
PH YSICAL RE VIE% D VOLUME 22, NUMBER 7 1 OCTOBER 1980

Quark jets in pion diffractive dissociation
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The cross section for diffractive dissociation of the pion into a high-mass system clearly separated in momentum
space from other final-state particles is calculated using two-gluon exchange between the pion's quark-antiquark and
the target. Two-jet behavior for the pion-fragment subsystem is predicted and the dependence on jet angle and on
the mass of the diffractively excited system is calculated. Comparisons are made to an earlier calculation of the
analogous photon-induced process, and the magnitudes of both cross sections are estimated and found to be
sufficiently large to measure.

I. INTRODUCTION

The diffractive phoioproduction of quark-anti-
quark (qq) pairs has recently been treated in the
context of perturbative quantum chromodynamics
(QCD).' The mechanism studied in Ref. I (here-
inafter referred to as KDR) is one in which the
incident photon couples in a pointlike manner to
a qq pair which then scatter from the target pro-
ton via two-gluon exchange. The principal reason
for exchanging two gluons rather than one, which
had been studied previously, 2 was to facilitate
identification of the qq system, thereby focusing
on fragments of ihe photon alone. The final-state
configuration considered was one in which the re-
coil proton (in yP -XP) had the smallest longitud-
inal momentum in the laboratory frame and was
separated by a large rapidity gap from any other
final-state particle, e.g. , the proton alone in one
center-of-mass (c.m. ) hemisphere and N pions in
the other. Such a configuration allows the pions to
be identified as fragments of the beam (photon),
and the pion system can then be subjected to ex-
actly the same jet. analyses as in e'e annihilation
into hadrons. 1t was argued by KDR that such
events arise from the exchange of a color singlet
(qq or gg) rather than from one-gluon exchange.
The latter produces two color-octet systems, and
the subsequent soft color neutralization and hadron
formation should not lead to large holes in mo-
mentum space. (A more detailed argument in the
context of e'e annihilation can be found in Ref.
3.)

The photon-induced reaction is a particularly
convenient case to study because the coupling of
a photon to qq is known, provided we are consider-
ing a short-distance (sub)process. If both t —= (P„
-px) and M =p ~ are large, then a hard subpro-
cess is assured; in addition, KDR made a case
for large M being sufficient, even for small ~t ).
They then calculated cross-sections differential
in M and in cose*, where 8* is the angle between

the quark jet, and ihe incident photon in the P~ =0
frame. In order to do so it was necessary to as-
sume a particular form for the elastic two-gluon
form factor of the proton. It was expected, how-
ever, that the details of the fragments of the
photon would be relatively insensitive to the nature
of the target, and this did indeed prove to be the
case in KDR's calculation.

This paper will treat the analogous pion-induced
reaction. There are two obvious qualitative differ-
ences in the two calculations: The pion coupling
to qq is not pointlike, and furthermore it is not
known. The lack of a hard component in the ~qq
coupling we would expect to see reflected in some
feature (e.g. , M2 dependence) of the pion cross-
section results when compared to the photopro-
duction predictions. The second difference is no
longer an insuperable problem since the behavior
of the pion form factor when one quark is highly vir-
tual has now been calculated. 4 Since we did not know
the yqq coupling when neither quark was highly
virtual, we are in qualitatively similar situations
in photon and pion fragmentation.

We are therefore in a position to calculate ~P
-XP, where the proton is the slowest final-state
particle (in the laboratory) and is well separated
in rapidity from any particle in &. In fact, since
the results depend only weakly on the proton side,
there would be little difference if we replaced the
ggpp vertex by a ggpX vertex (although we might
want to change the t dependence of the proton form
factor). We can then calculate wP -XX, where the
& and & systems are separated by a sizeable
rapidity gap, and similarly we can obtain predic-
tions for the analogous photoproduction process
yP -&X . In addition, we will estimate the overall
normalization for both pion- and photon-induced
processes in order to get some idea of the values-
of A4 for which it is feasible to measure these
cross sections.

