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The cross section for diffractive dissociation of the pion into a high-mass system clearly separated in momentum
space from other final-state particles is calculated using two-gluon exchange between the pion’s quark-antiquark and
the target. Two-jet behavior for the pion-fragment subsystem is predicted and the dependence on jet angle and on
the mass of the diffractively excited system is calculated. Comparisons are made to an earlier calculation of the
analogous photon-induced process, and the magnitudes of both cross sections are estimated and found to be

sufficiently large to measure.

I. INTRODUCTION

The diffractive photoproduction of quark-anti-
quark (g7) pairs has recently been treated in the
context of perturbative quantum chromodynamics
(QCD).! The mechanism studied in Ref. 1 (here-
inafter referred to as KDR) is one in which the
incident photon couples in a pointlike manner to
a gq pair which then scatter from the target pro-
ton via two-gluon exchange. The principal reason
for exchanging two gluons rather than one, which
had been studied previously,’ was to facilitate
identification of the ¢q system, thereby focusing
on fragments of .he photon alone. The final-state
configuration considered was one in which the re-
coil proton (in yp = Xp) had the smallest longitud-
inal momentum in the laboratory frame and was
separated by a large rapidity gap from any other
final-state particle, e.g., the proton alone in one
center-of-mass (c.m.) hemisphere and N pions in
the other. Such a configuration allows the pions to
be identified as fragments of the beam (photon),
and the pion system can then be subjected to ex-
actly the same jet analyses as in e 'e” annihilation
into hadrons. It was argued by KDR that such
events arise from the exchange of a color singlet
(99 or gg) rather than from one-gluon exchange.
The latter produces two color-octet systems, and
the subsequent soft color neutralization and hadron
formation should not lead to large holes in mo-
mentum space. (A more detailed argument in the
context of ¢"e” annihilation can be found in Ref,
3.)

The photon-induced reaction is a particularly
convenient case to study because the coupling of
a photon to ¢g is known, provided we are consider-
ing a short-distance (sub)process. If both t=(p,
-bx)? and M*=p,?are large, then a hard subpro-
cess is assured; in addition, KDR made a case
for large M? being sufficient, even for small |f|.
They then calculated cross-sections differential
in M? and in cos6*, where 6* is the angle between
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the quark jet and the incident photon in the 5,( =0
frame. In order to do so it was necessary to as-
sume a particular form for the elastic two-gluon
form factor of the proton. It was expected, how-
ever, that the details of the fragments of the
photon would be relatively insensitive to the nature
of the target, and this did indeed prove to be the
case in KDR’s calculation.

This paper will treat the analogous pion-induced
reaction. There are two obvious qualitative differ-
ences in the two calculations: The pion coupling
to ¢q is not pointlike, and furthermore it is not
known. The lack of a hard component in the mqq
coupling we would expect to see reflected in some
feature (e.g., M? dependence) of the pion cross-
section results when compared to the photopro-
duction predictions. The second difference is no
longer an insuperable problem since the behavior
of the pionform factor whenone quarkishighly vir-
tual has now been calculated.* Since we did notknow
the ygq coupling when neither quark was highly
virtual, we are in qualitatively similar situations
in photon and pion fragmentation.

We are therefore in a position to calculate mp
-Xp, where the proton is the slowest final-state
particle (in the laboratory) and is well separated
in rapidity from any particle in X. In fact, since
the results depend only weakly on the proton side,
there would be little difference if we replaced the
ggbp vertex by a ggpX’ vertex (although we might
want to change the ¢ dependence of the proton form
factor). We can then calculate mp ~XX', where the
X and X' systems are separated by a sizeable
rapidity gap, and similarly we can obtain predic-
tions for the analogous photoproduction process
yp =XX', In addition, we will estimate the overall
normalization for both pion- and photon-induced
processes in order to get some idea of the values
of M* for which it is feasible to measure these
cross sections.

