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A new study of the A„B, Q,(1280), and Q,(1400) mesons is carried out in the presence of large SU(3)
mixing between the Q mesoris. The theoretical framework used is a purely algebraic one which expresses the
dynamics of confined quarks through chiral SU(3) la SU{3) charge algebras, related exotic-charge
commutators characterizing symmetry breaking, asymptotic SU(3) symmetry, and asymptotic level

realization of SU(3) in the chiral SU(2) e SU(2) charge algebra [A„+g„—] = 2V o. A simple mass formula

Q,
' —B = Q&

—A is derived which predicts the mass of A, around 1.1 GeV with 1(A&~pm)=300
MeV. The SU(3) mixing angle 8 of the, Q mesons is also derived in terms of the observable masses. The
sum rules obtained exhibit a close interplay among the masses, 8, and asymptotic axial-vector matrix
elements. There exists an "ideal angle" 8 = 30' for which the couplings Q2{1400)~pK and co% become
forbidden as observed by experiment. 8 = 30' is also found to be compatible with the mass spectrum of
the A„B, Q&, and Q2 system. The Q,(1400), rather than the Q&(1280), turns out to be the SU(3)
counterpart of A, {1100),suggesting that an inversion in the mass ordering took place through mixing.

I. INTRODUCTION

There has been a long history of searches for
the axial-vector mesons. From the naive quark
model one expects (as I =1, qg states) two nonets
with J = 1" and 1' . While the I= 1 1' meson 8
is well established, the status of the I=1 1"meson
called A, has been obscure for a long time. How-

ever, recent observation' of an enhancement of the
pm mass distribution in the decay of heavy lepton
v - v,pw provides fresh evidence for the A, reson-
ance with a mass around 1100 MeV and a large
width. It has recently been stressed' that this evi-
dence is not inconsistent with results of the dif-
fraction data. In a recent search for backward
production of 1"mesons in the K p interactions at
4.2 GeV (for which the Deck background is claimed
to be less important), evidence for the At as well
as the B meson has been reported. The A, param-
eters found were' mass =1040+13 MeV and width
= 230 + 50 MeV. The overall impression is that al-
though the A, parameters have not yet been pre-
cisely established, ' the A, resonance exists as
predicted.

A new development seems to have been taking
place also for the I= —,

' counterparts of the A, and
I3 meson denoted as Q1 and Q2. The analysis of
the diffractive Em@ system by the SLAC group
found evidence for two Q mesons' and a. compre-
hensive and illuminating summary was recently
given by Leith. ' 'The masses and widths of the

Q, (1280) and Qs(1400) quoted by Leith are
Q, =1290+25 and Qs=1400+10 MeV, and I'(Q, ) =

210+ 80 and I'(Q, ) =190+65 MeV. A striking in-
dication is that some rather unexpected selection
rules are involved among the decays of these Q's.
The higher state Q, couples strongly with the K*tr
channel [I'(Qs-K*tr) = 154+52 MeV], but is strong-
ly decoupled' from the PK and u&K channels
[&(Q,- pK) = 2+ 1 Me V and & (Q, - toK) = 0]. Al-
though the suppression may not be so conspicuous
as in the case of the Q, -pK (and &uK) modes, the

Q, -K*tr decays are also suppressed' relative to
the Q, - pK mode. A unitary, analytic, coupled-
channel reanalysis of the same data by Basdevant
and Berger' is also compatible with the above
interpretation of the data. They found Q,
= 1.28+0.02 GeV, 70&I'(Q, ) & 140MeV, and

Qs=1.42+0.06 GeV, I'(Q, ) =230+50 MeV. The
Q, is coupled mainly to pK and the Q, to K*tr.
The Amsterdam-CERN-¹jmegen-Oxford (ACNO)
collaboration (Ref. 3) which observed the At as
well as the B meson also found some evidence for
Q, (1280). They found"' Q, = 1275 + 10 MeV, I'(Q, )
= 75+15 MeV, and I'(Q, -pK) =57+14, I'(Q, -K*tr)
= 14+ 11, and I"(Q, - &oK) =4+4 MeV. Therefore,
except for fine details (branching ratios and
widths), the SLAC and ACNO data on Q, (1280)
seem to be in qualitative agreement.

From the naive picture of SU(3) symmetry, the

Q,- pK and scK amplitudes, for example, should
be comparable in magnitude with the Qs-K*tr
amplitude. The quark-line selection rule is of no

help in forbidding, for example, the Q,- pK and
tcK decays relative to the Qs-K*tr decay. We
therefore need to find a more sophisticated explan-
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ation.
Since SU(3) symmetry is certainly broken, SU(3)

particle mixing can take place between the I= 2

SU(3) counterparts of the A, and B meson, called
Q„and Qs, respectively. The observed two states
Q, and Q, will become a superposition of these
(hypothetical) SU(3) states Q„and Qs. In the
framework of conventional treatment of broken
SU(3)—"exact SU(3) plus mixing" for the physical
couplings —it then becomes possible to derive
selection rules which forbid both the Q, - pK(eK)
and Q, -K*m decays. For this the Q„-Qs mixing
angle 8 is required to be 45' and a certain condi-
tion" (g„/gs = -3/v 5 ) has to be met for the ratio
of the two independent D- and F-type 1'-1 +0'
couplings, for example, the A, pw (g„) and Baw (gs)
couplings. By fitting the observed rates of various
decay modes of the Q's with the conventional SU(3)
recipe, Leith obtained' a SU(3) fit with a value
8 =41+4'. The result seems to demonstrate be-
yond doubt the presence of large Q„-Qs mixing.
However, there is, so far no further independent
argument (observable mass formulas, etc. ) which
substantiates the value of the mixing angle found.

