fragmentation the valon distribution
in a hadron is of primary importance. It describes
the uncalculable wave function of the constituent
quarks. Before discussing how it is to be used in
a low-p~ reaction, we describe first how it is de-
termined. On the basis of the definition we have
given above, and assuming that in a deep-inelastic
scattering the probing of the structure of one valon
is not influenced by the interaction of that valon
with other spectator valons (the usual impulse
approximation), we can write

g" (z, Q')

v/h

and which satisfies the momentum sum rule

1

G„/„(y)y dy = 3 (h= nucleon)
0

(h = pion) .

(2.3a)

(2.3b)

Because we do recognize the different charges
of u- and d-type valons (to be labeled U and D,
respectively), 7" does depend on v.

By the convolution theorem, (2.1) implies the
moment equation

FIG. 1. A schematic diagram showing that the struc-
ture function of a hadron h is a convolution of the valon
distribution in h and the structure function of the valon.

1

F'(x, Q') = Q dy G„/„(y)6: (x/y Q )
V X

(2 1)
IVI"(n, Q') =g M„/ „(n)M"(n, Q'), (2.4)

1

G./h(y)dy = 1
0

(2 2)

where 7" is the structure function of hadron h

(e.g. , E„xE„etc.), 6'" is the corresponding
structure function of valon v, and G„&„ is the dis-
tribution of v in h. The symbol x is the momentum
fraction of probed quark in hadron h, while y is the
momentum fraction of a valon in the same hadron.
The sum is over various flavor types of v. A

pictorial representation of (2.1) for one of the
valons being probed is shown in Fig. 1. The right-
hand side of (2.1) has an implicit dependence on a
variable Q„ that specified the value of Q at which
the valons are resolved as individual units acting
as constituent quarks, but with no discernible in-
ternal structure. We postpone our discussion on
this point until later.

As we have indicated in Sec. I, we shall not in
this paper be concerned with flavor dependence of

G„&„. To distinguish flavor differences would re-
quire more accurate data than we now have for
phenomenological analysis. The theoretical pro-
blem of accounting for the differences is easy, and
a more complete analysis shall be carried out when
the muon scattering data at high Q' become avail-
able. Thus, for now we consider only an average
valon distribution, whose normalization is

where

1

M"'"(n, Q') = dxx" 'F"'"(x Q')
.0

1

IVI„/„(n) = dy y" 'G„/„(y).
0

(2.5)

(2.6)

If we use M, (n, Q') to denote the average of the
moments of xE,(x,Q') for vN and vN scattering on
isoscalar ta, rget, we can obtain" from (2.4) with

e, =o,

IVI,(n, Q') = 3M„/ «(n)M«8 (n, Q'), (2.7)

where M"„a is the nonsinglet (NS) component of the
moment of quark distribution in a valon. Equation
(2.7) is of the form of the solution of the renorma, l-
ization-group equation, viz. , a product of an uncal-
culable coefficient (/VI„/„) and a function (M„"a ) cal-
culable in QCD, especially at high Q'. Since M,
is measured in recent neutrino experiments, M„&~
can be determined from (2.7) using QCD results.
An equation similar to (2.7) can also be derived for
muon scattering. If flavor independence is not

assumed, simultaneous analysis of both v and p,

data can then lead to a separation of the U and D
valon distributions and their moments.

Recall now our earlier remark that the right-
hand side of (2.1) has an implicit dependence on

Q„. At Q„, F"(a,Q„') is proportional to 5(g —1),
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signifying that a valon behaves as a constituent
quark with no internal structure that can be re-
solved at Q„. QCD supplemented by this boundary
condition completely defines a valon. The impli-
cation of the boundary condition on the moments is

MNs(n Q.')=1 (2 8)

At high Q' the solution of the renormalization-
group equation has the simple form

NS
~(Q') "

Mks(n Q')=
~(Q 5)

where in leading-logarithm approximation

12m

(33 —2f)lnQ'/A' '

(2.9)

(2.10)

Vl

6J
C3

) Z

gnQ
QA Q,

FIG. 2. Sketch of the behavior of f MNS (n, Q )]
as a function of lnQ2. The solid line indicates how it
might deviate from a straight line when Q2 is low. The
dashed line is a linear extrapolation. The two lines have
the boundary value of one at Q„and Qo, respectively.

f being the number of flavors, A the scale of
strong interactions, and d"„ the NS anomalous di-
mension

dNS -- 1—4 2 " 1+4
33 —2f n(n+ I), j

At low Q', (2.10) is invalid; consequently, it cannot
be applied for the evaluation of n(Q„') in (2.9).
Furthermore, (2.9) itself becomes inaccurate and
must be supplemented by other nonleading terms.
It means that [M»(n, Q')] '~'5, though proportional
to lnQ' at high Q', deviates from a straight line in
a logarithmic plot at low Q' and approaches one at

This is illustrated in Fig. 2. Since the theo-
retical understanding of the low-Q' behavior is
incomplete at present, we shall circumvent the dif-
ficulty associated with it in the following way.
First, we emphasize that the linear part of Fig. 2

is what we want to exploit in the following. The
boundary condition (2.8) at Q„', however, cannot be
applied unless we follow the nonlinear curve at low
Q'. Now, if we stay on the linear line and extra-
polate, we would arrive at a different value (Q,'),
where the extrapolated moments are unity. Thus
as far as the linear portion goes, we can just as
well use the effective formula

[M" (n Q')]-'"".'=
lnQ, ' A' (2.11)

The role of Q0 here is essentially to parametrize
the slope of the linear line in Fig. 2 and should not
be regarded as having anything to do with (2.10).
It can be interpreted as an effective value of Q
where MNS(n, Q') = 1, provided that the moments are
approximated by the leading-order result. Thus in
that approximation the Q' evolution starts at Q,'.
Because (2.10) is not used, there is no reason why

Q, cannot be very close to A. It can also be inter-
preted as giving a rough estimate of the effective
size of a valon. It is important to recognize that

Q, is not an arbitrary parameter chosen to be large
enough to justify leading-order calculation. It has
a physical meaning, and its value can be deter-
mined phenomenologically.

