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A general method is explained for computing high-energy processes in gauge theories when "Sudakov double

logarithms" are present. An expansion for the electron form factor in quantum electrodynamics is constructed; it
gives the leading-logarithmic result of Sudakov, together with corrections to it to arbitrary logarithmic accuracy.
The method can be applied to other processes, such as low-transverse-momentum parton phenomena, and form

factors and elastic scattering of composite particles.

I. INTRODUCTION

There are many processes in gauge theories
whose high-energy behavior has a "double logarith-
mic" form like that found by Sudakov. ' Sudakov
computed the leading-logarithm series for the
electromagnetic form factor of the electron in
QED with a result exp[-u ln'Q'/(4v)j. It is not

at all obvious that nonleading logarithms do not
completely change this result; normal renormal-
ization-group methods only permit a single loga-
rithm per loop, so they cannot be directly rele-
vant. The purpose of this paper is to explain a
general method of computing these processes in-
cluding the corrections.

Although the new method applies to any process
involving double logarithms, I explain it in its
simplest form by investigating the form factor of
an electron in QED with a massive photon. Now

the method can only be applied to gauge-invariant
quantities, in this case an on-shell matrix element
of a gauge-invariant operator. 'Thus it is nec-
essary to avoid infrared divergences by giving the
photon a mass; if the photon were massless it
would be necessary to work with some kind of
inclusive cross section rather thap a form factor.
The final result is an expansion given in Sec. IV
for the logarithm of the form factor. This looks
like a generalized operator-product expansion with
the operator having an anomalous dimension
y~(e) ln(Q'/p') where Q is the momentum transfer
and p, is the renormalization point. Corrections
are seen tobe of the order 1/Q, so that for the form
factor itself they amount to a factor 1+O(1/Q).
Until now there has been the possibility of an
additive power-law correction in the form factor
to the leading Sudakov result, which falls faster
than any power of Q.

The new method extends immediately to other
processes, on which work is in progress.

Mueller' has also computed corrections to the
Sudakov form factor, but by a less direct method.
However, his methods do not immediately extend
to such processes of practical importance as

parton processes at low transverse momentum,
form factors and elastic scattering of composite
particles, and the x- 1 behavior of structure
functions. However, Mueller does emphasize the
usefulness of such an extension.

Although the present paper exclusively treats
the Abelian case, the methods of Ref. 3 are avail-
able to make the extension to non-Abelian theories.

The basic tools of this paper are those used to
prove parton-model-type results in quantum
chromodynamics (QCD). ~ ' Let us consider a
form factor V(Q, m, M, p, , e(p)), where Q is the
momentum transfer (which may be timelike or
spacelike), m and M are the photon and electron
masses, g is the renormalization mass, and e(p, )
is the electric charge renormalized at p, . We will
consider the dominant regions of momentum space
for Feynman graphs for V, as Q- ~. There are
as usual' ' three types of virtual momenta:

(1) ultraviolet, i.e. , off-shell by order Q;
(2) collinear to one or other of the electron mo-

menta p„p„.
(3) soft, i.e. , small compared with Q.

The crucial steps will involve application of a
Grammer —lennie approximation' for the soft
momenta; this has the effect of a gauge transfor-
mation, but a different one for each of the two
electrons entering I/'.

The main result is Eq. (4. 17) below, where lnV
is given as a sum of three terms. This is a kind of gen-
eralization of the operator-product expansion" in
which there is a momentum-dependent anomalous
dimension of the form y(e) in(Q'/p. ') (compare Ref.
11). Now the double logarithms arise when a
single virtual-photon line is able to be both
soft and collinear as its momentum is integrated
over. In graphs with many loops, the various
soft and collinear contributions overlap in a very
complicated way. The crux of the proof of our
result is to show that in lnV the overlap is no worse
than in the one-loop case. A substantial cancella-
tion between different graphs is involved. Without
this cancellation, the anomalous dimension would
have more than just the single logarithm.
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II. FACTORIZATION OF EXCHANGES

A. Definitions

Let us consider the theory of a photon of mass
m coupled to one or more charged fields. For
convenience of exposition, we choose the case of
a single charged scalar field of mass M, with
Lagrangian

—Mo'pt p ——o(p~ p)'+gauge terms, (2.1)

In Sec. II I show a simple factorization for the
one-particle-irreducible vertex -in the Coulomb
gauge:

V-z, (Q/2) r,„I

where z, is the (noncovariant} residue of the pro-
pagator pole, I',a is independent of Q, and I'ov is
finite when masses are set to zero. Then in Sec. III I
obtain a factorization of z, (which contains the
Sudakov logarithms). Finally, the results are
put together in Sec. IV to give a form suitable
for calculations in a covariant gauge.