As to the value Of 8 which is determined solely
on the basis of SU(3) fit, one probably needs to be
more open-minded. First, there is no a Priori
theoretical reason which justifies the conventional
recipe for the SU(3) parametrization of the physical
couplings. Second, broad resonances are involved
both in the parent and daughter particles of the
decays under consideration. For example, for
thedecay Q, (1280)-~K the threshold for the decay
occurs within the width of the parent resonance,
distorting its line shape and, therefore, affecting
the determination of the average momentum (q)
available in the decay. Another difficulty, which
is apparently more serious, ' is associated with
the arbitrariness in determining (q) when one of
the decay products is a resonance. 'The SLAC
group used the recipe which the ACNO group calls
"undistorted" phase-space factor. The ACNO
group also studied the recipe called "physical"
phase factor. Although these alternative defini-
tions are identical for parent resonances far above
the decay channel threshold, they can differ' by a
factor of 2 for Q, - pK or Q, -~K.

An independent determination of the angle 6) by
SU(3) fit was recently attempted' by the ACNO

group based on the branching ratios of the Q, (1280)
decays as well as the rates of the A, pm and B&m

decays. Using the "undistorted" phase-space fac-
tor, they found that the parameters obtained by
their analysis ean also fit the feature of SLAC
Q, well, especially the very small rates of the
Q, - pK and wK decays. This indicates' a satis-
factory common interpretation of both the ACNO

and SLAC data in terms of the SU(3) mixing
scheme. However, the mixing angle in the fit to
the ACNO data is 27+8', which is less than the
comPlete decouP/ing angle 45'.

A simple dynamical model of Qz-Qs mixing
which produces, in its simplest treatment, the .45'
mixing and the complete decoupling of the two Q
mesons from either the K*m or Ep channels was,
in fact, proposed earlier by Lipkin. ' However,
a more detailed treatment revealed that the result
is sensitive to the relative amplitude of the phase
of the S to D waves of the Q„Q,-K*m and pK de-
cays. In particular, for the ratios of S- to D-
wave amplitudes predicted by the SU(6)~ quark
model, the Q„-Qs mixing angle was actually found
to become zero. Therefore, a more sophisticated
treatment becomes necessary. '

In this paper we study the same problem from a
purely algebraic theoretical framework which ex-
presses the dynamics of confined quarks through
chiral SU(3)I8ISU(3) charge algebras, related exotic
commutators which characterize symmetry break-
ing, the hypothesis" of asymptotic SU(3), and
asymptotic level realization of SU(3) in the chiral
SU(2)SSU(2) charge algebra [A;,A, ] =2V,O.

We find two possible solutions for the set of con-
straints obtained in this theoretical framework.
One of them requires no mixing (8=0). This case
was already studied" by Laankan and Oneda in
1973. The other solution, which is the central
topic of this paper, produces a large mixing and
lends to a simple but rather surprising result,
suggesting that an inversion takes place in the
mass spectrum of Q mesons through mixing. It
also demonstrates that dynamical selection rules
exist for the Q-meson decays, Q, (1400)- pK and
(dK.

II. DERIVATION OF SUM RULES FROM REALIZATION
OF CHIRAL SU(3)SU(3) CHARGE ALGEBRAS

To cope with broken SU(3) symmetry, we use
the concept of asymptotic SU(3) symmetry. " The
Q„-Qs mixing angle 8 is introduced (in the asymp-
totic limit k-~) among the creation and annihila-
tion operators of the two physical Q mesons Q and
Q' [we do not yet specify whether Q =—Q, (1280) and
Q'—= Q, (1400), or Q==Q, (1400) and Q =—Q, (1280)] and
those of the hypothetical SU(3) states Q„and As as
follows (k-~):

ac(k, x) = cos8 ao„(k, X) + sin8 ao (k, z),
(1)

ao, (k, x) =-sin8ao (k, ))+cos8ao (k, x).
X denotes the helieity and k the momentum. With
the use of asymptotic SU(3) and the chiral charge
algebras [V, V] = V and [ V,A] =A, which are valid
in broken SU(3) symmetry, parametrizations of
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the asymjtotic matrix elements of the vector (V, )
and axial-vector (A ) charges (but not the coupling
constants) in terms of the conventional recipe—
exact SU(3)-plus mixing —are justified in the pre-
sent theory.

The SU(3) breakings are (algebraically) charac-
terized" by the presence of exotic commutators in-
volving V =dV/dt,

[V., V,] =0 (2)

[V,AJ =0, (3)

where (a,P) is the exotic combination of the phy-
sical SU(3) indices (K', K ), (K', v ), . . . , etc. Eq-
uation (2) expresses the usual assumption of SU(3)
breaking and produces, when combined with asymp-
totic SU(3), the quadratic Gell-Mann-Okubo (GMO)
mass formula including SU(3) particle mixing, as
an exact constraint in the theory E. quation (3),
which is actually a weaker assumption than the
pure (3, 3*)$(3*,3) chiral symmetry breaking,
yields, with asymptotic SU(3), many powerful
intramultiplet and intermultiplet constraints in-
volving masses, mixing angles, and asymptotic
axial-vector matrix elements. It will be fully
utilized as explained below.