While MN5(n, Q') is a theoretical quantity that
cannot be measured directly, M, (n, Q') is the mo-
ment of experimentally determined structure func-
tion. Combining (2.7) and (2.11) we now have for
large Q'

[M,(n, Q')] ' 55 =S(n)lnQ'/A', (2.12)

where

(2.13)S(n) = [3M„g„(n)] ' n /ln(Q '/A') .
The linear dependence on lnQ'/A' in (2.12) has
been verified by neutrino experiments" ' and is
regarded as a successful test of QCD. The data
of Refs. 21 and 22, however, have apparent dis-
crepancies when the quantity in (2.12) is plotted
against lnQ'. They are due largely to the use of
different values of f in the evaluation of d"8. In
Ref. 13 we used BEBC-Gargamelle data" and ob-
tained the following results (for f= 3):

A = 0.74 GeV, Q, = 0.82 GeV,

Q (y) 105yl/2(1 y)2

(2.14)

(2.15)

The method used there depends crucially on the
availability of the rs= 2 moment, for which we know
from (2.3) that M„&„(2)=-, . Since the CERN-Dort-
mund-Heidelberg-Saclay (CDHS) data"" do not
provide M, (2, Q'), we use here a slight variation
of the method to extract G„&„(y). Adopting f= 3 as
being more relevant, we plot [M,(n, Q')] 's5
against lnQ' as in Fig. 3 and obtain A'= 0.3 GeV',
The slopes S(n) of the straight-line fits are then
determined, as shown in Fig. 4. To fit S(n), we
assume that the valon distribution has the form

G„g (y) =a~' '(1-y)' ', (2.16)

in which the three parameters are constrained by
(2.2) and (2.3), i.e. ,

(2.17)
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where B(j,k) is the beta function. Thus the mo-
ments of (2.16) are

M„)„(n)=B(n+ z k —1,k)!B(zk, k) . (2.18)

We can then fit S(n) by (2.13) and (2.18), treating
Q, and k as free parameters. The results are
shown in Fig. 4. The best fit (solid line) is for

k=2.5, Q, = 0.65 GeV, A= 0.55 GeV, (2.19a)

FIG. 3. Plot of [M3(n, Q )] ~f1 versus Q for var-
ious moments. Points are obtained by analyzirg data in
Refs. 22 and 23 using f= 3. Straight lines are eyeball
fits through A =0.3 GeV .

therefore extracted a rather essential feature of
the data. It describes the wave function of the
valons inside a nucleon. It summarizes the had-
ronic structure —the part that is not calculable by
present methods in QCD.

While (2.15) is obtained by detailed analyses of
the deep-inelastic scattering data, the result can
also be obtained by an alternative and more direct
method, once the reality of the valon concept is
accepted. The only experimental input needed is
that t W, -(1 -x)' as x-1. Since k is the only para-
meter to be determined in (2.16), we need only
examine the large-x, hence large-y behavior of
(2.1). The information we need from QCD is the
large-z behavior of the valon structure function
6'"(z, Q') at moderate Q'. We have already men-
tioned that this function has the boundary condition
that it is proportions. l to 5(z -1) at Q„'. At higher
Q' gluon bremsstrahlung smooths out this singu-
la, rity at z = 1 and turns 6'"(z,Q') into a, gently
varying function of z, the shape of which depends
on Q'. But for any Q not too close to Q„' the uni-
versal feature is that 6'"(z,Q') is finite as z - 1."
Using this property in (2.1) implies at moderate
Q

2

although a fit with k = 3 (dashed line) is also in good
agreement with the data; the parameters are

1

6'"(x)~ dy G„(„(y), x-1. (2.20)

k=3.0, Q, =0.64 GeV, A=0.55 GeV. (2.19b)

The difference between (2.14) and (2.19) reflects
the discrepancies between the data of Refs. 21 and
22. Nevertheless, if we regard the range of k from
2.5 to 3.0 to be adequately approximated by the
value 3, then both sets of data yield the same valon
distribution, i.e. , (2.15), which is not sensitive to
the absolute normalization of the data. We have

Hence, the experimental fact that the left-hand
side behaves as (1-x)' demands the (1-y)' be-
havior for the integrand as y-1. The distribution
in (2.15) then follows uniquely, given (2.16) and

(2.17). At high enough Q', 7"(z,Q') will vanish as
z -1; the consequence on 6'"(x,Q') is then that it
will vanish faster than (1-x)' by a corresponding
increase in the exponent completely determined by
(2.1). This is the expected result in QCD. At low

or medium g' there is no such complication, and
the general result from (2.20) is that for any had-
ron h we have

20

G„(»(y) ~ (1 -y)» ', as y - 1,
if and only if

F"(x)~(l-x)», as x-1.

(2.21)

(2.22)

)0

0
2

65 GeV
———k = 3.0, Qo= 0.64 GeV

I I I l I

3 4 5 6 7
n

FIG. 4. Slope parameter S(n) as determined from Fig.
3. The two curves represent two possible fits, using
Egs. (2.13) and (2.18).

G.y, (y)=B k k
(y(1-y)1' '.

l
(2.23)

There is now reasonably good evidence from mas-
sive-lepton-pair production" that the structure
function of a pion behaves very nearly like (1-x)'
as x 1. From (2.22) and (2.23) this means k=1

Obviously, this method can be applied to the meson
case where only the large-x behavior is known.

Consider now the valon distribution in a pion.
The momentum sum rule (2.3b) implies j=k, so it
follows that



1598 RU DOLPH C. HWA

G„/, (y) = 1. (2.24)

valon and y, that of the heavy one. The single-
valon distributions are then

= nN[y, y2(1 -y, -y2)]" '

and the single-valon distribution is
r~~x

(2.26)

Similar consideration when applied to the K meson
would give the same result if the structure function
of a kaon behaves also as (1-x)'. However, we
can do better than that. Since a valon plays the
role of a constituent quark, the strange and non-
strange valons should have different masses, and
therefore different momentum distributions. We
shall consider this problem below after discussing
the multivalon distributions.

Since we know the precise number of valons in
a hadron, and since we do not distinguish valon
types of the same mass, the multivalon distribu-
tions can be simply obtained by symmetry consid-
eration and sum rules. Consider first the nucleon
case. We write the three-valon distribution in the
general symmetric form

v/N(ylty2ty3) N(yly2y3) 5(yl y2+y3
(2.25)

Then the two-valon distribution is
1

v/N(ylty2) y3 v/N(yl)y2ty3)
0

y, = &»B(a+1,b) =a/(a+&),

y, = olKB(a, 5+ 1)= b/(a+ tl ) .
(2.33a)

(2.ssb)

If we regard the valons as constituent quarks bound
nonrelativistically in a bag, then their average mo-
menta should be proportional to their masses, m,
and m„. Thus we have

8 p ~m

&y. ma
(2.34)

With this constraint it should be possible to deter-
mine a and b separately by fitting data on lepton-
pair production in kaon-initiated reactions using
the Drell-Yan model, "or by applying the recom-
bination model to low-pr inclusive reactions in-
volving K mesons. "

Similar consideration can be applied to the hy-
peron in determining the effect of valon mass dif-
ference on the momentum distribution. Adopting
the form

(2.32a, )

G,./K(y. ) = &~y' '(1 -y.)' ', (2.32b)

where nK = [B(a,b)] . The average momentum
fractions carried by the light and heavy valons are,
respectively.

