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The generalized WKB method is applied to the construction of a potential which has a Coulomb tail. A simple
numerical example is used to illustrate the accuracy of the terms to the order #2.

I. INTRODUCTION

The conventional WKB method is only applicable
to the inversion of scattering phase shifts due to a
short-ranged potential V() [lim, . *V(r)=0].
Because of this constraint, one is confined
to the inversion of molecular scattering data.!
When Coulomb scattering is involved, the
conventional WKB approximation is no longer ap-
plicable. It was shown by Wald et al.? that the
generalized WKB method (Miller and Good3) can
be used to construct a potential which has short-
ranged and long-ranged parts. The appropriate
formulas correct to the zeroth order of 72 were
also derived. Terms to the order of #® were de-
rived by Vasilevsky et al.*

The inversion problem is to identify this poten-
tial V() by means of a group of phase shifts. We
see that, therefore, it needs high accuracy, and
the WKB approximation to a higher order in 72
provides such accuracy. In the next section, the
integral Abelian equation is derived in the zeroth-
order approximation. We show explicitly that the
constraint lim, ., 7V (¥) =0 is replaced by
lim, L. [7V(r) =*W(r)] =0, where W(7) is the model
potential. In Sec. III, we derive the integral equa-
tion of the higher-order correction from a phase-
integral equation developed in Ref. 5. Since the
solutions of the above-mentioned integral equa-
tions are given in Vasilevsky et al.,* we just quote
their results. In the last section, we present the
numerical procedure and results in detail. It
gives us confidence in this generalized WKB meth-

od. We see that the agreement in potential is very
good indeed.

1L ZEROTH-ORDER APPROXIMATION IN #2
We start from the conventional WKB phase shift

6(E,l)=w/7[fm dr(E —U(r)—%%)l/z
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In the generalized WKB approximation, the
generalization of (1) is

6(E’l)"7(E,l)=w/7[fmdr(E —U(r)-z—f)l/z
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where 7(E, 1) is the phase shift of the model poten-
tial W(s) and 7,, s, are the turning points.
We define.
ver, =00+ 4
(3)

W(s, l)=W(s)+%‘§ .

Integrating the integrals in (2) by parts, we have
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If lim, . {7[W(#) -U@#)]} =0, (3) becomes the following integral Abelian equation:

f [EtUU%E:’;-’lz);i]tlz = f)Z\_ [8(E,1)=n(E,1)]+

swW'(s,l)ds

[E —w(s, D]777 ®)

where the subscript 0 has been included to show that the approximation is of the zeroth order in 72,
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The solution of (4) as given in Vasilevsky et al.* is written as

7(q,) = s(go)exp [ M(q,)],
Uo( 7(Qo))=E[1 - qo/rz(QO)] ’

M(g,) = Wfo (ao 311)(_(1_1_1_3_)7_2’

where s(g,) is the root of the equation

Eq,=s*[E -W(s)],

and ¢, is the parameter to be preset.

v

IIl. FIRST-ORDER APPROXIMATION IN #2

We start from the generalized phase-integral equation given in Ref. 5:

T"ds
fpd'r"ilﬁﬁz 372 fpds‘l'ﬁhz 7372’

where
t=p*=2ulE -U(r,1)],

T=P2=2ulE ~W(s,1)] .

Equation (10) can be rewritten as

f[E U(rl)]‘/ZdT‘ (zu)aEf%

Since U(7) is the unknown in this case, we expand
U(7) as follows:

UWr)=U,(r) + 72U (7) . (12)

Substituting (12) into (11) and collecting terms of
the order of 7#° and 72, respectively, we obtain

$ (-0, 1]2= § B -w(s, 0] 72, (13)
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The integrals in (14) are improper but conver-
gent so they can be evaluated on the real axis.
Therefore,
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The solution of (15) is given in Vasilevsky et al.*
We just quote their result:

r rll 2(1,[/ )2 7” 3
U, (r(qo))= 12x{|_(7 ) T L 'Fz“]

" (—f'%:-) {(zl'”)a - 2((:'”)22
+ s_?;:')_z - 3—2] } , (16)

where the prime can be interpreted as 8/8¢, or
3/8(goE).
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1IV. NUMERICAL PROCEDURE

The simplest example is the inversion of phase
shifts due to the scattering potential
vin=4 5. "
As shown in Sec. I, we must choose the model
. potential W(s) subject to the constraint lim, .,
{7[w@)-U@)]}=0. Inthis example, the obvious
choice is )

W(s)= é . (18)

The phase shifts due to these potentials are well
known. They are

n(E,l)=argT(I+1+3 A/2VE )=31Im, (19)
o(E, l)=arg1"([B+(l+%)2]1/2+§+i Ej%—-)
+3m{ 3 =[B+(1+3)?"% . (20)

Setting 7%2=2u =1 and expressing ! in terms of ¢,
we obtain

NE, q)=argl((3 +qE)"/?>+5+i A/2VE )

+in[5 = (B+4+qE)?, (21)
8(E,q)=argl((B+3+¢E)/2+5+i A/2VE)
+irlh - G+eB)?] (22)

9 1
s 0-=35

Imy, Imy,
B+i+qE)}? T (3 +qE)?