The outline of the remainder of the paper is as
follows. In the next section, we review briefly ihe
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salient features of the photoproduction calculation
of KDR, establishing our notation in the process.
Section III contains the body of the calculation and
presents the results, which are discussed in Sec.
IV. There is also one appendix, containing details
of the normalization estimates.

II. NOTATION AND PHOTOPRODUCTION REVIEW

The diagrams calculated in Ref. 1 are shown in
Fig. 1(a), where the blobs on the right-hand side
were originally the subgraphs of Fig. 1(b). When
the blob is given by Fig. 1(b), then the graphs of
Fig. 1(a) are the leading order in ¢, of those which
are leading order in Vs . Using Fig. 1, one is
actually calculating photon fragmentation from a
meson target, but if the fragmentation is approxi-
mately target independent this will not matter.
(We will see below that this is the case.) The cal-
culation is done in the limit s >M?, [t|, m2,
where s =(p, +p,)}, M*=(q,+q,)*, t =(p; —P3)°
=K?, In order to have the gg form visible jets,
and as a necessary condition for the application
of perturbation theory, we also require M m?,
but we do not use this fact to neglect nonleading
terms in m?/M?2,

Infinite-momentum techniques (see, e.g., Ref.
5) are employed in the evaluation of the amplitude.
For this purpose it is convenient to use light-cone
coordinates,

a*=(a",a",3,) ,
a*=Q1/V2)a'+a’)=a, , (1)
a‘b=ab_+ab, —5,1 'BL .

Following Ref. 5, the external momenta are writ-
ten as

py =P -K"/2, py=P" +K"/2 ,
Py =Q" +K"/2, pi=qi+qy=Q" —-K"/2 .

Axes can then be chosen so that (in the overall
c.m.)

@

FIG. 1. (a) Dominant graphs for yp —2 jets + p in the
kinematic region considered. (b) Model used for ggpp
vertex.

K.,=-(M!-m)/N2s, P,=Q.=V5/2 ,
K-=0(s®7), P.=(m-t/4)/V2s (3)

Kx=KJ. =\/——tv Q+=(M2 —t/4)/\/’2_8 ’
to leading order in s'/? where p2=m? Written
in this form, Eq. (3) applies to either photon or
pion fragmentation. It is also convenient to intro-
duce the x variables for the ¢ and q,

x‘Eq‘_/pz_ﬁ 2q, 'P1/s ’
X9=qy-/Py->2q5 - Dy/S . ®

The invariant amplitude calculated from Fig. 1
takes the form

3
m=2 m; ,
i=

d'rd’k, .4 1
gnizcyf_@tﬁ_za (K =y =k

(5)
e
X k22 ¥ ic “liix ®"* ’
where L}, and ®* come, respectively, from the
left and ihe right sides of-the graphs, andC, com-
prises the coupling constants, color factors, etc.,
21 4, 2
Cy:;\/-_:;——qus & (6)
with g, the target meson ¢g coupling constant and
g the running coupling constant, evaluated at the
large mass scale. (The appropriate mass scale
is discussed below.)
The right-hand side of the diagrams, ®"*, is
calculated from Fig. 1(b). The only component
of ®* which is leading order in s is ® ", For
a scalar or pseudoscalar target and recoil par-
ticle, ® is given by

. 1/2 1 o,
a=(3) & oL@ -5l

B =k'+K/2, ky==-%'+K/2,

(M

where I; and I, are two complicated integrals
whose exact form need not concern us but which
do have the following important features:

|L(k") -L]~k -K/2, ask'-2K/2, (8a)
[14(k") =1,]~const (modulo logarithms),

ask’—~0,o, (8b)

(k") = 1,] ~ =2 +f(k' /K, cOSByg), as K —w
(8¢c)
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Property (8a) means that ® *~ vanishes (linearly)
as either of the exchanged gluons becomes soft.
This occurs because we are considering the
scattering of color singlets. The behavior as
K? ~ arises because we used an elementary
meson ¢gq coupling for the target; it is not what
we would expect for physical hadrons.