~Jp
dy, G„/N(y» y, ) Gv/r(y»y»y3) —nr(yly2) y, '5(y, +y, +y, -l)

= n+(K, K) y,
" '(1 -y, )'" ' .

Comparing this with (2.15) yields

K= 3/2, o'.N= 105/21/.

(2.27)

(2.28)

(2.35)

for the three-valon distribution, where yy and
refer to the two light valons, and y, the heavy one,
one can show that

G./, (y, y.)=o,(y,y.)" '6(y, +y. —1) ~ (2.29)

Integration over y, and comparison with (2.24)
yield

Note that (2.26) specifies how the distribution
vanishes as yy+y2 1 It will play an important
role in a later section in determining the limiting
behavior of the two-parton distribution F(x„x,)
and in avoiding the assumption of either the fac-
torizable form (1.3) or the Kuti-Weisskopf model. '

In the pion case the two-valon distribution is

and

nr = [B(a,a+ b)B(a, b)] ' (2.s6)

m 2

b m„3 (2.37)

We have thus far dwelt exclusively on the distri-
bution functions G„/„(y), etc. , which are probability
functions defined in the noninvariant phase space
dy. The invariant distributions defined in the in-
variant phase space dy/y a,re

(2.30) F„/3(y) =yG„/3(y), (2.38a)

V/K(ylty2) Kyl y2 5
~ yl+y2 ) t (2.31)

where y, is the momentum fraction of the light

For kaons, we take into account the mass differ-
ence between light and heavy valons, identifying
the former with the nonstrange constituent quarks,
and the latter with the strange constituent quark.
We write the two-valon distribution in a kaon as

F./. (y»y. ) =y,y.G./, (y„y.) (2.38b)

v/N(ylty2ty3) yly2y3 v/N(ylty2ty3) t (2 38c)

etc. Sometimes it is more convenient to work with
the F rather than the G functions. One can readily
keep track of all the momentum factors in a con-
volution equation if all quantities are invariant E
and integrals are performed over the invariant
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phase space.
It should be noted that the valon distributions

derived here are extracted from data at values of ~

x not in the extreme x —1 limit. For example, the
moments in Fig. 3 are for n ~6. Consequently, the

expressions for the valon distributions, though
reliable for the bulk of the y range, may not be
very accurate when y is extremely close to 1. The
inadequacy may be more than a matter of data
analysis. In the extreme x- 1 limit the quark
probed is far off-shell, "'"and the exact QCD pre-
diction" for the x distribution in that limit differs
from our result on the large-y behavior. Of
course, they should not be compared directly. The
valons are clusters at low Q' and are not ever far
off-shell. Their relationship to the quarks that
are far off-shell very near x=1 is at present un-
clear and deserves further attention.

III. RECOMBINATION FUNCTION

When the recombination functions was first in-
troduced' there was some uncertainty about its
precise form. For the formation of a meson,
quark-antiquark recombination was considered
dominant. The gluons would contribute to multi-
parton recombination processes, which were
though to be less important. On the basis of the
counting rule the momentum dependence of the
recombination function was suggested to be that
given in (1.2). The normalization constant o. was
unspecified. The important property of (1.2) is
that it vanishes at x,. = 0 and 1, signifying short-
range correlation. Indeed, it has been shown' that
(1.2) corresponds to a correlation length of two
units in rapidity. Although the phenomenological
application of (1.2) has been successful, the recom-
bination function has thus far remained as an im-
precisely defined quantity, and its derivation lacks
rigor. A better understanding of this function is
crucial to a proper formulation of the recombina-
tion model.

The task is made simple by the development of
the valon concept. Take the pion for definiteness.
The absolute square of the wave function

(v, (y, )v, (y, )
~

w) describes not only the probability
of finding the two valons of a pion at y, and y„but
also the probability of forming a pion from two
valons at those y, values. 'The amplitudes are re-
lated by complex conjugation. In a theory in which
valon states are defined, this relationship is exact
and defines recombination. Thus the invariant
recombination function is

f~ (Xia3'2)=+u/k(3'k) J2) . (3 1)

(3.2)

in agreement with (1.2). Moreover, the normali-
zation is now completely fixed. Note that x, and
x, refer to the momentum fractions of the valons
that recombine. The result is obtained without
using the counting rule, ' yet it is in agreement
with that obtained by using it, provided that quarks
are replaced by valons. In a similar way we can
get the recombination functions for the other had-
rons:

The reason why we have no ambiguity here, as
opposed to the case in Ref. 3, is that the valon con-
tent of a hadron is definite and known. Gluons are
automatically taken into account in that they dress
up the quarks to form the valons. The question of
how the partons in an incident hadron turn into
valons of the produced particles remains to be
discussed, as we shall do in the next two sections.
The issues are, however, distinct. Here, we are
concerned only with the probability for recombina-
tion, given the valon momenta.

E(luation (3.1) expresses the recombination func-
tion when the pion momentum is normalized to one.
If the pion momentum is a fraction x of the initial
hadron momentum, then (2.29), (2.30), (2.38b), and
(3.1) imply

x x~
kaon: (( (x;,x„x)=fk(x, kH

'
I

O + () (3.3)

(3.4)

(x,x,/x')'(x, /x)'O(~+ ~+~ —) l

Yhyperon: 8 (x„x,x„x)=
/( y)/( g)

(3.5)

IV. QUARK DECAY FUNCTION

Before we consider the problem of hadron frag-
mentation, we discuss first quark fragmentation

as an introduction to the subject. The decay func-
tion for quark fragmentation can be calculated ex-
actly in QCD and the recombination model without
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using any phenomenological input, and the result
gives a good no-parameter fit to the data. The12

decay function D(x, Q ) is related to the qq distri-
bution and recombination function in just the same
way as in (1.1}:

xD(x, Q ) = E(x),x2, Q )R(x„x2,x)
cf

Xi +2

(4.1)

except that now the E function depends also on Q,
which in the case of a quark jet from e e annihil-
ation, for example, is the square of the c.m. ener-
gy. When Q is large, F(x, ,x2, Q ) can be calcu-
lated in QCD. Hadron fragmentation is difficult to
treat precisely because F(x, ,x2} in (1.1) has no
large Q, so perturbative method in QCD is not
applicable. Nevertheless, the similarity between
(1.1}and (4.1) provides us with the opportunity to
use quark fragmentation as a more tractable ex-
ample to elucidate the ideas involved in our cal-
culation of hadron fragmentation in Sec. V.