A. [V,Aj =0 asymptotic SU(3) sum rules

Let us consider, for example, an exotic com-
mutator [Vro, A, ] =0. Insert the commutators

[Vro(Vro), A,-] = 0 between the states (K*'(p, X)
I

and IA; (p, &)&, and also between (K*'(p, x)
I

and

IB'(p, &)&. Asymptotic SU(3) implies with p- ~
that

(K*'
I
V 0

I
p'&(p' IA, IA;)

(K*'IA, ln&&nlV„, IAg =0, (4)
n=Q Q'

V„

(K* IA, In)(n IVro IA&& =0, (5)
n= , g'

g &K*'lv„.
l && 'IA, IB&

n'= 00, 4

.-o, o &K*'IA.-ln&&n IV" IB'& =o, «)

g (K*'Iv,.
l

'&& 'IA IB&
n'=00, Q

„,~&K*'IA, In&&nlV„olB&=0. (V)

Analogous to Eq. (1), we also introduce" the ur-Q

mixing angle X,

a~ =cosXa, +sinXa, and a„=-sin/a, +cosXap ~

In the ideal configuration (where &f& becomes a pure
sF state), y = go and sinyo =-v'1/3 in our conven-
tion. We now define the relevant asymptotic axial-
vector matrix elements as follows (p-~):

~i/2(p'(p» IA;IAg -=I.(~»

& I/2&~(p» IA; IB'& -=- I.(~»

&1/2(y(p, ~) IA,- IB &
=- -i;(~),

&K*(, .)IA, IQ&= h, (.),
and

&K*'(p, ~) IA, IQ '& =-a,.(~).

From now on we often suppress p (and also X),
since all the computations are p- limit and the
sum rules we obtain hold for any helicity X. Eq-
uations (4)-(7) then read (p'—= m, ' etc.)

(8)h„= -sin6) h, + cos8 h,
(K*' —p')h„= -(Q" -A, ')sin8 ho, + (Q'-A, ')cos8 ho,

-v3 sin Xh s+&3 cos Xh s,
= cos 8h o+si n8h o,

(0)

(»)

K+2 p2 Q2 A 2 Q/2 B2 (12)

is a particular case of the general intermultiplet

-W3sinx (K*' —&u')hs+ v 3 cosX(K*' —Q') hs

=cos8(Q' -B')ho, +sin8(Q'-B')ho. (11)

Equations (8)-(11) alone already enable us to com-
pute" the Q„-Qs mixing angle 8 and the ratio of
the couplings of Q, Q'-K*v [via partially con-
served axial-vector current (PCAC) hypothesis] in
terms of the masses A„B, Q, Q', p, and K*, if
we assume that the 1 nonet is ideal (i.e., sing
=sinyo=-v'1/3, e'=p', and hs=0). However, one
can make the predictions much more powerful
by adding further constraints which will be dis-
cussed in Sec. II B.

Before doing this we summarize, for later com-
parison, the implication of the sum rules, Eqs.
(8)-(ll), in the absence of Q„-Qs mixing. " First,
Eqs. (8) and (9) immediately lead to an intermulti-
plet mass relation K*' —p'=Q'-A, '. Next, even
though actually unnecessary, "let us assume for
the purpose of simple demonstration that the P is
a pure ss state, i.e., sinai =sinyo=-v'I/O. Then,
the well-known results &u'= p' and ks =—g& IA, IB'& =0
also follow" from the same exotic commutators
[V„o(Vro),A, ] =0, which are inserted between the
states (K*'(p, x)

I
and

I
p'(p, x)& with x = +1 and

p-~. With hs=0 and to'=p', Eqs. (10) and (11)
immediately imply K*' —p' = Q"—B'. As a matter
of fact, the above result
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D —g=D —p= ~ ~ ~P = (i4)

which is also in surprisingly good agreement with
experiment (i.e., 3.46=3.43 GeV'). However, we
notice that neither the assignment Q =Q, (1280) and
Q' =Q, (1400), nor Q =Q,(1400) and Q'=Q, (1280) in
Eq. (12) are in good agreement with experiment.
However, in this paper we show that the situation
changes drastically if we consider the Q„-Q~ mix-
ing.

B. Level-realization sum rules from [A~+, A~ j =2V„O

We now insert the well-known chiral SU(2)@SU(2)
charge algebra [A~, A, ] =2V,D between the same
SU(3) multiplet B (n = v and K}, i.e., between
&B (p, &)~ and ~B (p', &)&, with p- . The right-
hand side of this equation is denoted as g (&).
g's are pure numbers, i.e., g,+

——2 and g~. =1, ex-
cept for the factor (2v)'5'(P —P'):

g (&B.~A, , ~,&&, ~A, ~B.&

-&B.~A, ~~,&&n, ~A,, ~B.&) =~.(X). (i6)

