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The generalized WKB method is applied to the construction of a potential which has a Coulomb tail. A simple

numerical example is used to illustrate the accuracy of the terms to the order fi'.

I. INTRODUCTION

The conventional WKB method is only applicable
to the inversion of scattering phase shifts due to a
short-ranged potential V(r) [lim, „rV(r) =0].
Because of this constraint, one is confined
to the inversion of molecular scattering data. '
When Coulomb scattering is involved, the
conventional %KB approximation is no longer ap-
plicable. It was shown by Wald et al.2 that the
generalized WEB method (Miller and Good') can
be used to construct a potential which has short-
ranged and long-ranged parts. The appropriate
formulas correct to the zeroth order of k2 were
also derived. Terms to the order of h' were de-
rived by Vasilevsky et al.'

The inversion problem is to identify this poten-
tial V(r) by means of a group of phase shifts. We
see that, therefore, it needs high accuracy, and
the WKB approximation to a higher order in h'
provides such accuracy. In the next section, the
integral Abelian equation is derived in the zeroth-
order approximation. We show explicitly that the
constraint lim„„rV(r) =0 is replaced by
lim„„[rV(r) —rW(r)] = 0, where W(r) is the model
potential. In Sec. III, we derive the integral equa-
tion of the higher-order correction from a phase-
integral equation developed in Ref. 5. Since the
solutions of the above-mentioned integral equa-
tions are given in Vasilevsky et al. , we just quote
their results. In the last section, we present the
numerical procedure and results in detail. It
gives us confidence in this generalized WKB meth-

od. We see that the agreement in potential is very
good indeed.

II. ZEROTH-ORDER APPROXIMATION IN A2

We start from the conventional WKB phase shift
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In the generalized WKB approximation, the
generalization of (1) is
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where q(E, l ) is the phase shift of the model poten-
tial W(s) and r„s, are the turning points.

We define.

U(r, l) = U(r)+ —
2

qE

w(s, I) =w(s)+ —, .qE

Integrating the integrals in (2) by parts, we have
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If lim„„(r[W(r) —U(r)]} =0, (3) becomes the following integral Abelian equation:

f rU,'(r, l )dr 2 " s W'(s, l )ds
,(r I)]' ' ~~ ' ', [E —W(, I)]' '

0 St

where the subscript 0 has been included to show that the approximation is of the zeroth order in 5'.
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The solution of (4) as given in Vasilevsky et a/. ' is written as

r(q()) = s(q()) exp [M(q())],

U, ( r(q, ))=Z[1 —q, /r'(q, )],

(6)

(7)

2
" ])a6 Bql dq

~(~)1/2 ~ sq sq&l (q q )z&z (6)

where s(q, ) is the root of the equation

Eq, = s'[E —W(s)], (g)

and Qo is the pasramet er to be pre set.

III. FIRSTARDER APPROXIMATION IN+

We start from the generalized phase-integral equation given in Ref. 5:

Pdr-4 g' 3/2 PdS-~@' 3/2 (10)

where

t =p' = 2p[z —U(r, l )],

T =I"= 2 i].[E -W(s, l )] .

Equation (10) can be rewritten as
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Since U(r) is the unknown in this case, we expand
U(y) as follows:

U(r) =U, (r)+a'U, (r) .

Substituting (12) into (11) and collecting terms of
the order of 5' and 5', respectively, we obtain

Iz-U, (r, ))]' '=/ [Z -W(s, ))1' *

U, (y)dr
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The integrals in (14) are improper but conver-
gent so they can be evaluated on the real axis.
Therefore,

s ' 3
S(S) )Z S
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where the prime can be interpreted as 8/sq, or
s/s (q,z).
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The solution of (15) is given in Vasilevsky et al.'
We just quote their result:
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IV. NUMERICAL PROCEDURE

The simplest example is the inversion of phase
shifts due to the scattering potential

where

g~ = +((8+ ,' +—qE)' '+ ,'+ z—A/2~Z ),
(24)

U(~)= —+, .A. B
r r'

As shown in Sec. I, we must choose the model
potential W(s) subject to the constraint lim„
(&[W(&) -U(r)])=0. In this example, ' the obvious
choice is

q, = q ((-,'+ qE)'~'+-,'+iA/2v E ),

and 4'(z) is the digamma function. Thus we have

M(q, ) = 2 86 Bq dq
)) vE, sq sq (q —q )"'
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w(s)= —.A
(18)

S
The phase shifts due to these potentials are well

known. They are

q(E, I) =argl'(I+1+i A/2ME) —,
' l))-, (19)

where

= M, (qo) + M, (qo), (25)
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Setting 5'= 2p. = 1 and expressing / in terms of q,
we obtain
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(21)
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M, (q, ) can be integrated and expressed in closed
form as

+ 5~ 4 —(-'+ qE)"'], (22) M, (q, )= —,')n()+, ) .
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M, (q, ) has to be integrated numerically. We
convert the infinite interval of integration into a
finite one by the following change of variable:

0Q

san'6) '

TABLE I. Construction of the potential (17}from phase shifts (19}and (20) at fixed energy
E =10.