A pictorial depiction of (4.1) is shown in Fig. 5.
The crosshatched blobs represent evolution func-
tions which describe the degradation of Q' as the
quark created at the virtual-photon vertex emits
gluons and quark pairs. E(x&,x2, Q ) is the qq dis-
tribution represented by the part in the figure
from the initial quark at Q to the q and q at the
position of the vertical dotted line. Evidently, one
bifurcation vertex must be considered explicitly,
at which the momentum fractions and virtual
masses of the quarks and gluons involved are to
be integrated and the parton types (quark, anti-
quark, and gluons) are to be summed. The evolu-
tion functions are known from renormalization-
group analysis. On the other side of the dotted
line in Fig. 5 is the recombination function. At
the dotted line the Q value associated with the q
and q is Qo . It may appear inconsistent to regard
them on the one hand as quark and antiquark re-
sulting from sequential bifurcations in F(x&,x2, Q ),
but on the other hand as valons in connection with

I

I

I

I

I

I

1

PIG. 5.. A schematic diagram showing pion production
in a quark jet initiated by a virtual photon. The three
shaded blobs represent inclusive parton {quark, anti-
quark, or gluon) distributions in partons. The open blob
represents recombination.

hadronization through R(x&, x2, x), the label Qo
being implicit in both these functions. This duality
is actually an essential property of the valons
since they play the role of bridging the hard and
soft processes. What is involved is exactly anal-
ogous to the case of structure functions for which
the valon concept was first introduced, the only
difference being the direction of Q change. Recall
(2.1) and Fig. 1. In the two factors in the inte-
grand, or for the two blobs in Fig. 1, the valon
plays dual roles. In G„&„(y}the valon is the val-
ence-quark cluster, and at Qo its internal structure
cannot be discerned. The counterpart of G„&„(y)
in (4.1) is R(x&, x2, x), the precise connection having
been established by (3.1). For the factor F"(z,Q )
in (2.1) describing the structure function of a va-
lon, the mathematical treatment regards the valon
initially as a point quark at Qo with momentum dis-
tribution 5(z —1), and tracks the modification of
the distribution as a result of gluon bremsstrah-
lung until a quark in the cluster is struck by a vir-
tual photon at Q . This is done in QCD with the
initial and final quarks treated as point quarks.
Loosely, one may refer to the distribution as quark
structure function, but physically it is the valon
structure function. The counterpart of P"(z, Q ) in
(4.1) is F(x„x2,Q ). Evidently, the processes rep-
resented by Figs. j. and 5 are analogous; in the
former, Q increases from left to right, while in
the latter, it decreases.

The parallel between (2.1) and (4.1) provides
the excuse for the use of leading-order calculation
of E(x&,x2, Q ) in perturbative @CD for Q' degrad-
ation all the way down to Qo . That is because Qo
itself is determined in the same approximation.
Recall that it is with the leading-order result for
F"(x/y, Q ) substituted into (2.1) that'the vN data is
fitted. Thus, in both the structure function F (x,
Q ) and the decay function xD(x, Q ), the leading-
order approximation (and the associated choice of
Qo) is the common vehicle that is convenient in re-
lating valons to hard-collision processes. An im-
provement of the approximation does not change
the parallelism in those relationships for the two
functions, nor is it likely to lead to a significantly
different result for D(x, Q ) if the structure func-
tion is regarded as the source of phenomenological
input on the degree of evolution.

A final remark about the calculation of D(x, Q )
is that it must account for the momenta carried
by the gluons because hadronization is complete,
i.e., all partons get converted into hadrons in the
end. If E(x„x2,Q ) is the qq inclusive distribution
in a quark jet which has momentum leakage into
the gluons, its use in (4.1) would not lead to the
correct normalization for D(x, Q ). Thus it is ne-
cessary to include in F(x&,x2, Q') the q and q con-
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verted from gluons. In that way the recombination
model can fully aeeount for the hadronization of
all the partons in the quark jet.

All the considerations about quark fragmentation
discussed in this section have their counterparts
in hadron fragmentation to which we now turn.

V. HADRON FRAGMENTATION

The problem of hadron fragmentation is difficult
to treat because, unlike hard-collision processes,
it has no large Q scale. Hadron-hadron collisions
at high energies are dominantly soft processes
since reaction rates drop precipitously with in-
creasing P~. Thus they do not reflect the short-
distance behavior of the interaction, and one can-
not use the usual impulse approximation valid for

large-Q' reactions. However, there is one feature
about multiparticle production that saves us from
hopeless complications. It is the short-range cor-
relation of the produced particles. On the basis of
that one may first of all be justified to ignore the
target hadron when studying the fragmentation re-
gion of the projectile. Furthermore, at the parton
level the interaction between partons must also be
short-ranged. The recombination model relies on
the short-range character of the interaction to de-
scribe the hadronization process which is approxi-
mately local in rapidity (&y -2) so that what goes
on in the fragmentation region may be dissociated
from that in the central region. These properties
form the basis for (1.1), which has an appearanoe
that follows from impulse approximation.

What is involved in hadron fragmentation is a
multistage process:

initial hadron —"'valons —'partons 'valons 'produced hadrons. (5.1)

Stage (1) has been discussed in Sec. II and is rep-
resented by the valon distribution G„~„. Stage (4)
is known from Sec. III and is described by the re-
combination function R. Stages (2) and (3) are our
concerns here; together with (1) they specify
E(x&,x2), which is the major unknown in (1.1).

A. Stage (2)

If we were able to peek at the parton state with-
out disturbing the system, we would presumably
discover quark and antiquark distributions which
are very close to the ones determined by electro-
production at low Q . We do not know how low the
value of Q must be in order to be relevant to the
low-P2 problem. In the precursor model for
E(x&, x2), which denoted two-parton distribution
since the valon concept was not yet introduced, the
form (1.3) was adopted, where E,(x&) and E,(x, )

were assumed to be the quark and antiquark dis-
tributions determined by Field and Feynman in
fitting the SI.AC data on nucleon structure func-
tions. The Q range was 1—5 GeV . Although one
may question whether such "high" values of Q are
relevant for low-Pr reactions where Pr «I (GeV/
c), the result of the calculation lends support to
their relevance. Presumably, precocious scaling
implies that the precise value of Q is unimportant
and that even at Q in the vicinity of 3 GeV the
parton distributions have already run through the
major course of their Q changes (i.e. , mature
evolution). Indeed, as we shall see below, the pa-
rameter that characterizes the evolution from va-
lons to partons in stage (2) turns out to be quite
large.