The outline of the remainder of the paper is as
follows. In the next section, we review briefly the
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salient features of the photoproduction calculation
of KDR, establishing our notation in the process.
Section III contains the body of the calculation and
presents the results, which are discussed in Sec.
IV. There is also one appendix, containing details
of the normalization estimates.

II. NOTATION AND PHOTOPRODUCTION REVIEW

The diagrams calculated in Ref. 1 are shown in
Fig. 1(a), where the blobs on the right-hand side
were originally the subgraphs of Fig. 1(b). When
the blob is given by Fig. 1(b), then the graphs of
Fig. 1(a) are the leading. order in u, of those which
are leading order in M&. Using Fig. 1, one is
actually calculating photon fragmentation from a
meson target, but if the fragmentation is approxi-
mately target independent this will not matter.
(We will see below that this is the case. ) The cal-
culation is done in the limit s»M, ~t j, m&,
where s =(p, +p2), M =(qf+q2) I —Q), -p3)

In order to have the qq form visible jets,
and as a necessary condition for the application
of pe rturbation theo ry, we also require M» m&',

but we do not use this fact to neglect nonleading
terms in mP/M .

Infinite-momentum techniques (see, e.g. , Ref.
5) are employed in the evaluation of the amplitude.
For this purpose it is convenient to use light-cone
coordinates,

a =(a', a, a,),
a'=(I/v 2)(a' ~a') =a„,
a'b=a, b +a b, -a, b, .

Following Ref. 5, the external momenta are writ-
ten as

Pt P" -K"/2, P—
q
——P' +If /2,

p2 =Q'+It" /2, p", =q,"+q,' =Q' -K"/2 .

&,= —(M -m2 )/v Rs, P, =Q =Vs/2

K =O(s 3
) P =(pg —I/O)//2s

&„=Ii,=~t, Q, =(M —t/4)/~2s,

to leading order in s', where P&' ——m&'. Written
in this form, Eq. (2) applies to either photon or
pion fragmentation. It is also convenient to intro-
duce t,he x variables for the q and q,

qf-/P2- 2q( 'p(/s

2 q2-/~2- 2q2 Pi/

The invariant amplitude calculated from Fig. 1
takes the form

gp,.=C„4 6 (If —k( —k2)
d k, d k~ 4 1

27r f + Z

(5)

x = - j ~yxR

2z 4 2r= —e.& &e
343

(6)

with g~ the target meson qq coupling constant and

g, the running coupling constant, evaluated at the
large mass scale. (The appropriate mass scale
is discussed below. )

The right-hand side of the diagrams, (R"~, is
calculated from Fig. 1(b}. The only component
of R" which is leading order in s is @ . For
a scalar or pseudoscalar target and recoil par-
ticle, R is given by

where L„'~ and R" come, respectively, from the
left and the right sides of-the graphs, and C„com-
prises the coupling constants, color factors, etc. ,

Axes can then be chosen so that. (in the overall
c.m. ) 6L =~

2 2
—6(k')[It(k ) -I2],

k, =k'+K/2, k, = — '
kR+/ ,2

(7)

(0)

where I& and I2 are two complicated integrals
whose exact form need not concern us but which
do have the following important features:

%% $%
+

~ 0 ~ g

[I2(k') —I(] -k' -If/2, as k' +K/2,

)I2(k') —I&] -const (modulo logarithms),

(8a)

(b)
as 0,~, (8b)

FIG. l. (a) Dominant graphs for yp 2 jets+ p in the
kinematic region considered. (b) Model used for ggpp
vertex.

LI2(k')-I,]-—2+f(k'/K, cos&„z), as K -~ .
(8c)
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Property (Ba) means that 6t vanishes (linearly)
as either of the exchanged gluons becomes soft.
This occurs because we are considering the
scattering of color singlets. The behavior as
K -~ arises because we used an elementary
meson qq coupling for the target; it is not what
we would expect for physical hadrons.