~0(&(qo)) Uo(r(qo))+ v~(r(qo))
Heal potential

(I(~(q ))

0.2
0.5
0.7
1.0
2.0
5.0
7.0

10.0
20.0
50.0
70.0

100.0
200.0

0.590 85
0.823 35
0.944 01
1.098 90
1.499 59
2.308 76
2.714 98
3.228 40
4.533 57
7.128 31
8.422 72

10.055 12
14.195 76

4.3
2.6
2.15
1.72
1.106
0.6198
0.503 5
0.405 5
0.269 17
0.159956
0.132 817
0.109 340
0.075 405 3

4.8
2.70
2.189
1.740
1.1118
0.620 76
0.503 997
0.405 698
0.269 231 3
0.159965 84
0.132 822 454
0.109342 460
0.075405 873 5

4.6
2.69
2.181
1.738
1.1115
0.620 74
0.503 990
0.405 696
0.269 231 0
0.159965 82
0.132 822 446
0.109342 457
0.075 405 873 2
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TABLE II. Construction of the potential {17)from phase shifts (19) and (20) at fixed energy
E =100.

Vo x(qp) &p(«qp&) Up(r(qp))+ Up(r(qp))

Heal potential
U(r(qp})

0.02
0.05
0.07
0.10
0.20
0.50
0.70
1.00
2.00
5.00
7.00

10.00
20.00
50.00
70.00

100.00
200.00

0.175 14
0.249 05
0.287 29
0.336 34
0.463 15
0.71913
0.847 61
1.009 99
1.422 75
2.243 31
2.652 64
3.168 86
4.478 26
7.076 78
8.372 20

10.005 50
14.14749

35.0
19.0
15.2
11.6
6.76
3.31
2.567
1.968
1.1963
0.644 38
0.51905
0.415 13
0.273 158
0.161274
0.133709 0
0.109933 8
0.075 680 07

41.0
20.3
15.7
11.84
6.824
3.324 5
2.571 77
1.970 46
1.196 887
0.644 481 8
0.519098 0
0.41515560
0.273 164 613
0.161275 017 7
0.133709 540 84
0.109 934 024 65
0.075 680 132 109

38.0
20.1
15.6
11.81
6.821
3.324 3
2.571 69
1.970 43
1.196 883
0 6444816
0.519097 9
0.415 155 57
0.273 164 609
0.161275 017 5
0.133709 540 77
0.109 934 024 62
0.075 680 132 106

d e imp
sin'8 (B+—,'+ qE)'~p

Imgp
(~ + qE)pi p

„i q=qo/sin 8
(29)

U(r(q, ))=E[1—q, /r'(q, )] (3o)

r(q, ) = s(qp) exp(M(qp) ),
where

s(q, ) =[A+ (Ap+4q Ep}'~']/2E.

(31)

To obtain the higher-order term, we need higher
derivatives of s and r with respect to q, E. They
can be obtained by differentiating the logarithm of
(31}:

1nr (q, ) =In s(q, )+M, (q,)+M,(q,) .

The digamma function is evaluated using the
subroutine written by Kblbig. ' The polygamma
functions used in evaluating the higher derivatives

This integral is evaluated by the popular CADRE
subroutine which can be readily called from IMSI .
The error flag returned shows that it is well be-
haved. '

After M(q, ) has been determined, we can get
U, (r(q, )) from

are coded in the same way. We use the asymptotic
expansions and recux'rence formulas in Abramo-
witz and Stegun. '

We choose A. =B= 1 and vary q, at different ener-
gies. The results are given in Tables I and II. It
is obvious that the constructed potential is less
accurate as r approaches 0 because for r& 1 the
term B/r' dominates.

Since the generalized WEB approxima, tion is es-
sentially a semiclassical method, we expect more
accurate results at higher energy. At E = 10, the
approximation breaks down at r=0.5. If we in-
crease E to 100, this lower limit of x becomes 0.2.
In the other extreme, as r approaches ~, at E
=10 and r= 14, the constructed potential agrees
with the real potential to 8 significant figures. At
E = 100 and r=14, the agreement is improved to
10 significant figures. In more realistic applica-
tions, there is an upper energy limit above which
nonrelativistie scattering theory is no longer valid.

In conclusion, we have shown that the generalized
%KB method is applicable to long-ranged poten-
tials and the higher-order correction given by
Vasilevsky et al. is extremely accurate.
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