4(x, , x2) =4 "'(xi,x, ) +4' '(x, ,x2), (5.2)

which are illustrated by the diagrams in Fig. 6.
Let &(z) denote the invariant distribution of finding

The strategy of our approach to the problem is
as follows. We first admit that we have no way to
calculate the parton distributions from first prin-
ciples. Some free parameters must per force be
introduced; they are, however, not to be deter-
mined by the hadronic inclusive cross section for
which we want to obtain a no-parameter fit, but by
vW2(x) at low Q . What we achieve as an improve-
ment over (1.3) is that the valor& distribution in
stage (1) properly introduces the hadron wave
function and automatically takes care of the phase-
space problem, which was handled in an ad hoc
manner by the factor p(x&, x2) in (1.3). The evolu-
tion in stage (2) from the valons to the partons will
be parametrized by formulas reminiscent of QCD.
Although they cannot be taken seriously, the large-
ness of the evolution parameter renders the pro-
cedure not totally nonsensical.

For definiteness we shall consider hereafter the
fragmentation of the proton only and the detection
of n' in particular. Thus a valence u quark in the
proton ends up in the v . Let C(x, , x2) be the in-
variant inclusive distribution of u and d carrying
momentum fractions x& and x2 of the proton, re-
spectively. It is obtained by a convolution of the
distributions in stages (1) and (2). Since the u and
d quarks may either both come from the same va-
lon or come separately from two different valons,
@(x,, x2) has two components
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a quark with momentum fraction z in a valon of
the same flavor. &As in all distributions con.-
sidered in this paper, color and spin components
are averaged over in the initial state and summed
in the final state so that we are not concerned ex-

plicitly with such degrees of freedom. ) Let L(z)
be the same for any antiquark or a quark with
flavor different from that of the parent valon.
Since a proton has two U valons and one D valon,
we have

(5.3)dyG. «(y)-'Kl~ Li ' +LI~IK ' +fx ()' x, (» x, ~x x,
xz

4"'(x x)=2 dydy G «(»»}KI~IL ~ +2 dyid»G. sl«(yt y» Kl I+Ll
I

L —
I

(54)(x} x (x~'I (~x) x2 'WI

UU/~ i~ 2
( ) y2)

I+
I

x p) iyi
(5.5)

C~(x) =3 dy G(y)I.(
—

)
. (5.6)

In our approximation in Sec. II, the valon distri-
butions are assumed to be flavor independent due
to the lack of high-Q data from which to extract
the flavor dependence. Thus for brevity we shall
suppress the subscripts of the G functions in (5.3)
and (5.4), and in computation below use (2.2V) and
(2.26) for them, respectively.

Equation (5.3) is not precisely a convolution
equation. The distribution of ud in a valon is anal-
ogous to that in a quark jet, for which a precise
expression in perturbative QCD is given in Ref.
12. But at low Q such an expression for a valon
jet is unreliable. Since the functions E and L will
be determined phenomenologically anyway, an ap-
proximate expression such as the one in (5.3} that
captures the essence of quark jets is totally ade-
quate. The u quark and d antiquark distributions
in a proton are, respectively,

Relationships between 4(x, , x2) and C(x) such as
r 1-&]dx—— 4)(xt, x2) =(n(xt))4)(xt)

jp x2
(5.Va}

dx, 4(xt, x2}=(x2(x, ))4 (xt)
0

(5.Vb)

is not useful as an extra constraint on the relation-
ship between 4'(x, , x, ) and C(x, ) because (x2(x, )) is
not known a Priori, it being the average total mo-
mentum fraction of parton 2 associated with a par-
ton at x&. Equations (5.2)-(5.4) provide a basic
improvement over (1.3). In our view they consti-
tute a physically more correct expression of the
two-parton distribution than the Kuti-Weisskopf
model.

The functions K(z) and L(z) are to be determined
by ensuring that they lead to the correct 4„and
4„- distributions at low Q . More precisely, we
calculate the observable quantities vW2(x) and the
sea quark distribution xS(x) which can be deter-
mined from leptoproduction data:

should not play an important role since the x& de-
pendence of (n(x&)), which is the parton multiplicity
associated with a parton at x&, is unknown; be-
sides, its magnitude is infinite in the strict scal-
ing limit. Similarly, momentum sum rule

(a)

vW2(x)

4 (x & x') 1 (x1(
dy2G i~(y} —"I—I+L —

I
+- 4LI —

I

+ a~(:„,(,)I-', u(-*) +-', z(-")+BI(*-)I
x x '

i dy G(y) K — + 3L— (5.8)

(b)

Fgo. 6. Schematic diagrams for (a) @ (x~, x2), where
u and Z quarks come from the same valon and (b)
4 (qmx2), where they come from different valons.

xS(x) = dy 2G»(y)L —
I

+GDg (y}L
x ~I x
p j

=3 dy G(y)LI —I.Ixr
Pl (5.9)

K(z) and L(z) are favored and unfavored distribu-
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tions which can be expressed in terms of the
singlet (Ks ) and nonsinglet (KNs) components:

(5.13), and (5.15) we have for the moments

(v W2)(n) =fvf „&„(n)t exp(-d"„K)+ 4aB(n —1,c + 1)],
K =[Ks+(2f-1)K„s]/2f=K„s+L,
L =(Ks -KNs)/2f

(5.10)

(5.11)
(xS)(n) = 3aM„&z(n)B(n —1,c + 1) .

(5.18)

(5.19)
Hence, we can rewrite (5.8) as

vw, (x)= dye(y) K„s~- +4L~—Ix (x
NS

(
~ (5.12)

Now, we specify the parametrization of the un-
calculable functions K»(z) and L(z) so that they
can be determined phenomenologically. For K»(z)
we assume on the basis of precocious scaling that
its moments, K»(n), defined as in (2.5), have a
form that can be mimicked by the solution of the
renormalization-group equation, i.e. ,

KNs(n) =exp(-d"„'g), (5.13)

where & is a free parameter to be adjusted to fit
vW2(x). If the leading-logarithm approximation
were sensible, then ( would be identified as

1nQ /A (5.14)

But we have no large Q2 in the problem. For the
present it is more proper to regard (5.13) merely
as a one-parameter formula for the nonsinglet mo-
ments. For L(z) there is no simple formula that
can mimick the Q evolution in QCD; we adopt the
canonical form

The empirical values for these moments can be
trivially obtained from (5.16) and (5.17) and are
plotted as dots in Fig. 7. They can be well fitted
by (5.18) and (5.19) with the choice

& =2.0, a=0.08, c =3.5, (5.20)

as evidenced by the curves in Fig. 7. With these
parameters fixed, we have completely determined
the ud distribution C (x&, x2) through (5.2) —(5.4).