Equation (7) can be inserted into Eq. (5) and
the W s calculated. Since (R is the leading com-
ponent, only L; need by considered, provided
no components of I"; are higher order in ~s than

qp k)

kp

q „~z k)
e ~ e ~s

l 0 % + J7% I

kp

„q& k)
'TfVA& A equi r

kp

Li Lp Lg

FIG. 2. Details of the fragmentation side of diagrams.

L;, which is the case. The L, ; and, conse-
quently, the 5R; are obtained from Fig. 2, leading
to the result

I

(OR( Cps S
1 2 + 2 + +if2 8 + Bx1x2(xi + x2 )S3 3u

1 A(1, 2) A(2, 1) A

qi 'P2 q2 P2 qi P2 q2 P2-

D(1, 2) D(2, 1) „&~(l, 2) E ~(2, 1)
+8)S2 — ' + ' +g(l3 ' +

P2 ~2.P2 - - ~i P2 ~2 ~2

+82N3 F„+8)g4 32x)x2
x2 xf+ +64x) x) 82~4

2 2 (9)

where the various coefficients are given by

C„= ' 12o ~u „A(i,j)= —16x,(q, p2+x,. m,2),4q 2

y 277l

A'=16[x2 qi K +xi q2 It +xix2(p2. I~ —2m, )],
B =Bxix2[ —Bxix2(M /2+ t/4+m, )+ 4(x, —x2)(xiq2 ~ If -x2qi ) —(xi +x2 )],

D(i,j)=-16x,(xix[(3qi+q, ) p2+4m, +I/2]+x, '[(2q, -q,.)
.p2+M /2] +x& (M /2-q; p2)),

E„(i,j}= —4x,.[d„(i,j) —3x,.2+x,2)R„], d„(i,j) =

E, = -Bxix2[d, (1,2) —(xi —x2)R„] .

The integrals 8; which occur are

d'k' O', S2=2 d'O' O' X) ', y,„=4 d k' k' k„'X) ', g4
—-2 d'k' k' k'&',

f(k') = (k'+ K/2) (k' —K/2) 2[Ii(k') -I2],

~=[M2xix2+xi(k'+K/2) +x2(k —K/2) + 2xiq2 ~ (k + K/2} —2x2qi ~ (k —K/2)] .

This result is presented in (nearly) full detail
because some of the details are pertinent to the
discussion later and because thy: normalization
conventions are somewhat different from those of
KDR. The differential cross section is given by

do' . 1
dM'd cosg* 2'(21t) s(s —M'}

x

dt's

(12)
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FIG. S. Predictions for pp qqp at &=300 GeV, in-
cluding estimated normalization. Cross sections are
integrated over all t.

III. PION CALCULATION

We now turn to pion fragmentation. A qq pair,
bound to form a pion, is incident with very high

where 6* is the angle between q, and p2 in the q,
+ q2

——0 frame and Q* is the angle between q, and
the plane defined by p, and p3 in the same frame.

The differential cross section was evaluated
numerically by KDR (up to an overall normaliza-
tion), and its properties studied. A number of
the general features can be understood from Eqs.
(9)-(12) and we shall return to these equations in
the discussion following the pion-fragmentation
calculation.

Before going on to pion diffractive dissociation,
we present in Fig. 3 some representative photo-
production predictions. This will facilitate com-
parison of the two sets of results, but we also
include this figure becaus, e it contains normaliE-

I

ation estimates (obtained in the Appendix) which
were not in KDR. We note that for light (u+d)
quark jets the cross sections are quite measur-
able to very large M, whereas for charmed quark
jets (which only begin appearing at larger M )
the cross sections are smaller and will pose some-
thing of a challenge to anyone trying to measure
them over the full range of 8*. An interesting
point made by KDR is that at cos8*= 0, the cross
sections for the different quarks are in propor-
tion to their charges squared, since all mass
effects have died out by then. The normalization
should not be regarded as a serious prediction,
but merely as an indication that the cross sec-
tions should be measurable.