Equation (7) can be inserted into Eq. (5) and
the 9M;’s calculated. Since ®™ is the leading com-
ponent, only L;__ need by considered, provided
no components of L* are higher order in Vs than
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FIG. 2. Details of the fragmentation side of diagrams.

L;.., which is the case. The L;.. and, conse-
quently, the 9N; are obtained from Fig. 2, leading
to the result

-

) , [A(1,2) A(2,1)
L 2=—C 2) 42
: s§s 9] ” {’ L(ay - 1) +(qz°1’2)2

4.8 [2(_1’_2_) +P_(_2_’_1_)_] 14,9
12 q‘-pz qz.p2

+9,95F , +9,9, 32x,x, (E——L—

x
12

where the various coefficients are given by

, 4Q .t . X
C ——Q—S—-aazoa4s, A(i,j)==16x;(q; - py+x;m2) ,

YT M

A'=16[x2q, K +x,2qy K +x,%5(py - K =2m )] ,

qy D293 D2
E,(1,2)

]+922 B +8x,%,(x; % + x,%) 949,

193

(Bl 1]

qy-p,y qz b

+ﬁ1;2—) +64x,2x,29294} , , (9)

B =8xXy[ = 8x,%)(M?/2 + /4 +m 2 ) + &%y = %,)(%(qy - K =%pq, *K) = H(x;2 +x,)] ,

D(i,7) = =16x;{x;% [ (3q; +q,) - py + 4m> +1/2] +x2Z[(24; —q;) *po +M?/2] +x2(M2/2 =g, -py)}

E.(i,j)=-4x{d,(i,j) -3x;2 +x,1)K,], d,(i,7) ={

F,=-8xxd,(1,2) = (%, —=x5)K,] .

The integrals 4; which occur are

(

0, p==,

5= [ a7 (e, 92=2fd2k'f(k’)3)", 5. =4 [ dRAE K, D7, s4=-zfd2k’f(k')’k'2 Dt

ARy = & +K/2) 2@ - K/2)2[1, (") -1,]

D=[M%xx, +x,(K +K/2) + x,(k = K/2) + 2x,q, - (k' + K /2) —2x,q, - (k' =K /2)] .

This result is presented in (nearly) full detail
because some of the details are pertinent to the
discussion later and because the normalization
conventions are somewhat different from those of
KDR. The differential cross section is given by

(10)
q; "qj)u) M =1;2
(11)
I
do o1
am’d cos6*  2%2m)'s(s —M?)
< farag (5T i), a2
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FIG. 3. Predictions for vp —qgp at s=300 GeV?, in-
cluding estimated normalization. Cross sections are
integrated over all ¢,

where 6* is the angle between q, and p, in the g
+q, =0 frame and ¢* is the angle between ¢, and
the plane defined by B‘ and 53 in the same frame.

The differential cross section was evaluated
numerically by KDR (up to an overall normaliza-
tion), and its properties studied. A number of
the general features can be understood from Egs.
(9)—=(12) and we shall return to these equations in
the discussion following the pion-fragmentation
calculation. .

Before going on to pion diffractive dissociation,
we present in Fig. 3 some representative photo-
production predictions.® This will facilitate com-
parison of the two sets of results, but we also
include this figure becaug,e it contains normaliz-
ation estimates (obtained in the Appendix) which
were not in KDR. We note that for light (« +d)
quark jets the cross sections are quite measur-
able to very large MZ, whereas for charmed quark
jets (which only begin appearing at larger M 2)
the cross sections are smaller and will pose some-
thing of a challenge to anyone trying to measure
them over the full range of 6*. An interesting
point made by KDR is that at cos6*=~ 0, the cross
sections for the different quarks are in propor-
tion to their charges squared, since all mass
effects have died out by then. The normalization
should not be regarded as a serious prediction,
but merely as an indication that the cross sec-
tions should be measurable.