We note that the value P =2 determined phenom-
enologically above turns out to be quite reasonable,
if we use (5.14) to find the corresponding value of
Q . For Qo and A given in (2.14) (derived from
BEBC data ') and (2.19b) (from CDHS data ' ),
we obtain Q = 1.58 GeV and 1.69 GeV, respective-
ly. These are just the values relevant to the data.
Admittedly, (5.13) and (5.14) cannot be taken ser-
iously for these low-Q values. But the largeness
of P (for a log log function) may render their ap-
plication meaningful. It means that evolution has
been substantial, a circumstance which we have
already anticipated on the basis of precocious
scaling and large momentum fraction for the glu-
ons. The place in our simple formalism (in the

L(z) =a(l —z)', (5.15)

vW2(x) =(1 -x) [1.274+ 0.5989(1 —x)

—1.675(1 —x) ] . (5.16)

where a and c are to be adjusted to fit vW~(x) and
S(x). The only unknowns in the problem I viz. ,
K(z) and L(z)] are now reduced to three parame-
ters, f, a, and c, which are to be determined out-
side the realm of the hadron fragmentation prob-
lem.

For the empirical expressions of vW2(x) we
choose low-Q data for proton and find in Ref. 29
a parametrization of the early but classic data
taken at SLAG: (f)

V

IO

IO

IO4

I
'

i
'

I

I
O- t

10 2

IO

For the sea quark distribution at low Q we use
IO' IO4

xS(x) =0.17(1 -x) (5.17)

where the normalization is that suggested by Field
and Feynman; the exponent is in the range
adopted by them and is also suggested by Berger30
in fitting dimuon production data.

Instead of inverting the moments in (5.13) in or-
der to fit (5.16) and (5.17), it is more convenient
to work directly with moments. From (5.9), (5.12),

IO
6 IO'

142 4 6 8
n

FIG. 7. Moments of &S'2 and xS. Dots are empirical
values. Curves are theoretical fits that fix the parmn-
eters in the model.
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sense of leading-order QCD) where such physical
features at low Q are stored is the closeness of
Qo to A. As we have mentioned previously, Q, is
an effective value of the evolutionary start point
determined from high-Q2 neutrino scattering data,
which obviously must contain information consis-
tent with low-Q behavior.

B. Stage (3)

What we have obtained for l(x&, x2) is the inclu-
sive distribution of u and d in proton. If they are
to form a pion by recombination, the outstanding
question is abo~t the role of the gluons. Obvious-
ly, the gluons should be accounted for in some
way, lest the momentum they carry would be lost
from the final hadronic spectrum. In stages (3}
and (4) of (5.1) we are concerned with the hadron-
ization of all partons (including gluons), not just
u and d quarks, whose distribution we have just
specified. Gluons can hadronize either by being a
partner of recombination with q and q, or can
create qq pairs which then hadronize subsequently
in appropriate combinations. The former possi-
bility implies multibody recombination which is not
likely to be important except perhaps in the limit
x-1; it is totally ignored in Ref. 3 as well as in
other subsequent investigations. To describe it in
the valon picture is also difficult. For the recom-
bination of u and d' quarks only it is easy; we sim-
ply identify them as U and D valons, which are in
the proper representation for hadronization. This
identification of quarks with valons is not an arbi-
trary approximation, but is a feature of valons,
reflecting their dual properties discussed in Sec.
IV. Physically, it means that the u and d quarks
in time develop their own clusters and turn them-
selves into valons. Mathematically, the duality
can be discussed more precisely in the case when
there is a large Q, as in Sec. IV; here we simply
borrow that notion without any alteration.

%e are left then with the problem of hadroniza-
tion of gluons through qq pair creation. This prob-
lem is treated quantitatively for a quark jet at high
Q because calculational method is available. ' At
low Q we have no independent guidepost for the
gluon distribution. Although one can make a rough
estimate for it, it is not very useful if the conver-

sion from gluons to qq pairs is not known. At this
point we recall that Duke and Taylor' succeeded in
producing a remarkably good fit of all the meson-
inclusive cross sections in the recombination mo-
del by using an enhanced sea which saturates the
momentum sum rule. That is, the qq sea quarks
in their fit carry all the momentum of the incident
proton after subtracting off the momentum fraction
of the valence quarks, with none left over for the
gluons. %e regard that result as being a satisfac-
tory guide to the formulation of an effective way of
accounting for gluon hadronization. The gluons
are first to be completely converted into qq pairs
in such a way that the quiescent sea (as probed in
electroproduction) is enhanced in normalization to
the maximum extent with no essential change in
its distribution. The valence quarks and these
sea quarks are then to be regarded as valons,
which recombine.

To carry out this procedure we first calculate
the average momentum fraction carried by the
valence quarks. It is

dx x [2u(x} +d(x}]„
4

x=3 (dxdy G(y)K„~—

= 3M „~ (n = 2)K„(n= 2, g = 2) =0.45 . (5.21}

The balance in momentum fraction is carried by
the enhanced sea

0.55 =6 dx dy 3G(y)I
i

—i,(y1
where

L(z) =a(1 —z)'.

(5.22)

(5.23)

With c = 3.5 according to (5.20), a is found to be
0.41. Thus the enhancement factor is about 5.

The complete ud distribution to be identified as
valons at the end of stage (3) in (5.1) can now be
determined. Denoting it by F(x„x2), we equate it
to C(x&, x2) in (5.2) with the condition that L(z) in
(5.3), (5.4), and (5.10) be replaced by L(z) in
(5.23). That is, in the abbreviated notation of G(y)
and G(y&, y2) which are flavor independent, we have

~(x„x,) =~«&(x„x,) +~(»(x„x,),
F"'(x„x)=~f ay o(y)I rc„,(~ + (~)21K((

"' )+i(~) z„,(
*'

) +Z(-*' ) I,

E"'(x„x,) = 2 Jl dy) Jl dy2G(y, y, ) 2K» ~ + 3L
«1 «2 Xi Pi $2

(5.24)

(5.25)

(5.26)
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The parameters that govern K» and L through
(5.13) and (5.23) have all been fixed; they are col-
lected here as follows:

where

i i-yi
G' '(m, n) = dy~ dy2y1 y2 'G(yi, y2)

0 0

f =2, a =0.41, c =3.5.