1'(«iq2) =)+i@'45++'(@')(4i+42)rsl (13)

energy upon a proton target. The qq scatter into
a state of high invariant mass (although M «s),
while the proton recoils elastically. The final-
state configuration we have chosen (large separa-
tion in momentum space between recoil proton and
all other debris) allows identification of all the
final-state particles except the proton as frag-
ments of the pion and requires a color singlet
to be exchanged between the incident pion and pro-
ton. The large invariant mass of the diffractively
excited qq state ensures that there was a highly
virtual intermediate-state quark [see below, Eq.
(14)], provided the final-state qq are not collinear
with the incident pion. This highly virtual quark
gives us a short-distance subprocess (m+ ex-
change-w fragments), and we proceed to apply
perturbation theory. When ~t

~

is large the justifi-
cation of perturbation theory can be made quite
firm, ' but our normalization estimates below offer
no hope of measuring this. process at large ~t ~.

Color-sing'let exchange and lowest-order per-
turbation theory lead us to two-gluon exchange
(qq exchange is suppressed by 1/&). The subpro-
cess of interest is then m+Pg-q+q. The target
proton merely serves as a source of the two
glouns from which the incident qq scatter. We do
not know theggPP vertex; however, as long as
we do not try to predict t dependence we do not
need to know it. We expect the features of pion
fragmentation to be insensitive to what it is that
induces the fragmentation, and KDR showed that
this was (approximately) the case in photoproduc-
tion. In the present calculation we will use their
phenomenlogical ggPP vertex.

The first obstacle to calculating pion fragmenta-
tion is determination of the coupling between a
pion and a quark-antiquark pair. An appealing
possibility would be to treat this in the manner
used by Berger and Brodsky' in calculating quark
structure functions in mp Drell- Yan production.
They obtain the meson wave function for large
momentum t'ransfer from single- (hard-) gluon
exchange between the q and q. When one uses this
approach with two-gluon exchange, however, gauge
invariance requires an unwieldy number of dia-
grams; and by the time one reaches the numerical
evaluation stage the bookkeeping problem is suf-
ficiently formidable that one person's results
could not be trusted. In addition, some of our
numerical results will include kinematic regions
where the quark and antiquark are not highly vir-
tual, and we would like to have some way of using
a more appropriate pion wave function or form
factor in those regions. We therefore settle on an
effective form for the mqq vertex given by
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and choose the Q' dependence of E, and E2 to
agree with the form-factor results of Ref. 4 for
large Q . Since these results are proportional to
I/Q', we need to modify this behavior for small
Q . We take E1 and F2 to be constant for Q' & 0.5
GeV'. Thus,

F1(Q') =NP, (q') =N, ", ", q'-0. 5 Gev'

=F1(0.5 GeV ), Q ~ 0.5 GeV
(14)

E2(~') = —'E, (~') .
mq

The choice for small@2 is obviously arbitrary,
though reasonable, but we shall obtain predic-
tions which are independent of the small-Q2 be-
havior of F& and E2 and will point out which pre-
dictions these are. Two parameters have been
introduced in Eq. (14), N, which fixes the strength
of the coupling (of E,} and p which fixes the
strength of F2 relative to E&. We will determine
the relevant combination of N, and other coupling
constants when we estimate the normalization.

~~= —
9 gy Rg ~ (15)

The right-hand side of the diagrams is the same
in the pion- and photon-induced processes and
therefore 6t"" is again given by Eq. (7). The left-
hand side of course is different, leading to dif-
ferent L, , to be calculated from Fig. 2 with the
incident photon replaced by a pion with vertex
given by Eq. (13). The L, 's are then

Variations in p have little effect on the results we
will present; it is set equal to one in the computa-
tion. As for what the appropriate Q' is in F»(Q'),
it should reflect how far off shell is the
highly virtual q or q. For L& and L3 of Fig. 2,
we use Q'=(2q1 p2-m, '), (2q, p& -m, '), respec-
tively, and for L2 we take Q = max( Iq1 K I,
Iq2.z Iy.