Among the sum over the single-particle hadron
intermediate states appearing in Eq. (15), we dis-
tinguish for given n the fractional contribution
f~ (X) to g (X), g (f ', +f ' +f ' y ~ ) =g, coming
from all the states n~ belonging to a level L. (For
example, L =0, 1, 2, . . . . We may also add radial
quantum number. ) The hypothesis introduced" is
that the fraction f~(X) will depend on X but not on
the SU(3) index n. Namely, the SU(3) contents
of the algebra [which we can study by varying the
SU(3) index n] are realized by each level L seP-
arately. Therefore, the fractional contribution
from each level I- to the algebra under considera-
tion is assumed invariant under SU(3) rotation.
If the concept of levels were really applicable to
the hadrons which are the manifestations of the
bound states of confined quarks, the hypothesis
may not be as drastic and unrealistic as it may
sound. Actually, in Eq. (15) the fractional con-
tributions which come from each of the inter-

mass relations" for the meson nonets B (a=—J'~c},

K ' —m '=const, i.e., K' —m'

=K*'-p'=K*~'-A, '=

Equation (13) is always valid in the present theo-
retical framework, as long as we consider only
the I= F =0 singlet-octet mixing within each nonet.
K'- m'=K~'- p'=K"~'-A, ' is in reasonable agree-
ment with experiment. Small discrepancies may be
cured if we include the effect of small SU(3) mix-
ings between these particles and their highex-
lying excited states. The straightforward exten-
sion of Eq. (13) into SU(4) predicts"

mediate states n belonging to the SU(3) multiplets
satisfying C(n) =-C(B ) (i.e., &B~ ~A, ~n& is of E
type as is the case with the vector matrix ele-
ments) are independent of n by themselves ful-
filling the requirement. This is, however, not
the case with those from the states with C(n) =

C(B,) (&B„~A,~n& is now D type). However, here
the notion of levels may play a role. We assume
that if we sum over the contributions coming from
all the states belonging to a level L, SU(3) under
consideration is restored at each level I-. There-
fore, the hypothesis imposes constraints on the
D-type asymptotic axial-vector matrix. elements.
In the case of bosons a stronger assumption is to
assume that each SU(3) nonet does the job." This
is a kind of algebraic alternative to the Okubo's
nonet ansatz, "but it is a weaker assumption. We
stress that the hypothesis provides us [without
introducing a perturbative point of view towards
broken SU(3) symmetry] a means to recognize
unambiguously SU(3) multiplets in the broken SU(3)
world. For example, let us consider the p meson
(L =0). We have its SU(3) counterpart K* (L =0),
K*' (L =2) meson, radially excited counterparts,
etc. However, a realization hypothesis will be
satisfied only for the pair (p, K*) but not for other
pairs (p, K*'), . . . . Therefore, if the hypothesis
were correct, we would not have any difficulty, in
principle, in identifying the members of the SU(3)
multiplet in broken SU(3) symmetry.

It has been shown"'" that this hypothesis works
well, actually including the use of the full set of
chiral SU(3)CSSU(3) algebra [A»AJ =if ~„V» for
meson nonets and the ground-state baryons pro-
ducing SU(6)-like good constraints. A bad result
of SU(6) (such as g„=~5) is replaced by a good one."
The approach may provide a viable alternative to
the usual SU(6)SO(3) approach without imposing
SU(6)~ from outside. The concept of levels of had-
rons could be more fundamental than that of SU(6)
symmetry. The sum rules thus obtained are also
found to be compatible with the quark-line selec-
tion rule, as we encounter with an example in this
paper in Sec. IIIA. Recently, the approach has
been extended" to include the charge-current al-
gebra such as [[j;(0),A,.],A, ] =2j,"(0), opening up
a way to treat the processes involving helicity
change. For example, a good nucleon anomalous-
moment relation k~ = -k„has been obtained" among
others. We therefore feel that there is sufficient
support for pursuing this hypothesis.

ln exact SU(3) symmetry, the 1" and 1' octet
identifications are (A„Q„,. . . ) and (B, Q~, . . .).
We now proceed assuming, for later convenience,
that (A„Q', . . . ) and (B,Q, . . .}are the physical
octet assignments in broken SU(3) which enable us
to apply the hypothesis of level realization in the
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In Eqs. (16) and (17) only the ground-state contribu-
tion is explicitly written. The condition f„'i =f o„(X)
imp»es I&A: IA; I pg I'=21&Q" IA,.IA.*'& I' w»ch,
suppressing the helicity indices, leads to

(i8)hg hQI ~

Similarly, for the pair (B', Q"), we obtain from
Eq. (i5)

I&B'IA, l~& I'+ I&B'IA, I@&I'+" =2 (19)

algebra of Eq. (15). This, however, does not imply
any special assignment, since Q and Q' are merely
defined by Eq. (1). Only after the application of
the level-realization hypothesis do we know the
correct identification of Q and Q' with the observed
Q, (1280) and Q, (1400}. The values of g 's in Eq.
(15) are independent of the mixing angle, as long
as we keep exact SU(2) symmetry, i.e.,
&Q'(p} IV;IQ'(p'}& =&Q"(p) IV:IQ"(p}&=(l}&2v)'6'
x(P-ll'). Therefore, we have no problem (as
in the case of finding the I =

& counterpart of
the p meson discussed above) in looking for the
I=~ SU(3) counterparts of the A, and B mesons
as long as we use" the chiral SU(2)SSU(2) charge
algebra, Eq. (15).