C. Inclusive distribution for pp ~ n'X

(5.27)
B(m+-,', n+ 2)B(n+-,', -'. ) . (5.37)

2r

Since the two factors in (1.1) are now completely
fixed, it is only a matter of computation to deter-
mine the inclusive cross section of the detected
pion. To simplify the calculation which could in-
volve quadruple integrals, it is best to work with
moments. Denoting (x/o)(do/dx) by H(x), we de-
fine

i
H(N) = H(x)x" dx .

0
(5.28)

From (1.1) and (3.2) we then obtain
S-i

H(N) = g [(m +n —3)B(m —1,n -1)] F(m, n)5,„,~,~
m=2

(5.29)

for N ) 3, where

A(N) =0.6B(N, 4.5) + 0.9B(N —1,6),
which is shown by the solid line in Fig. 8. It
translates immediately to

(5.38)

Using P =2 in (5.13) all the terms above can be
evaluated, so we can determine H(N) unambigu-
ously and without approximation. The result is
presented as dots in Fig. 8. It is of interest to ex-
hibit also the separate contributions of the two

components, F' ' and F'2'. Denoted as H"'(N) and
H'2'(N), they are shown in Fig. 8 as dashed and
dash-dot lines, respectively. Evidently, the con-
tributions from the two components are compar-'
able, although the two-valon contribution is bigger
except at high N, i.e. , high x.

To invert the moments, we approximate H(N) by
a sum of two P functions

pi i
F(m, n) =

J~ dx& dxmx,
" x2" E(x„x2)

0 0

=F"'(m, n) +F"'(m, n) . (5.30)

A(x) =0.6x(1 —x) ' +0.9(l -x) (5.39)

This is the theoretical prediction for (x/vr)do/dx
in our model without any free parameters. Using

If we define the double moment transform of a
function J(z) by

i
J(m, n) = dzz (1 —z)" 'J(z),

0

(5.31)

where
(5.32)

i
G"'(N) = dyy"-'G(y) = —",,'B(N+ -'„3), (5 33)

i
L(n) = dz z" L(z) =0.41B(n —1,4.5) . (5.34)

0

where J(z) may be either K„s(z) or L(z) in (5.25),
then we have in obvious notation

F' '(m, n)

=G 't '(m + n —1)f [K„B(m,n) + 2L (m, n)]L (n)

+ L(n, m) [K„s(m) +L(m)]],
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It is shown in Appendix A that

K„s(m, n) =g [B(k+ 1,n-k)] 'KNS(m+k) .(-1)'
S

(5.35)

For the moments of I' ' ' we have

E '2 '(m, n) = 2G ' '(m, n)[2KNS(m) + 3I.(m )]L (n),

(5.36)

IO
~
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2 4 6 8 I 0 I 2 I 4
N

FIG. 8. Theoretical predictions for the moemnts of
the hadronic inclusive distribution. Dashed and dash-
dotted curves show the contributions from the two sub-
processes indicated respectively in Figs. 6(a) and 6(b).
The dots are their sum, The solid line represents an
approximation of the dots for the purpose of inversion
of the moments.
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o~ =38.7 mb we plot the corresponding inclusive
cross section in Fig. 9 (solid line}. For a compar-
ison with experiment we show in the same figure
data on PP -w X at 100 and 175 GeV." The large
error bars are due to the fact that the data on
Ed o/dpI must be integrated over pr for which the
measured range is not extensive. Although fixed-
P~ data are abundant and of high statistics, we
need the integrated (over Pr} data in order to check
the normalization as well as the shape of our pre-
diction. The same data and theoretical result are
plotted in linear scale in Fig. 10. The agreement
is evidently very good over the whole x range. We
emphasize that the theoretical result involves no

adjustable free parameters, the only empirical
input being electroproduction data.
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VI. CONCLUSION

We have formulated a way of studying low-p&
reactions. Although some details may be im-
proved, the ideas contained in the treatment prob-
ably reflect quite accurately the basic mechanism
of hadron fragmentation. It is a quantitative de-
scription of what has for long been vaguely sup-
posed for production processes in the quark model.
The basic steps must involve the transitions from

0
O. l 0,5 0.5

X

0.7 0.9

FIG. 10. Theoretical prediction (solid line) compared
to the data (Ref. 31) for the inclusive cross section
PP-7t'X at 100 and 175 GeV.
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X

FIG. 9. Theoretical prediction (solid line) compared
to the data (Ref. 31) for the inclusive cross section
PP -~'& at 100 and 175 GeV.

an incident hadron to partons and then back to had-
rons. The key element in our formulation that gets
rid of arbitrary constants while incorporating
proper dynamics is the introduction of the valon
representation. The hadronic wave function in
terms of the valon coordinates is known from
structure-function analysis. That takes care of
the two ends of the production chain. The trans-
mutation from valons to partons is mimicked by
formulas with @CD origin, where precise param-
etrization is fixed by low-Q electroproduction
data. The part that is least reliable in the formu-
lation is the treatment of gluon conversion. Since
we know that no gluons are left over in the final
state, we have adopted the classic picture that
they all produce qq pairs which subsequently re-
combine. Thus the sea is enhanced to the maxi-
mum. Again, no free parameters are introduced
if the x dependence of the enhanced sea remains
the same as that of the original sea, an assump-
tion which is not unreasonable. A similar maxi-
mal gluon-conversion mechanism is used in the
quark-jet analysis but with more precision since
high Q is involved; the result contributes to an
excellent no-parameter fit of the quark decay
function. ~ In this paper we have ignored flavor
dependence of the valon distribution. This should
be corrected as soon as a more thorough analysis
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of the nucleon structure function is done. Then
the m'/m ratio of the meson spectra can be calcu-
lated.