III. PION CALCULATION

We now turn to pion fragmentation. A q¢ pair,
bound to form a pion, is incident with very high

energy upon a proton target. The ¢q scatter into
a state of high invariant mass (although M? <s),
while the proton recoils elastically. The final-
state configuration we have chosen (large separa-
tion in momentum space between recoil proton and
all other debris) allows identification of all the
final -state particles except the proton as frag-
ments of the pion and requires a color singlet

to be exchanged between the incident pion and pro-
ton. The large invariant mass of the diffractively
excited qg state ensures that there was a highly
virtual intermediate-state quark [see below, Eq.
(14)], provided the final-state g¢ are not collinear
with the incident pion. This highly virtual quark
gives us a short-distance subprocess (7T + ex-
change ~7 fragments), and we proceed to apply
perturbation theory. When || is large the justifi-
cation of perturbation theory can be made quite
firm,! but our normalization estimates below offer
no hope of measuring this process at large |¢].

Color-singlet exchange and lowest-order per-
turbation theory lead us to two-gluon exchange
(99 exchange is suppressed by 1/s). The subpro-
cess of interest is then 7 +2¢ -¢ +¢. The target
proton merely serves as a source of the two
glouns from which the incident ¢q scatter. We do
not know the ggpp vertex; however, as long as
we do not try to predict ¢ dependence we do not
need to know it. We expect the features of pion
fragmentation to be insensitive to what it is that
induces the fragmentation, and KDR showed that
this was (approximately) the case in photoproduc-
tion. In the present calculation we will use their
phenomenlogical ggpp vertex.

The first obstacle to calculating pion fragmenta-
tion is determination of the coupling between a
pion and a quark-antiquark pair. An appealing
possibility would be to treat this in the manner
used by Berger and Brodsky' in calculating quark
structure functions in 7p Drell-Yan production.
They obtain the meson wave function for large
momentum transfer from single- (hard-) gluon
exchange between the ¢ and g. When one uses this
approach with two-gluon exchange, however, gauge
invariance requires an unwieldy number of dia-
grams; and by the time one reaches the numerical
evaluation stage the bookkeeping problem is suf-
ficiently formidable that one person’s results
could not be trusted. In addition, some of our
numerical results will include kinematic regions
where the quark and antiquark are not highly vir-
tual, and we would like to have some way of using
a more appropriate pion wave function or form
factor in those regions. We therefore settle on an
effective form for the mgq vertex given by

V(14:3,) =[F(Q%)ys + FXQ%)(d, + do)vs) (13)
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and choose the Q% dependence of F and F, to
agree with the form-factor results of Ref. 4 for
large Q2. Since these results are proportional to
1/Q?, we need to modify this behavior for small
Q%. We take F; and F, to be constant for @*< 0.5
GeV%. Thus,

8o (QY)f
Q

=F(0.5 GeV?), Q%<0.5 GeV?

F(@) =N F (@) =N, , @%>0.5 GeV?

(14)
Fy@4)=2-F QY .

The choice for small @? is obviously arbitrary,
though reasonable, but we shall obtain predic-
tions which are independent of the small-Q? be-
havior of F{ and F, and will point out which pre-
dictions these are. Two parameters have been
introduced in Eq. (14), N, which fixes the strength
of the coupling (of F,) and p which fixes the
strength of F, relative to F;. We will determine
the relevant combination of N, and other coupling
constants when we estimate the normalization.

Variations in p have little effect on the results we
will present; it is set equal to one in the computa-
tion. As for what the appropriate @ is in F, ,(Q?),
it should reflect how far off shell is the
highly virtual ¢ or g. For Ly and L4 of Fig. 2,
we use Q*=(2q *py —m ), (2q;+p; —m}?), respec-
tively, and for L, we take @ =max{|q; ‘K |,
lgs K |} ~

Once we have the mgq vertex, the calculation
proceeds as it did in the photoproduction case.
We write the amplitude in the same way as in
Eq. (5), but with C, given by

Cﬂ=_'§2)_go2gs4 . (15)

The right-hand side of the diagrams is the same
in the pion- and photon-induced processes and
therefore ®* is again given by Eq. (7). The left-
hand side of course is different, leading to dif-
ferent L;__, to be calculated from Fig. 2 with the
incident photon replaced by a pion with vertex
given by Eq. (13). The L,’s are then