Section V sketches the application of the methods
to super -renormalizable theories.

Now V is gauge independent. However, it is
convenient to work in the Coulomb gauge in order
to construct a method to compute the large-Q be-
havior (Q = ~q'~'~'). The free photon propagator is

i (k„n, +n„k„)n ~ k
~ "' k-m",, -&"'

(m -k).
k„kp

+k2 m'~ ' (2.3)

where n~ is the timelike gauge-fixing vector and
k' —= k' —(k n)'/n', so that P = -k' in the rest frame
of n". Note that D'„, is invariant under scaling of
n" to &nu

Renormalization is most conveniently done by
dimensional renormalization, " though this is not
essential. It will be necessary in any practical
calculation to relate e„, m~, M~ to their physical
values e, m, M.

It is convenient to choose p, and p„ the electron
momenta, to be along the z axis and at various
stages we will use light-cone coordinates where
V'=(V + V )/v 2, V„=(V', V') for any vector V".
In the overall center-of-mass frame n" ~ (1,1, 0r)
in (+, —,T) coordinates, while for the timelike
form factor q" =(Q/v 2, Q/v 2, Or) and for the
spacelike case q" =(Q/W2, -Q/v 2, 0r).

V„=z, (P,}'"z, (P,)'"r„(P„P,),
where I' is the one-particle-irreducible (1PI)
Green's function and z, (P) is the residue of SF(P)
at the electronpole. (Note that we will be working
in the Coulomb gauge much of the time, so z,
may depend on p. ) For any particle, V can be de-
composed in terms of scalar form factors.

(2.2)

where E„„=B„A„—B„A„and D„=8„—i eA„. The ex-
tension to fermions or to several species of
charged particle will be immediate. We call the
charged particle an electron.

Let S~(P) be the renormalized electron pro-
pagator and let G„(P„P,) be the renormalized
Green's function of an electron and a photon (Fig.
1), with the photon propagator amputated and
divided by e„. We let q~=P" —P& q~ may be time-
like or spacelike. Then the form factor is

B. Leading graphs for I'

In the Coulomb gauge we can use the methods of
Refs. 4-8 to find the dominant regions of momentum

space in graphs for the 1PI form factor I' at large
Q'. These have the structure of Fig. 2. There J',
and J, are two "jets,'" ' i.e. , the momenta of their
lines are collinear to Py and P„respectively. All
internal lines of the "hard vertex" II are off-shell
by an amount of order Q. There is an arbitrary
number of connected graphs S, which exchange soft
momenta [i.e. , o(Q}]between Z, and J,. All ex-
ternal lines of the 8, are photons.

FIG. 1. Electron form factor. FIG. 2. Leading graphs for I ~ have this structure.



1480 J. C. COLLINS

It is important that the statements in the pre-
vious paragraph are true for the leading power Qo

with all its logarithmic corrections and not merely
for the leading logarithms. Now any graph for I'
can be written in the topology of Fig. 2, and this
decomposition is unique provided we observe the
following rules:

(1) Each S, is connected and only has photons for
external legs.

(2) No external photon of S,. attaches to an in-
ternal electron loop; that is, every external line
of S,. attaches to Jy or cJ2 at a vertex that is con-
nected to the external electrons by a path involv-
ing electron lines only.

(3) H has no nontrivial decomposition into a
graph of the form of Fig. 2.

The purpose of rule (2) is to avoid ambiguities
from graphs such as Fig. 3 with internal loops in
an S, . Note that at this stage we have made a
topological decomposition and we have made no
restriction on the external momenta of S,.