.We now take, in Eq. (15), B =A;(p, X) and also
B =Q" (p, X), with p-~. We study the fractional
contribution to the algebra coming from the ground
states L =0 (1 and 0 ' mesons). However, the
0 ' mesons do not make a contribution because of
parity conservation:

(16)

=«n(X —X.}, (24)

where X, is the ideal angle, sing, =-v' I/3
(y, = -35'). The value of the &u-P mixing angle
X, which can be evaluated in the present theory
from the quadratic GMO mass formula of the
1 nonet obtained by using the exotic commutator
[Vro, Vzo] =0 and asymptotic SU(3), is around -40'.
Hence, 8 = -0.083. In the ideal limit of the 1
nonet, i.e., y =y„Eq. (24) leads to a strict selec-
tion rule g IA, IB'& =0, which implies via PCAC
that the B- Pm decay is forbidden. The degree of
actual violation of this selection rule is predicted
by Eq. (24) and PCAC:

r(B-~~) B' ~' &e„)

We note that in deriving Eq. (23), only the realiza-
tion constraints Eqs. (18) and (21) are used, but
not the [V,A] =0 constraints Eqs. (9) and (11).
Equation (23), therefore, illustrates that the as-
ymptotic level- realization hypothesis being utilized
is compatible with the quark-line rule2' (even in
the presence of Q„-Q~ mixing). The [V,A] =0 con-
straints are also consistent with the quark-line
rule. " Since 8 is reasonably small, we make for
the bulk of this paper an approximation" that the
1 nonet is ideal, i.e., X=y,. Then as mentioned
before, ~'= p' and h~ —= (Q IA, IB& =0. Equations
(10), (11), and (21) then become

(3 cos'X —1)R' —6 sinX cosXR + (3 sin'y —1)= 0, (23)

where R =—h~/h~. Solving Eq. (23) for R and dis-
carding an unphysical solution" we obtain

h~ (P IA IS') 3 sinx cosy+ v2

h~ (&u IA, I B'& 3 cos'y —1

and
h~ = cos8 h@,+ sin0 hz, (io )

I&Q'IA, IA*'&I'+ "=1

which implies

h~ +h~f =hq .

(2o)

(2i)

(K*' —p')h~ = (Q" B')cos8 ho, +-(Q' B')sin8ho, -

Our new task is to solve the set of sum rules Eqs.
(8)-(11), (18), and (21) in the presence of Q„-Q~
mixing.

h~ -hg .

B.. Mass formulas and mixing angle

(2i )

III. SOLUTION OF THE CONSTRAINTS', MASS FORMULAS,
MIXING ANGLE AND SU(3) COUPLINGS

A. Selection rule for the 8~ Pm decay

By squaring Eq. (8) and using the realization
constraint Eq. (18), we obtain

hob', sin28 =-cos'8(ho. '-ho') . (22}

Next, by squaring Eq. (10) and eliminating h and
h~o [by using Eq. (22) and the realization constraint
Eq. (21)] from this equation, we obtain

Eliminating h& from Eqs. (8) and (9) and using
Eq. (18) we immediately obtain

„.„., [(Q'-A, ') —(E*'-p')]'
(Q"-Q')' (25)

,,„,, [(Q"-B')-R*'- p')l'
(Q"-Q')' (26)

Similarly, by eliminating ho, from Eqs. (10 ) and
(11'), and combining with Eq. (21') (in the ideal
limit of the 1 nonet), we also get
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From Eqs. (25) and (26) we obtain two possible
solutions:

(Q'-A, ') —(K*'- p') =+[(Q"-B') —(K*'-p')],

i.e., either

(0 (O'-A, ')+(Q"-B')=2(K*'- p'),

(ii) Q"+A, '=Q'+B'.

Eliminating h„ from Eqs. (8) and (9), we have

[ (K+' - p') —(Q' -A, ')]cose ho

=[(K*'—p') —(Q"-A,')]sin&ho, . (27)

Similarly, by eliminating he from Eqs. (10') and
(11 ),

[(K*'—p') —(Q"—B')]cos8ho,

= -[(K*'-p') —(Q' B'-)]h sine. (28)

Eliminating ho and ho, from Eqs. (27) and (28)
(assuming" hgzo0), we obtain

cos'9[(K*'- p') —(O'-A, ')][(K*'-p') —(Q"-B')]=-s 'e[(K*'- p') —(Q"-A, ')] [(K*'-p') -(O'-B')].
(29)

If we adopt the mass formula, case (i), Eq. (29) becomes

-cos'e[(K+ —p')- (Q~-A )] =sin g[(K+2- p')- (Q -B )]

With Eqs. (25) and (26), this equation can only be satisfied with 8 = 0 (or 180') and K*'- p' =Q'-A, ' = Q" —B'
which is Eq. (12). Therefore, case (i) corresponds to the case of no Q„-Qs mixing discussed in Sec. IIA.
On the other hand, case (ii) provides us with a genuine mass formula in the presence of Q„-Qe mixing.
In this case, Eq. (29) becomes

cos'e[(K*'- p') - (O'-A, ')]'= -»n'8[(K*'- p') —(Q" -A, ')][(K*'-p') —(O'-B')]

which implies (assuming" cos8v0) [smaller of (Q"-A,') and (Q' B')]-&K*' —p'&[larger of (Q"-A,')
and (Q' B')]. Co-mbining with the relation Q"+A'=Q'+B' we then obtain, if we take the experimentally
indicated mass ordering B')A,',

and

Q" —B'= Q'-A, ' (B')A;)

Q&2 A 2)Kg2 p2)Q2 B2

(30)