Ly..=(=2q;)-2q, p,+ m .} +i€] " [2q, - by + k% +i€]™

X u(qy)[Fy(1) + Fy(1)(2dy = $2)lys(dy =#2 +m, )y -v(a2)
Ly--=[2qy “ky + k2 +ic) [2q, < by + Ry +i€] Yiqy ly {dy + Ky +m)

X[Fy(2) + Fy(2)(2dy + 2y — o)y s(—do =¥y +m )0(a3), (16)
Ly..=(2q,)[2q, *ky +k* +i€] [ 2q, " py +m E+ig] ™!

X u(qyly By —dy +m )[F(3) + Fy(3)#a - 245)lys50(a2) »

where the arguments of F| and F, are those appropriate for the three different L,, as discussed above.
The amplitudes M; are then obtained in exactly the same way as in KDR, yielding

; 1/2
My = f‘m—zﬂly'cr(g) [a1 P2 —m /2] syl qy) [Fy(1) + Fo(1)(24y = $2)lvs(dy 72 +m ly v(q,) ,
o= - ——c (£) 2 /9] g, i Fy(3)+Fy(3 2
3__4(217)4 n(2> [(12 'pZ My /2] 51“(‘11))’-(#2-42'*’7”.,)[ 1( )+ 2( )(#2_ 42)]75'0(‘]2) ’ (17)

M, =4_(217)[ C.u(q)[9:Ty +95T 5, +2F 5(2)(qy- = q2-)95y v5]v(aa)

where

Ty=ydy tH/2+m)[F(2) +Fy(2)(2dy +H - #)lys(—do ~H/2+m )y, (18)
Ty =Fi(2)pyy y"ys +Fo(20202 41 + p, Ky o5

and the g; are the same as in Eq. (11), A little algebra leads to
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m= 4?2%)—40 [Au(qy Jy5v(q2) + Bulqy)Ky 50(q2) +Culayly oy 50(d2) + D ulgsly oy uysv(aa)]

PR O R C)
T gy cpemm /2 T Gy epy —mt/2

(s 1/2 Fl(l)
B_<2) {9‘ [41 py—my /2 "

2q, 'K +1

F4(3)
q2 'p2 _mwz/z

2qy -K +t

c=("Ls Fo(l
=(3) ¢ +
(2) { ‘[Cli cpg=—m; /2 (1) 4y by —m;/2

] —252F1(2)x1x2} ,
] +9.F1(2)(x, “xx)} ) | (19)

Fz(s>]

+28,F, (2 %1y *K = xpqy <K + (xy —=%3)t/4] +Fy(2)95(2%,qy,, +2%193, +K,) +‘2(x, —xz)s4F2(2)} s

S 1/2
pr=(3)"pas

Standard trace teéhniques and some additional algebra then yield

4(2m)

spins

2
2 |om]? =(~Cﬁ) {2M°A% + 8AB (5/2)"/2(xyq, *K —x,q5 -K) +BACm (s/2)'*+8 (s /2)! /2 AD* (%443, —%241,.)

+4sx%,[ - B% + 2BD*K,, +C* =D"D,]} , (20)

with A-D given in the preceding equation.

In the photoproduction calculation, KDR found
that their results were insensitive to the exact
form of the right-hand side, the proton-elastic
two-gluon form factor, and in their numerical
computations used a phenomenological form. We
use the same procedure, letting

@m) 1y (k") - 1]

bt E(E+k)

-»F(EEE' —R/Z,t):Foe —(;—_-:1:2)— .

(21)

This general form was chosen in order to preserve
the qualitative behavior of I,(k') =1;, Eq. (8), with
the exponential ¢ dependence introduced in order to
conform to the empirical diffractive ¢ dependence.
(Recall that [I,(¢’) - I,] was obtained from an ele-
mentary target scalar or pseudoscalar.) In the
computation we set b =2.5 GeV?, a=0.6 GeV?,
as in KDR.