Once we have the mqq vertex, the calculation
proceeds as it did in the photoproduction case.
We write the amplitude in the same way as in
Eq. (5), but with C, given by

L 1
——( —2q2 )[-2q, pm+ m, + i&] '

[2q2 ~ k, + k1 + ic]

&& u(q1)[E1(1) +F2(1)(2/1 -p'&)]y, ($1 —Ji&+ m, )y v(q1),

L2 =[2q1 'k, +k1 +ic] [2q1 'k2+k2 +i&] '
(uq}y1-(g 1+) +1m)

x [E,(2) +E,(2)(2$, + 2), -p', )]y,(-8'g Ii, + m-, )v(q~),

L3 (2q1 )[2q1 'k1+k1 +i&] [-2q2 'p2+m, +i&]

x u(q1)y-0~2 42 + m )[F1(8)+F2(S)(J~2 +2)]y5v(q2)

where the arguments of E, and E, are those appropriate for the three different L, , as discussed above.
The amplitudes W,. are then obtained in exactly the same way as in KDR, yielding

BR 1 4 c —
I [q1 'p2 —m. /2] s1u(q1}I'F1(1}+F1(1}(2&1-A}]ys(A -P'2™)y -v(q1 }

y
4/2

2 -1

4(211) '
2&

51t3=-42 4C. 2 I [q2 p2-m. /2] &1u(qt)y-V4-42+m, )[F1(S)+F2(8)(II'2-21f'1)]ysv(q2)2 -1

SII2 ——
4 2 }4 C,u (q, ) [s,l', +s,'I', „+2F,(2)(q, -q2-)&4y-y1]v(q2»

where

I"1=y (6 +Ii~/2+ m-, )[F1(2) + F2(2)(2411 +0' -p2}ly1( ~2 fit'/ 2+ m }y-

7p Ef(2}P2 y y "y, +E,(2}(2q,&,' + P, K'}y y,
(18)

and the S,. are the same as in Eq. (11). A little algebra leads to
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4C,[Au(q&)ysv(q2) + Bu(qi})fy y(v(q2) +Cu(q~)y y5v(q2) +D'u(qi)y y,ysv(q2)],

x,E,(1) x(F,(3}A=s g( - 2?IB,(2)x,x,j,q&.p2-m, p'2 q2 p2-m, y'2.

s ')'2 E(1) F,(3)B= — II I 2
+ ? 2

+x?BI(2)(x? —xl)jq( 'P2 -m q2 P2 —m
(19)

q( 'p2 —mx 2 p2 —mx 2

+ 2 4?(BJ?2XI??KI—X??I 'K + (X? —X?)I(4) + B?(2)X?(2X??? + 2?I?I +K, ) + ("I —XI)4?B?(2j
fS i??2

E (2)s" .3 ~

Standard trace techniques and some additional algebra then yield

2'
4 (2M A +8AB(s/2) (x2q, R -x~q2. K)+8ACm, (s/2) +8(s/2)'~'AD'(x, q2, -x2q&, )i4 27)

+ 4sx,x, [-B'I+ 2BD "Z„+C' -D "D„]], (20)

with A-D given in the preceding equation.
In the photoproduction calculation, KDR found

that their results were insensitive to the exact
form of the -right-hand side, the proton-elastic
two-gluon form factor, and in their numerical
computations used a phenomenological form. We
use the same procedure, letting

dO
dM'd cos8* s(s —M')

4 2 2 2

2'3'(2m)'

(23}

(2m) [Ii(k ') -I2]

-E(k=-k' -K/2, I) =E,e" —, . (21)
(a +P')

2

Q(22(~
-=(„, [(2?l?B?)?B,? Q(22(? (22)

and the differential cross section is given by

This general form was chosen in order to preserve
the (Iualitative behavior of I,(k') -I, , E(I. (8), with
the exponential t dependence introduced in order to
conform to the empirical diffractive t dependence.
(Recall that [I,(k') -I,] was obtained from an ele-
mentary target scalar or pseudoscalar. ) In the
computation we set 5 =2.5 GeV, a =0.6 GeV,
as in KDR.