We have emphasized in this paper the formulation
of the low-P~ problem. Application of the formal-
ism to various specific reactions can be carried
out without basic complication. For the production
of strange mesons and baryons, for example, the
effects of quark masses as well as three-valon re-
combinations can be investigated on the basis of
the analysis described in Secs. II and III. Particle
correlation can also be studied. A better deter-
mination of the evolution parameter g can be made
if we replace vR'2 by the inclusive cross section of
pP -n X as a phenomenological input. At the sac-
rifice of not predicting that one reaction, we gain
a reliable value of g for low-p~ reactions, which
can then be used to calculate the cross sections
for all other reactions, including those initiated
by meson beams, The idea here is that the evolu-
tion from valons to partons should be the same in
all low-P~ reactions, whether they are in mesons,
nucleons, or even hyperon beam particles. The
parameter c in (5.23) for the sea distribution is
most probably independent of the hadron, and the
parameter a can be determined as indicated in this
paper. Since the valon distributions are already
given in Sec. II, we therefore have at hand a tight
scheme that allows one to calculate the inclusive
cross sections of all hadronic reactions. Of
course, we are optimistic that the agreement with
data will be good.
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APPENDIX

We want to evaluate

1

K„8(m, n) = dzz (1-z)" KNS(z) .
0

(A1)

Since we know the moments K„z(n), we have by
Mellin transform

g+f eo

K„(z)= . dl z "iK„(l).
2wz

(A2)

Substitution into (A1) yields
e+j ~

K„z(m, n) =2 . d/KNH(l)B(m —f, n) . (A3)2'

The integrand has simple poles at 1 =m, m + 1, . . . ,
and m+n —1. Letting 0=l —m, and using the
identity

I"(-k)=w/[I'(k + 1) sine(k + 1)], (A4)

we have for the residues at the poles of B(-k,n)

(-1) ' I'(n)/[1(k+ 1)I'(n -k)] .
It then follows from contour integration of (A3) that

K„(m,n) =Z [B(k+1,n —k)] K„(m+k) .
o S

(A5)

~For recent reviews see B.C. Hwa, in Proceedings of
IX International Symposium on High Energy Multi-
particle Dynamics, Tabor Czechoslovakia, 19T8
(Czechoslovak Academy of Science, Institute of Phys-
ics, Prague, 1978); L. Van Hove, Schladming Lecture,
1979 (unpublished) [Report No. TH. 2628-CERN (un-
published)].

W. Ochs, Nucl. Phys. 8118, 397 (1977).
K. P. Das and R. C. Hwa, Phys. Lett. 688, 459 (1977).
R. Blankenbecler and S. J. Brodsky, Phys. Rev. D 10,
. 2973 (1974).

~R. C. Hwa and B.G. Boberts, Z. Phys. C 1, 81 (1979).
D. W. Duke and F. E. Taylor, Phys. Bev. D 17, 1788
(1978).

J.Kuti and V. F. Weisskopf, Phys. Bev. D 4, 3418
(1971).

T. A. DeGrand and H. I. Miettinen, Phys. Rev. Lett. 40,
612 (1978); T. A. DeGrand, Phys. Bev. D 19, 1398
0.979).

E. Takasugi, Z. Tata, C. B. Chiu, and B. Kaul, Phys.
Rev. D 20, 211 (1979); E. Takasugi and X. Tata, ibid.
21, 1838 (1980).

T. A. DeGrand, D. W. Duke, T. Inami, H. I. Miettin-
en, J.Banft, and H. Thacker (unpublished).
V. Chang and R. C. Hwa, Phys. Lett. 858, 285 (1979).
V. Chang and R. C. Hwa, Phys. Rev. Lett. 44, 439
(1980).

3R. C. Hwa, Phys. Rev. D 22, 759 (1980).
R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969).

~~G. Altarelli and G. Parisi, Nucl. Phys. 8126, 298
0.977).

~ 8. Andersson, G. Gustafson, and C. Peterson, Phys.
Lett. 698, 221 (1977); A. Capella, U. Sukhatme, C. I.
Tan, and J. Tran Thanh Van, Phys. Lett. 818, 68
(1979); A. Capella, U. Sukhatme, and J. Tran Thanh
V~, Orsay Report No. LPTPE 79/23, 1979 (unpub-
lished); G. Cohen-Tannoudji, A. El Hassouni, J.Kal-
inowski, O. Napoly, and B. Peschanski, Phys. Bev. D
21, 2699 (1980).
S. J. Brodsky and J. F. Gunion, Phys. Bev. D 17, 848
(1978).
J.F. Gunion, Phys. Lett. (to be published).

SG. Altarelli, N. Cabibbo, L. Maiani, and R. Petronzio,
Nucl. Phys. 869, 531 {1974); N. Cabibbo and B.Pe-



1608 RUDOI PH C. HWA 22

tronzio, ibid. B137, 395 (1978).
,T. A. DeGrand, Nucl. Phys. B151, 485 (1979).
~P. C. Bosetti et al. , Nucl. Phys. 8142, 1 (1978).
J.G. H. de Groot et al. , Phys. Lett. 82B, 292 (1979);
82B, 456 (1979).
A. Para (private communication); see also, in Pro-
ceedings of the 1979 International SymPosium on I.ep-
ton and Photon Interactions at High Energies, Fermi-
la&, edited by T. B. W. Kirk and H. D. I. Abarbanel
{Fermilab, Batavia, Illinois, 1979).

24C. B. Newman et al. , Phys. Rev. Lett. 42, 951 (1979);
J.E. Pilcher, in Proceedings of the 1979 International
Symposium on Lepton and Photon Interactions at High
Energies, Fermil'ab, edited by T. B. W. Kirk and
H. D. I. Abarbanel {Fermilab, Batavia, Illinois, 1979).
S. D. Drell and T. M. Yan, Phys. Rev. Lett. 25, 316
(1970).

26G. W. Brandenburg (private communication); a paper
on the subject is in preparation.

VG. P. Lepage and S. J. Brodsky, Phys. Rev. Lett. 43,
545 (1979); 43, 1625 (E} (1979); A. Duncan and A. H.
Mueller, Phys. Rev. D 21, 1636 {1980).
~R. D. FieM and R. P. Feymman, Phys. Rev. D 15,
2590 (1977).

SG. -Miller et al. , Phys. Rev. D 5, 528 (1972}.
E. L. Berger, in New Results in High Energy Physics—
1978, proceedings of the Third International Confer-
ence at Vanderbilt University on High Energy Physics,
edited by R. S. Panvini and S. E. Csorna (AIP, New
York, 1978).

3~G. W. Brandenburg and V. A. Polychronakos (private
communication). I am grateful to them for permitting
me to use the preliminary data of Fermilab Experi-
ment No. E118 (unpublished),
F. E. Taylor et al. , Phys. Rev. D 14, 1217 (1976).

33J. Singh et al. , Nucl. Phys. 8140, 189 {1978).
D. Cutts et al. , Phys. Rev. Lett. 43, 319 (1979).