All the constant factors and unknown coupling
constants can then be factored out of the invariant
amplitude

2
2l = (fz“)‘f) [@mPF N 25T (22)

and the differential cross section is given by

do 1
dM*d coso* ~ s(s —=M?)

x f do*dt (2 e as“aJNﬁFoz)

x|t (23)

It is possible to obtain a crude estimate of the
combination of coupling constants and normaliza-
tions appearing in Eq. (23) if one is willing to be-
lieve that the (forward) elastic-scattering ampli-
tude is dominated by graphs which are two-gluon
reducible in the ¢ channel, which may not be en-
tirely unreasonable.® Details of the estimation
are given in the Appendix. The result obtained is

do _ 2 1
dM’d coso* =(2.8 pb/Gev )s(s -M%)

JEDk (24)

for either a quark or an antiquark jet at angle 6*.
The normalization should not be taken very ser-
iously; it is included as an indication of the feasi-
bility of measuring this cross section.

The integrals in Eq. (24) were evaluated numer-
ically, and the resulting cross sections for s =300
GeV? and various M? are plotted as functions of
cosf* in Fig. 4. We include predictions integrated
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FIG. 4. Predictions for mp —qgp at s=300 GeV?, in-
cluding estimated normalization: (a) integrated over all
t, (b) integrated over ¢ <2 GeVZ.

over large £ (|t|>2 GeV?) because, as mentioned
in the Introduction and explained in KDR, our use
of perturbation theory is on firmer ground if ]t ] ,
as well as M?, is large. Features of these results
and comparison to the photoproduction predictions
will be discussed in the next section.

IV. DISCUSSION

A. General features and comparisons

Not surprisingly, the general features of our
predictions for pion-diffractive dissociation into
qq are quite similar to the photoproduction results.
For large s/Mz, the cross sections are approxi=-
mately independent of s at fixed M%. This can be
seen from Egs. (19), (20), and (23). In addition,

our normalization estimates indicate that the cross
sections are sufficiently large to be measured.

As noted in the Appendix, there is no dependence
on ¢* (except near cosg*=1) and, consequently,
away from 6* =0 there should be no correlation
between the p, Xq; plane and the p, X p; plane in the
q; +3q, =0 frame.

The cosf* dependence of the cross section is
more complicated than it was in the photon-induced
process. The qualitative behavior looks similar—
forward peak, flat at wide angles—but the details
are rather different. The forward peak is caused
by the quark propagators and the pion form factor.
Both lead to factors of (q; - py —m,2/2)™ in the
amplitude [cf. Egs. (14) and (19)] which for large
M? becomes

(q; Py —m2/2) = (4/MY[1 = coso* + 0(m?/M¥)]| 1.
(25)
The peak is not as sharp as would result from
these factors alone, which would lead to (1
—cos6*)! in the cross section, due toother factors
which dip near cos6*=1, e.g., x,. The result is
a peak, but not so sharp as one might naively ex-
pect. That the peak comes almost automatically
from the quark propagator, that it occurs near
cos6* =1 where one of the invariants is small
thereby removing the justification of lowest-order
perturbation theory, and that the region near
cos6* =1 is where we are sensitive to the arbitrary
choice [ Eq. (14)] of F (@?) for small @2, all vitiate
use of the near forward region as a significant
test of the underlying dynamics. The predictions
of Figs. 3 and 4 are only reliable for cosé* < 0.9.

While all the features (s, ¢*, M?, and cosf*
dependence) mentioned above constitute tests of
our assumptions (color-singlet exchange, QCD
perturbation theory, pion form factor), the test
which is most selective and reliable is the M? de-
pendence, either at fixed cos6* or integrated over
the flat portion of the cos6* spectrum. This is
presented in Fig. 5 for a representative range of
cos* and M? at s =300 GeV?.