We already find here a rather surprising result, i.e., Q mass should be larger than the Q mass.
choice Q' = Q, (1400) and Q = Q, (1280) is consistent with Eqs. (30) and (31). Although there are a priori two
Possible solutions for sine, we choose one of them which leads to the S'U(3) parametrization adopted by the
ACNO gro up' (the other solution merely corresponds to the parametrization with an angle whose sign is
opposite to that of ACNO's). Namely, we write from Eq. (25)

( 90' 8 90')sill =,2 2
— ( (32)

Equations (30)-(32) are the constraints on the masses and mixing angle in the present theoretical frame-
work. Our new mass relations, Eqs. (30) and (31), which are valid in the presence of Q„-Qe mixing,
should be compared with Eq. (12) which was derived on the assumption of no Q„-Qe mixing. Mixing gives
a substantial improvement on the agreement with experiment. Taking Q = 1280, Q' = 1400, and B = 1231
MeV, Eq. (30) predicts

q'2+B2 ~ g P93 Gey (33)

The value of the mass of A. , obtained seems reasonable.
We mention here the modifications which take place when we do not make the simplifying ideal 1 nonet

approximation. Equation (25) remains unchanged. However, Eqs. (26) and (33) now read

3[(B'—Q"+K*'—to') siny, cos(y, —yo)+ (Q" B') cosy sin-(y —y, )]'
&2 2 2 (26')

(Q"+A, ') —(Q'+ B') = -v 3 [(K*'—~') siny cos(y —yo) —(K*' —g') cosy sin(y —yo)] —(K*'- p') . (33')
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Equation (33') predicts the mass of A„A, =1.105
GeV, i.e., the error" produced by the ideal 1
nonet approximation is only of the order 1.1/0. A
comment is in order for the determination of the
masses of A, and B from Eqs. (25) and (26') [or
(26)] when 8 is given. One may suspect that there
are two possible mass values for the A, and J3.
However, this is not the case. Equations (33) or
(33 ) dictate us to choose only one of the possible
values.

We now discuss the mixing angle 8. It turned
out that, once the values Q =1400 GeV and Q
= 1.280GeVarefixed, themass values of A, and
B, which are predicted by Eqs. (25) and (26') [or
(26)] and which should be consistent with our mass
formula Eq. (33'}[or (33}], do not vary significant
over a rather large range of values of 8, i.e.,
30'~ 8 ~ 50'. For example, for the mass values
A, = 1.105 GeV and B = 1.231 GeV, we obtain
8 =41' from Eq. (25) and also from Eq. (26'). If
we take the ideal 1 nonet approximation [Eqs.
(25) and (26)], 8=49'. For the value of 8, 8 = 30',
we obtain A, =1.129 GeV from Eq. (25) and
B =1.251 GeV from Eq. (26'}. Therefore, in view
of the uncertainties associated with the central
mass values of broad resonances p, K~, A„B,
Q„and Q„ the values of 8 in the range 30'~ 8 s 50'
are consistent with our sum rules. . Therefore, it
is difficult to single out the value of 8 from the
consideration of masses alone.

However, as will be discussed below, we strong-
ly suspect that the mixing angle 8 lies in the vicin-
ity of 30', since in the present formulation the
decays Q =Q, (1400)- pK (and ~K) are strictly
forbidden as suggested by recent experiment' for
8 =30'. In this connection, it is very interesting
to note that the ACNO group obtained' a value of
mixing angle (2V' + 8') solely from their SU(3)
fit to the A„B, and Q(1280) decays and they state
that their parameters can also forbid the decays
Q, (1400)-pK and vK, as is the case with the pre-
sent theory with 8 = 30 .

C. SU(3) couplings

In the conventional SU(3) parametrization"
three input parameters are needed —two indepen-
dent D and F couplings (for example, the A,pv and
Bros couplings) and the mixing angle 8. However,
in the present theoretical framework we need only
one input, for example, h~, which can be related
to the physical B~m coupling via I'CAC.

We first note that either from Eqs. (2V) or (28)
we obtain, using Eqs. (30) and (32),

&K+'IA. I Q") ~h /I+sing
(K*'IA, I Q") h~ II, cosg

which also implies through Eqs. (8) and (10') that

&p' IA,- IA;& h~ ho, t'I + sing
-&&olA, IB'&. he ho i cosg (35)

Furthermore, a close look at the set of constraints
Eqs. (8), (10'), (34), and (35), reveals that

h„=—h@, and h~=-h@. (36)

Therefore, h„and h~ are no longer independent.
Equations (30}-(32)and (34)-(36) are the whole
set of independent constraints in the theory which
are imposed upon the masses, mixing angle and
the asymptotic axial-vector matrix elements in-
volving the A„B, Q, and Q' system. Other rele-
vant asymptotic axial-vector matrix elements in
terms of h„and he [actually solely in terms of he
owing to Eq. (35)] are as follows:

&p'l~-IQ'& =
2 (h„cosg -h, sing) = —h—e(1+2 sin8),

(3'l)

&p'IAe-IQ'+& =
2

(h„sing+cosghe}= h„(1-2sin8},
(38}

+ 1 1
&~IA~IQ') =

2
(h„cosg -hssing) = ——he(1+2sing),

(39)
+ 1 1

&ulAr-IQ & =~& (h„sing+hscosg) = h„(1-2sing).
(4o)