All the constant factors and unknown coupling
constants can then be factored out of the invariant
amplitude

It is possible to obtain a crude estimate of the
combination of coupling constants and normaliza-
tions appearing in Eg. (23) if one is willing to be-
lieve that the (forward) elastic-scattering ampli-
tude is dominated by graphs which are two-gluon
reducible in the t channel, which may not be en-
tirely unreasonable. Details of the estimation
are given in the Appendix. The result obtained is

do'
2

dM d cos8* '
( -M2)

(24)

for either a quark or an antiquark jet at angle 8*.
The normalization should not be taken very ser-
iously; it is included as an indication of the feasi-
bility of measuring this cross section.

The integrals in Eq. (24}were evaluated numer-
ically, and the resulting cross sections for s =300
GeV and various M are plotted as functions of
cose in Fig. 4. We include predictions integrated
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I.O tion, including the presence of vector-dominance
effects at small 6)*.
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FIG. 5. Dependence on M2 of the pion-diffractive-dis-
sociation cross section at fixed cos8* for g = 300 GeV2
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photon, but not the pion, case. These cancella-
tions result in the photoproduction cross section
falling faster than the 1/M which would be ex-
pected from purely dimensional considerations
(app»ed « ~ ~~

~
).

The other obvious comparison one might try is
to look for different angular dependences at fixed
M'. The pion cross secion should fall more rap-
idly away from cos8*=1. Quantitative compari-
son, however, is not very reliable due to the
problems mentioned above for the pion fragmenta-
tion and the analogous problems for photoproduc-

fn principle, measurement of this (and the pho-
ton-induced) process will provide a number of
tests of QCD. The most basic feature being tested
is the non-Abelian nature of the theory. The fact
that a single gluon carries color, whereas protons
do not, was what required at least two gluons to
couple to the target plus recoil proton system.
Exchange of one color-octet gluon would result in
two octets (pion plus gluon and proton minus
gluon) recoiling from one another, which through
the soft long-range confining mechanism does
not give rise to large gaps in momentum space.
To be a little more precise then, the exchange
of two gluons follows from the gluons carrying
color plus the assumption that large gaps in rap-
idity can be treated perturbatively. The use of
perturbation theory in treating large rapidity
gaps has been considered in e 'e annihilation, 3

where it was found to be justified for x/ 0, 1,
which for the present calculation is cos8*$1.
Therefore, the fact that two-gluon exchange is
the lowest-order contribution is required by and
is peculiar to non-Abelian theories.

How then does one distinguish experimentally
between one- and two-gluon exchange ~ The most
obvious difference is in normalization: One-gluon
exchange would be larger by a factor of about
1/o, (M ) for small t. Our crude normalization
estimate may be accurate enough to use this test,
but a more direct comparison is the measured
cross sections for events with versus those with-
out the large gap. One- (Abelian) gluon exchange
would lead to the two being equal (modulo phase
space), whereas QCD suppresses the large gap
events by an extra n, (M ). Other differences
between one- and two-gluon exchange, and conse-
quently between Abelian and non-Abelian gluons,
occur in the cosa* and M dependence of the cross
section. Although the graphs L& and L3 of Fig. 2
can behave similarly to one-gluon exchange, the
graph L2 leads to differences, especially for
larger 8*.

This process also tests other features of QCD.
Different gluon spin would lead to different s de-
pendence and presumably to different cos6* and
M dependence. In addition, the M dependence
(and to a lesser extent the cose* dependence) is
sensitive to the QCD predictions for the pion form
factor. 4 This is not a very good test, however,
since it would be very difficult to determine the
presence or absence of the logarithm in Eq. (14),
which is all that distinguishes the Q' dependence
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in QCD from the general power-counting result
common to other theories as well.