An interesting comparison is the ratio of the
pion-induced to the photon-induced cross section,
attempting to exhibit manifestations of the pion’s
composite structure as opposed to the photon’s
elementary nature. One expects that the M? de-
pendence at large angles should reflect the qual-
itatively different couplings of the two to gq, and
so in Fig. 6 we plot the ratio of pion- to photon-
induced cross sections as a function of M? at
fixed angle, As in Fig. 5, these predictions are
sensitive only to the large @* mqg or yqq vertices.
The M? dependence is weaker than the M~* which
one might expect from the pion form factor alone.
This is due to cancellations which occur in the
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FIG. 5. Dependence on M? of the pion-diffractive-dis-
sociation cross section at fixed cos6* for s =300 GeV?
and integrated over all £.

photon, but not the pion, case. These cancella-
tions result in the photoproduction cross section
falling faster than the 1/M* which would be ex-
pected from purely dimensional considerations
(applied to = m]z).

The other obvious comparison one might try is
to look for different angular dependences at fixed
M?. The pion cross secion should fall more rap-
idly away from cosf* =1. Quantitative compari-
son, however, is not very reliable due to the
problems mentioned above for the pion fragmenta-
tion and the analogous problems for photoproduc-
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FIG. 6. Ratio of pion-induced to photon-induced cross
sections integrated over all ¢, fixed cos6* and s =300
GeV?,

tion, including the presence of vector-dominance
effects at small 6*.

B. Significance

In principle, measurement of this (and the pho-
ton-induced) process will provide a number of
tests of QCD. The most basic feature being tested
is the non-Abelian nature of the theory. The fact
that a single gluon carries color, whereas protons
do not, was what required at least two gluons to
couple to the target plus recoil proton system.,
Exchange of one color-octet gluon would result in
two octets (pion plus gluon and proton minus
gluon) recoiling from one another, which through
the soft long-range confining mechanism does
not give rise to large gaps in momentum space.
To be a little more precise then, the exchange
of two gluons follows from the gluons carrying
color plus the assumption that large gaps in rap-
idity can be treated perturbatively. The use of
perturbation theory in treating large rapidity
gaps has been considered in e e~ annihilation,?
where it was found to be justified for x+# 0,1,
which for the present calculation is cos§*+ 1.
Therefore, the fact that two-gluon exchange is
the lowest-order contribution is required by and
is peculiar to non-Abelian theories.

How then does one distinguish experimentally
between one- and two-gluon exchange? The most
obvious difference is in normalization: One-gluon
exchange would be larger by a factor of about
l/as(Mz) for small /. Our crude normalization
estimate may be accurate enough to use this test,
but a more direct comparison is the measured
cross sections for events with versus those with-
out the large gap. One- (Abelian) gluon exchange
would lead to the two being equal (modulo phase
space), whereas QCD suppresses the large gap
events by an extra a (M?). Other differences
between one- and two-gluon exchange, and conse-
quently between Abelian and non-Abelian gluons,
occur in the cos6* and M? dependence of the cross
section. Although the graphs L; and L of Fig. 2
can behave similarly to one-gluon exchange, the
graph L, leads to differences, especially for
larger 6*,

This process also tests other features of QCD.
Different gluon spin would lead to different s de-
pendence and presumably to different cos6* and
M? dependence. In addition, the M? dependence
(and to a lesser extent the cosé* dependence) is
sensitive to the QCD predictions for the pion form
factor.! This is not a very good test, however,
since it would be very difficult to determine the
presence or absence of the logarithm in Eq. (14),
which is all that distinguishes the @* dependence
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in QCD from the general power-counting result®
common to other theories as well.

C. Summary

We have calculated the cross section for dif-
fractive dissociation of the pion into a high-mass
state in cases where the final-state fragments of
the pion can be clearly separated from any other
debris. The normalization estimates indicate
that the cross section is measurable, so that the
predictions can be tested in practice. When the
fragments are analyzed in their collective rest
frame, they should exhibit jet behavior, and the
angular distribution for the jets was obtained.