Let us go back to the power-counting arguments
of Refs. 4-8. We find the following:

(a) All momenta in II are off-shell by order Q;
thus II is a reduced vertex in the sense of Ref. 4
since all collinear or soft lines are in a J, or S,

(b) Momenta in J; or S, may be soft, collinear
or off-shell. We can incorporate off-shell lines
into reduced vertices of the form of interaction
vertices.
But:

(c) Although it is possible for some external
lines of an S, to be collinear, there must overall
be only soft-photon exchange between J] and J2,
as in Fig. 4. The collinear lines are connected to
the soft photons by collinear electron loops. Thus
we can apply the Grammer-Yennie approximation
of the next subsection to the soft lines attaching
to these electron loops. Summing over all graphs
and applying Ward identities gives zero. Hence
after summing over all graphs, the external
lines of S; can only be soft or off-shell.

soft soft

c o I I in e ar
to p)

co I line or
to p&

FIG. 4. Momentum-space structure of an $;.

C. Grammer-Yennie approximation

We will now define the Grammer-Yennie approxi-
mation, ' &„ of S,. This will equal S, in the limit
that all its external lines are soft, and in general
it will obey the same power counting as S,. Let us
write

G;=—S; —K; (2.4)

for the remainder of S, . Then the 1PI Green's func-
tion I' is a sum over all versions of Fig. 2 when
each S; is replaced by either a K, or a G, . Since
g, is a good approximation to S; when its external
lines are soft, Eq. (2.4) says that exchange of a
G, is dominated by off-shell lines. To get a lead-
ing power we must have a structure of the form of
Fig. 5. There, all parts of a graph forced by the
presence of a G, to be off-shell have been absorbed
into a new hard ver, tex I'~. Finally we will be
able to apply Ward identities to the K, 's to obtain
a simple result.

The Grammer- Yennie approximation is obtained
by noticing that if a soft photon is attached to a
collinear scalar electron (Fig. 6) then the summa-
tion over p. in

(2P" +k&)D'„„(k)

is dominated by p, =+ (-) if P is collinear to P,
(P, ). The same result holds for any coupling of a
soft photon to a collinear electron, and follows

FIG. 3. Graph with potentially ambiguous decomposi-
tion into form of Fig. 2. FIG. 5. Structure obtained after writing S&= G&+K&.
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P p+k

FIG. 6. Coupling of a soft photon k~ to a collinear
electron.

from Refs. 4-8. Thus when k is soft and P col-
linear to P„we may replace D'„„by its Grammer-
Yennie approximation

Kp p
= kp (d iD K p /((0 i k + 1f), (2.5)

where ~, is any light-like vector collinear to P„
e.g. , &ut' =(1,0, 0„) in (+, —,T) coordinates. The
ie in Eq. (2.5) follows from the arguments of Ref.
3; it is to reproduce the ie of the propagators of
the collinear electron lines in Fig. 2. Similarly,
when P is collinear to P„we use

gy=k (d2DKp/((dg k+ l6), (2.6)

where +2~ =(0, 1,0r) is collinear to P, . The +i@
or -ie in Eq. (2.6) is to be taken according as P2
is incoming (q" timelike) or outgoing (q~ spacelike).
Notice that both (2.5) and (2.6) are invariant under
scaling of w, and ~,.

Now we can define K, to be S, with each external
photon propagator replaced by K'„„or K& „accord-
ing as it is attached to J, or J,. Of course, ex-
change of a single photon (e.g. , Fig. 7) requires

though we defined K& in order to have a useful ap-
proximation to S, in the soft region.

Now when we set S, =G, +K, in Fig. 2, many K s
are forced to be off-shell because of the presence
of a G. An example is shown in Fig. 8. Thus it is
useful to use Fig. -5 to define I'„v, which is to have
no nontrivial decomposition of the form of Fig. 5.
All soft and collinear contributions are isolated
into the K, 's and the J, 's, respectively.