C. Summary

We have calculated the cross section for dif-
fractive dissociation of the pion into a high-mass
state in cases where the final-state fragments of
the pion can be clearly separated from any other
debris. The normalization estimates indicate
that the cross section is measurable, so that the
predictions can be tested in practice. When the
fragments are analyzed in their collective rest
frame, they should exhibit jet behavior, and the
angular distribution for the jets was obtained.
In addition, the s and I dependences were cal-
culated, the latter reflecting the pion form fac-

tor. The ratio of pion to photon fragmentation
as a function of M' constitutes an instructive de-
monstration of the nonfundamental nature of the
pion. Obviously, a similar analysis could be
applied to kaon diffractive dissociation as well,
and it would differ only in minor details from the
present work.
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APPENDIX: NORMALIZATION

We first estimate the photoproduction normalization. Recalling that the phenomenological form for
[I|(k ) -I2], Eq. (21), is used in all the numerical computations, we can extract a constant factor from
the amplitudes squared by defining

—.
' Q )m„~'-=(2w)'n, n, 'n, 'q, 'F0'-,' Q i5tt„~', (A1)

with Q, the quark charge in units of e. The combination of coupling constants needed is thus n, 4o~ Eo .
We can obtain a useful constraint if we assume that the proton elastic amplitude is given by Fig. 7,

with the cross-hatched blob the same as in the text [cf. Fig. 1(b), Eqs. (7) and (21)]. The elastic scatter-
ing amplitude for our toy protons is then given by

4 4

9tt( PP ) ——al'q
2 ~ (~]//}. /&&a]]}]a)2/ 3

s j/2x, ](a'+z/2} + }e] ]]a'-z/2} +a'e] '
2

&]&'-} l&|(~'}—
~a]I

(A2)

where the quantities in curly brackets are just
]R 6t from Eq. (7) and the extra factor of —,

' is to
(approximately) avoid double counting [cf.Fig. 1(b)].
If we replace [I,(k') -I2] by the phenomenological stt("PP", t =0) = g~ g Eo

(-) . (AS)

With our conventions the optical theorem reads

form Eq. (21), the forward elastic amplitude be
comes

aerr ~ yg

rrrsess
g„,= - - [—2(Re5ft(t=0)],

1 1

(v& -v2I 4E&E2
(A4)

FIG. 7. General form assumed for pp elastic ampli-
tude in order to estimate normalization.

so that, taking 0„„(pp)= 39 mb,

u~ n, (0)EO ——0.354a mb, (A5)
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dtd *
~ 9R„ (A6)

we note that since there is no P* dependence in

g ~sn~, except near cos8*=1, the Q* integral
just gives a 2m. Furthermore, Eq. (A6) is for a
quark at angle 8*. The cross section for a jet
(either q or q) at 8* is just twice this. Taking this
into account, substituting Eq. (A5) into Eq. (Al),
and using the numerical values a =0.6 QeV', mq
=0.3 GeV, one obtains

do(y - jet)
z = (16 nb/GeV )

1

gM d cos8~ s(s -M

where a is a parameter in the phenomenological
proton vertex, taken to be 0.6 GeV, and the run-
ning coupling constant is evaluated at t =0.

Returning to the equation for the differential
cross section,

do(y -qq) 1
dM d cos8* 2 (2w) s(s-M )

gral. ) This is the normalization used in the num-

erical predictions. Qbviously, there is no com-
pelling reason to really believe this, but it should
be a reasonable indication of the approximate
size of the cross sections we have calculated.

For the pion cross section, the combination
of coupling constants which occurs is o., n~ R, I'0,
cf. Eq. (23), which is just N, times the photopro-
duction combination estimated above. If we define

f& =F&(Q— & 0.5 GeV ) from Eq. (14), then the ratio
of photon-proton total cross section to that of pion-
proton should be given approximately by the ratio
of their respective squared coupling constants to

qq, or

3 Q &,
' f&'= &~.~(rP)l&~.~(&P), f&'= 36 3

(A6)

This fixes N, , and repeating the remaining steps
from the photoproduction estimate, we arrive at

dt —,
'

(Av) dM'd o 8" '
M

do(m - jet)
'

2 1

for the incoherent sum of u+d quarks, where we
have also taken o-, out of the integral, replacing
it by an effective small-t value of one. (For
large t we do use the running value in the inte-

x J)dt's Pit, ~',

which is Eq. (24) of the main text.
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