In addition, the s and M* dependences were cal-
culated, the latter reflecting the pion form fac-

tor. The ratio of pion to photon fragmentation
as a function of M? constitutes an instructive de-
monstration of the nonfundamental nature of the
pion, Obviously, a similar analysis could be
applied to kaon diffractive dissociation as well,
and it would differ only in minor details from the
present work.
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APPENDIX: NORMALIZATION

We first estimate the photoproduction normalization. Recalling that the phenomenological form for
[I,(k") = L], Eq. (21), is used in all the numerical computations, we can extract a constant factor from
1 2 p

the amplitudes squared by defining

4 —
320 [, [F o (2 aena el PR 3 R, [

(A1)

with @, the quark charge in units of e. The combination of coupling constants needed is thus as4a ¢2F02.
We can obtain a useful constraint if we assume that the proton elastic amplitude is given by Fig. 7,
with the cross-hatched blob the same as in the text [cf. Fig. 1(b), Eqgs. (7) and (21)]. The elastic scatter-

ing amplitude for our toy protons is then given by

M(“pp”) = - 48 ' 1 bk wn
=286 |3 73 (A$ A5\ apAsa)

‘g’ 1/2
x [ G /2R el (8 /2 4 )" {@) (k") ;;['Ii(k')-zz]}

1/2
x {(%) 5(k") 2—;—[1,(1@') -12]},

where the quantities in curly brackets are just
®®.. from Eq. (7) and the extra factor of 3 is to

(approximately) avoid double counting [cf. Fig. 1(b)].

If we replace [I;(k’) —=I,] by the phenomenological

FIG. 7. General form assumed for pp elastic ampli-
tude in order to estimate normalization.

(A2)

I

form Eq. (21), the forward elastic amplitude be~
comes

s
36a(27) °

m(“pﬁ",t=0)=-’go4g4F02 (As)
With our conventions the optical theorem reads

1 1
Otot T 1T 2,1 4EE,

[ - 2RedM(t =0)] , (A4)

so that, taking o, (pp)=~ 39 mb,

o ola 2(0)F,): =0.354a mb , (A5)



1592 J. RANDA 22

where ¢ is a parameter in the phenomenological
proton vertex, taken to be 0.6 GeV?, and the run-
ning coupling constant is evaluated at t=0.
Returning to the equation for the differential
cross section,
doly -qq) 1

dM*q cos6* ~ 25(2m)'s(s-M?)
«f at ag* (%Z lfmrlz) . (A6)

we note that since there is no ¢* dependence in
E]zm[z, except near cosf* =1, the ¢* integral

just gives a 2r. Furthermore, Eq. (A6) is for a
quark at angle 6*. The cross section for a jet
(either g or q) at 6* is just twice this. Taking this
into account, substituting Eq. (A5) into Eq. (A1),
and using the numerical values a =0.6 GeV?, m,
=0.3 GeV, one obtains

do(y —jet) P 1
I cosp® = 16 nb/GeV )s(s —M)

xfdt%zm’t,[z (A7)

for the incoherent sum of u# +d quarks, where we
have also taken o out of the integral, replacing
it by an effective small-¢ value of one. (For
large t we do use the running value in the inte-

gral.) This is the normalization used in the num-
erical predictions. Obviously, there is no com-
pelling reason to really believe this, but it should
be a reasonable indication of the approximate
size of the cross sections we have calculated.

For the pion cross section, the combination
of coupling constants which occurs is a o ,'N2Fy,
cf. Eq. (23), which is just N,? times the photopro-
duction combination estimated above. If we define
fi=F,(Q%< 0.5 GeV?) from Eq. (14), then the ratio
of photon-proton total cross section to that of pion-
proton should be given approximately by the ratio
of their respective squared coupling constants to
qq, or

3 Z eaz/flzﬂ Otot(')’p)/otot("p) ] fiz ~38.3 .
(A8)

This fixes N,?, and repeating the remaining steps
from the photoproduction estimate, we arrive at

do(m—~jet) 2 1
dM’d cosg* =(2.8 pb/GeV’) s(s —M?)

xfdtz [, |2, (A9)

which is Eq. (24) of the main text.
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