B[ 1 1
4 | G+qBE)'? T (B+i+qE)?]”
(23)
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where
zpB=\If((B+i+qE)1/2+%+ iA/2VE ),
(24)
Do=U((4 +gE) 2+ +iA/2VE),

and ¥(z) is the digamma function. Thus we have

M(g,) = 2 fw<?_5_ﬂ?) dq
o T VE o \2¢ 04 (q=q,)'"?

:Ml(QQ) +MZ(QO) ’ (25)
where
JE [° Imy, Imy,
M1(QO)‘ p J;o [(B+é+qE)1/2 —(i+qE)1/72]
dg
T @)

VE (° 1 1
Mz(%)‘_z_ f [(%+qE)1/2 -(B+é+qE)1/2]

I
dq '
X 7 . (27)-
(g=g,"?
M,(q,) can be integrated and expressed in closed
form as

B
Mz(qo)=%ln<1+ T 4,E ) . (28)

M, (g,) has to be integrated numerically. We
convert the infinite interval of integration into a
finite one by the following change of variable:

g=—do_
sinZ6 ’

TABLE I. Construction of the potential (17) from phase shifts (19) and (20) at fixed energy

E=10.
Real potential
90 7(q0) U(r(q0) Uy(r(go)) + Us(rigy) Ulr(q))
0.2 0.59085 4.3 4.8 4.6
0.5 0.82335 2.6 2.70 2.69
0.7 0.94401 . 2.15 2.189 2.181
1.0 1.09890 1.72 1.740 1.738
2.0 1.49959 1.106 1.1118 1.1115
5.0 2.30876 0.6198 0.62076 0.620 74
7.0 2.714 98 0.5035 0.503 997 0.503 990
10.0 3.22840 0.4055 0.405698 0.405 696
20.0 4.53357 0.26917 0.2692313 0.2692310
50.0 7.12831 0.159956 0.159 965 84 0.159 965 82
70.0 8.422 72 0.132817 0.132 822454 0.132 822446
100.0 10.05512 0.109 340 0.109 342460 0.109 342457
200.0 14.19576 0.075405 3 0.0754058735 0.0754058732
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TABLE II. Construction of the potential (17) from phase shifts (19) and (20) at fixed energy

E=100.
. Real potential
0 r{gq) Uylrlq) Uylr(go)) + Unlriqo)) Ulriqo))
0.02 0.17514 35.0 41.0 38.0
0.05 0.24905 19.0 20.3 20.1
0.07 0.28729 15.2 15.7 15.6
0.10 0.33634 11.6 11.84 11.81
0.20 0.46315 6.76 6.824 6.821
0.50 0.71913 3.31 3.3245 3.3243
0.70 0.84761 2.567 2.57177 2.57169
1.00 1.00999 1.968 1.97046 1.97043
2.00 1.42275 1.1963 1.196 887 1.196 883
5.00 2.24331 0.644 38 0.644 4818 0.644 4816
7.00 2.652 64 0.51905 0.5190980 0.5190979
10.00 3.16886 0.41513 0.415155 60 0.41515557
20.00 4.47826 0.273158 0.273164 613 0.273164 609
50.00 7.07678 0.161274 0.1612750177 0.1612750175
70.00 8.37220 0.1337090 0.133 709 540 84 0.133 70954077
100.00 10.005 50 0.109933 8 0.109 934 024 65 0.109 934 024 62
200.00 14.14749 0.07568007 0.075680132109 0.075 680132106
4 (g 1/2 are coded in the same way. We use the asymptotic
M,(q0) =7 ( E) expansions and recurrence formulas in Abramo-
witz and Stegun.®
y w/2 gg Imi), ‘We choose A=B=1 and vary qobat different ener-
fo sin?6 [(B+§ +qE)t/2 gies. The results are given in Tables I and II. It
is obvious that the constructed potential is less
_ Imy, (29) accurate as 7 approaches 0 because for <1 the
G+AEN"? | o oo/sine term B/7? dominates.

This integral is evaluated by the popular CADRE
subroutine which can be readily called from IMSL.
The error flag returned shows that it is well be-
haved.

After M(q,) has been determined, we can get
U,(7(g,)) from

U(r(g,))=E[1 = q,/7*(q,)] (30)
and

7(q,) = s(q,)exp(M(q,)), (31)
where

s(qo)=[ A+ (A%+4q,E?)'/2)/2E . (32)

To obtain the higher-order term, we need higher
derivatives of s and r with respect to g,E. They
can be obtained by differentiating the logarithm of
(31):

In7 (g,) =1n s(g,) + M, (q,) + M(q,) - (33)
The digamma function is evaluated using the

subroutine written by K&lbig.® The polygamma
functions used in evaluating the higher derivatives

Since the generalized WKB approximation is es-
sentially a semiclassical method, we expect more
accurate results at higher energy. At E =10, the
approximation breaks down at »=0.5. If we in-
crease E to 100, this lower limit of » becomes 0.2.
In the other extreme, as 7 approaches ©, at E
=10 and 7=~ 14, the constructed potential agrees
with the real potential to 8 significant figures. At
E =100 and =14, the agreement is improved to
10 significant figures. In more realistic applica-
tions, there is an upper energy limit above which
nonrelativistic scattering theory is no longer valid.

In conclusion, we have shown that the generalized
WKB method is applicable to long-ranged poten-
tials and the higher-order correction given by
Vasilevsky et al. is extremely accurate.
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