We immediately notice that the angle (9 = 30 plays
a particular role. Namely, for 8=30', &p'IAr-IQ'+&
= &ruIAe-IQ" &

= 0. We now relate th'e asymptotic
axial-vector matrix elements &1 IA„I1'& to the
physical 1+-1 +P couplings via PCAC, 0 "A"

=E~m~'Q~, where P„(y= w or K}isthepseudoscalar
meson with mass ~ . E is the decay constant of
the m- p. v or E- p, v decays. We obtain in the limit
p~ oo

&B,(1 ),z, plA„IB„(1+),x, p) =F,t„„(z)g „(m,'= 0),
(41)

where g 8 is the physical coupling for the process
B„(1')-Bz(1)+P„, except that it involves the
mass-shell extrapolationmy-0. t 8 is the kin-
ematical factor which arises via PCAC in the p-~
limit. For the case X =+ 1, t~Qy is given by"'

2
1

-» =
m„-m,' (42)

With Eqs. (41) and (42), we obtain for the SU(3)
comparison of the S-suave decays of 1'-1 +&

I (B (1')-B,(1 ) + Pq) (E~,'t (
m„'-m R' 12 m

Z'(B, (1')-Ba (1 )+ I' ) I,F„& pm„,
' ms'& m-

Itq I' &B,IA, IB.&
y'), &B, IA, IB.)

(43)
where q~ and q ~. are the momenta of the secondary
l mesons in the rest frame of the parent particles.
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In Eq (43) (B slAylB ) and (Bs'lAy' IB,) can be
parametrized by the prescription of exact SU(3)
plus mixing. In place of Eq. (43) the conventional
SU(3) analysis (which was employed by the SLAC'
and ACNO groups'} uses

I"(B.(l')-B,(1-)+Py) t m„' q, g„„
I'|B„,(1')-B,, (1-)+Py.) I m. q, . g„, ,

(44)

where g~'s are parametrized by the prescription
of exact SU(3) Plus mixing E.quation (43) contains
anextra factor (Fy, /Fy)'(m„' —ms2)'/(m„. ' —ms ')2

[compared with Eq. (44}]which may deviate from unity
depending on the masses involved. Of course, in
Eq. (43) some allowance has to be made for the
mass-shell extrapolation involved in the coupling
constants. Takasugi and Oneda have also shown"
that, in the strict soft-pseudoscalar-meson limit
(i.e. , zero mass limit in the phase space as well
as in the couplings), the effect of the PCAC kin-
ematical factor t„a can be expressed as an effec-
tive q' angular momentum barrier in the decay
rate. Namely, Eq. (43} can be replaced by

I'@«I'} BR(1-}+&3 Fy '(~ 'I(BBIAyIB ) l'
I (B„,(1')-B,, (1-)+ P,,) F, l,q, , l(B IA IB )l

.

(45)

This formula is very general, including all the
partial waves involved. If we assume" I' = g~,
Eq. (45) gives a very simple prescription. How-

ever, strickly speaking Eq. (45) is exact only in
the soft-meson (m = m„=0) limit. In general, Eq.
(45) [and, of course, Eq. (43)] will provide a rea-
sonably good prescription if the mass differences
between the 1' and 1 mesons are much larger than
the mass of the pseudoscalar meson involved. It
would be desirable to establish a good recipe" for
computing ((qs/qs, ) ) in Eq. (45). In any case, the
comparison of Eq. (43) with (44) suggests that the
conventional SU(3) prescription, Eq. (44), does
not necessarily have an automatic theoretical justi-
fication and one should not draw too strong a con-
clusion from the use of Eq. (44).

As it stands, present theory does not fix the
value of 8 to a certain value algebraically. How-
ever, we note that according to Eqs. (38) and (40),
the physical couplings Q' [=Q,(1400)]- pK and &yK

strickly vanish if 8= 30' (tolerating, of course, the
kaon PCAC). Since 8= 30' also gives a reasonable
prediction [consistent with Eq. (33}]on the mass of
the A., meson as discussed in IIIB, we may be
tempted to assume that 8 is close to 30'if the rates
of the Q,(1400)- pK and +K were indeed very small
as observed by the SLAC group. " For the value
8=30', the rates of Q,(1280)- pK and &yKwill be
enhanced by a factor of 4, compared with the case

of no Q„-Qs mixing. [See Eqs. (3V} and (39).]
However, Eq. (36) shows that in the present theory
one cannot forbid the Q, (1280)-K*v decay, al-
though the ratio I"(Q, -K*»)/I'(Q, -pK) certainly
depends on the value of 8.

In the following crude analysis we now assume
the ideal value of 8, 8= 30'. Then Eq. (35) be-
comes

h„(p'IA. - IA', )
hs (&o IA. ,- IB') (46)

which predicts for the ratio of the S-wave A.,-pr
and B-zv couplings via Eqs. (41) and (42) that

Wag„+„. y~&l(A'- py=
gg+ ~~" kB ]

(4V)

IA —g(Q* P

) (+ ~~~ (fp) 0 g8 (49)

('- *) ~
'- '' '3l *l ( )I'(B'-») B'-~' 0'/ & q

(Q'-
I'(B' -&ov) B'-e'j Q'& q

(51)

If we use, for comparison, ACNO's mass value of
A„1.040 GeV, Eq. (47) predicts y= -1.31, while
the ACNO group deduced" y ——-1.47 from the rates
of Ay pm and B- &m decays. Theref ore, our pre-
diction [Eq. (47)] agrees rather well with the re-
sult of the ACNO group and yields I'(A, -pv) = 200
MeV for the mass of A, chosen. If the A. , mass is
heavier, say 1.1 GeV, the width will be of the
order of 300 MeV." Actually, the result is also in

good agreement with the old (but quite independent
of the present calculation) result by Matsuda and
Oneda" based on the chiral SU(2) S SU(2) charge-
charge-density algebra and PCAC. There they
obtained for pure S-wave decay ~,—pv) = 275
MeV for the mass of A„A, =W2m~. Our PCAC
approach to the SU(3) test will probably be most
accurate for the ratio I (Q'-K*v)/I'(Q-K*v),
since the Q values of these decays are relatively
large compared with the pion mass, although we
may still need to include the broad width correc-
tion to the average (q)'s. Indeed, Eq. (45) gives

(Q
'

&) qq l( ~hIl 3 qq 6 6 (48)r(Q'-K+v) qo) hs&

whereas Eq. (43) yields=6. 2 for this ratio. For
the value of (q. /qo), the zero-width approximation
is used for the resonances. The Q(1280)-K* i'
relatively suppressed compared with the
Q'(1400)-K*». The quantitative treatment of
Q(1280) -pK and &uK is more difficult since kaon
PCAC has to be involved. With F, =F» (Ref. 27)
and using Eq. (43) (assuming S-wave decays) we
obtain
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Here again we have used for q, q~~, and q ~ the
values obtained by assuming that all the broad
resonances involved have zero widths. For q we
have used' (q ) =374 MeV. Although we believe
that Eqs. (49)-(51)describe the gross feature of
Q(1280) decays, a rather large error may be in-
volved, especially for the estimate of I'(Q'- pK)
and I'(Q' &gK). In addition to the zero-width ap-
proximation for broad resonances and the assump-
tion of pure S wave, ' there is also an effect of
mass-shell extrapolation m~'- 0 in the couplings
of these decays. Finally, as a consistency check
we also studied the realization of the same alge-
bras for the following choice of the states. The
sum rules involve the same axial-vector matrix
elements as discussed in this paper:

and the realization of SU(3) in [A,+,A„-]= 2&,o

between the pair (p' and IP ) for which the contri-
bution of L, = 1 intermediate states is considered.
We found that the constraints obtained in this paper
also provide the only solution for the above case.

IV. CONCLUSION

We may conclude that the overall picture which
emerged is as follows.

(1) In the presence of Q„-Qe mixing we still
maintain a simple mass relation Q" -I1'= Q'-A, '.
However, this mass difference is no longer re-
quired to be equal to the usual scale K*' —p' (or
K' —m'), although the masses of Q, and Q, are con-
strained by the relation Q" -A, '&K*'- p'& Q'-B'.
With the present values of Q =Q,(1280) and Q'

=Q2(1400), the A~ mass is predicted around 1100
MeV.

(2) If the severe suppression of Q' =Q,(1400)-pK
and zK were indeed the case, the mixing angle L9

is required to be close to 30'. g= 30' is also in
reasonably good agreement with our mass-mixing-
angle constraints Eq. (25) if the mass of A, is
around 1100 MeV.

(3) Allowing for the theoretical and experimental
uncertainties mentioned before, the predictions on
the decay rates seem to be in reasonable agree-
ment with the gross features of presently available
experiments. For the Q, (1280), the pK mode is
certainly enhanced by the Q„—Q mixing and is
the most important decay mode. However, we do
not obtain a severe suppression of the Q, (1280)
-K*w mode as in the case of Q,(1400)-pK and
A&K. The rate of I'(Q, (1280)-pK, K*w, &uK) is prob-
ably around 180 MeV and I'(Q, (1400)-IPv) = 300
MeV.

(4) The S-wave A, - pm width is predicted to be
rather large, around 300 MeV for the A., mass
around 1100 MeV, which is consistent with the
previous estimate based on the chiral SU(2) SSU(2)
charge-charge-. density algebra and PCAC." It is
also gratifying to notice that the predicted mass
value of 4, is in reasonable agreement with the old
predictions (including Ref. 31) made by various
authors" using current algebra.

(5) We have found the nonet assignments [A~,
Q,(1400), . . . ] and [8,Q, (1280), . . .]. Therefore,
at the level of Q mesons, inversion in the order of
masses has apparently taken place due to the
Q„-Qe mixing. This may not be so surprising,
since in the conventional treatment of Q„—Qe mix-
ing the masses of the hypothetical SU(3) states Q„
and Qe mixing the masses of the hypothetical SU(3)
states Q„and Qe are found' to be almost degenerate
around 1.34 GeV for 8= 45'. A somewhat similar
situation also exists in the present formalism. "

(6) We may expect that similar inversion takes
place for the two Kmesons with J~ = 2, 3+, 4, . . . .

(7) It has been shown'0 that the present theoreti-
cal framework can explain the existence and viola-
tion of the quark-line selection rule in the asymp-
totic axial-vector matrix elements. In this paper
we have shown that the same theoretical frame-
work may also explain the recent remarkable
findings on the axial-vector mesons. Therefore,
the present algebraic approach to confined quarks
through the quark current algebra seems to pro-
vide a promising alternative to the naive quark
model.
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