—es&~D „(k) —esD
co~ ~ k+ z6' k + sE'

when k is outgoing from E. When the line is
attached to P, we have

eg402 D ~ p

(d2 ~ k+ $E'

(2 6)

(2.9)

with the same ie as in Eq. (2.6). Finally, for a
line going direct from Py to P2 we have

D. Proof of factorization

Application of Ward identities to the external
lines of every K, in Fig. 5 where they attach to J,
or J, gives Fig. 9. The external electron lines P,
and P, are, of course, amputated and on-shell.
The structure E is as follows.

It is a sum over all graphs with external photon
lines. Each photon line is attached to the vertex
where P, or P, enters 1~. The rule for a line of
E attached to P, is that its propagator is replaced
by

. k U GO g D K y403 4'~

((d& ~ k+tE)((d2 kT ZE)
(2.7)

eR COgD„(d2 eg D2 P c v 2 c

(&u, ~ k+ie)(&u, ~ kv ie) (k +is)(k vie) ' (2.10)

where the reversed ie for ~, k compared with
(2.6) happens because k flows out of J', . Then G,
is defined by Eq. (2.4).

Because of the factor k„ in Eqs. (2.5) and (2.6)
we will be able to apply Ward identities to simplify
the exchanges of K, 's. Notice that we make no'

restriction on the momenta of the K, graphs, even

For each set of N identical connected graphs in E
there is a factor 1/N! .

It is interesting to note that individual graphs
for Fig. 5 have collinear contributions. Thus

FIG. 7. Illustrating Eq. {2.7). FIG. 8. The momenta in X cannot be soft in this graph.
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FIG. 9, Result of applying Ward identities to Fig. 5.

graphs (a) and (c) of Fig. 10 behave as ln'Q' as
Q- ~. After replacing the exchanged photon by
its Grammer-Yennie approximation (2.7) we get
zero for the sum of Fig. 10. The remainder,
with the photon replaced by its G version, has no
soft and no collinear contribution. Hence it is
dominated by ultraviolet momenta, and its leading
behavior is ln'Q with both logarithms renormaliza-
tion-group controlled.

Returning to Fig. 9, we note that there are
ultraviolet divergences involving E. In addition
we would like to display the factorized contribution
coming from soft momenta in E. Now exchanges
of G

&

's and K, 's have the same ultraviolet power-
counting as S, 's, so there is an UV divergence in
I'Uv. This can be subtracted graph-by-graph by
use of the forest formula. "'" There wil. l be two
sorts of extra counterterms:

(a) Those for a graph or subgraph of the topology
of a contribution to I"; such divergences are
multiplicatively renormalized, by a factor Z„say.

(b) Other subgraphs within J'„J„and the S, 's
with some & photons in the interior of the sub-
graphs. Examples are the boxed subgraphs in Fig.
11. The counterterms cancel after summing over

FIG. 11. The boxed subgraphs are divergent; the line
g has (2.7) as its propagator.

(2.11)

When E,(k) is convoluted with rUv the soft'contri-
bution cancels. Hence we have

1

I' = I"„~exp d"kE, k —lnZ,

—= 1 „exp(h ). (2.12)

a gauge-invariant set of graphs.
To get the cancellation to work without paying

special attention to the renormalization prescrip-
tion, it is convenient to use dimensional renor-
malization, "'"where only the divergent part is
subtracted.

The only divergences involving E give an overall
multiplicative renormalization Z4, this has to
cancel the divergence in I"U since the total is just
the 1PI vertex I', which has no knowledge of
Grammer and lennie.

Finally we must construct a factorized form for
1". To do this we consider a connected contribution
E,(k) to E, where k is the total momentum trans-
fer. We write

P) + C.

(b)

is Fig. 9 with every connected sub-
graph of E replaced by its E,. The result is
multiplicatively renormalized by a factor of Z, .
All the soft contributions are contained in the ex-
ponential; where E, is now the sum over all con-
nected graphs for E, and the term -lnZ, exactly
cancels the UV divergence at d =4.

Since I'„~has no soft or collinear contributions
we can take the limit that all masses are zero and
obtain

r-e'sr, +m =M =p,' =p, '= 0) (2.13)

(c)
FIG. 10. A triply logarithmic contribution to Fig. 2 or

Fig. 5. Graphs tb) and (d) contain counterterms for sub-
divergences of (a) and (c).

as Q- ~.
Rather than going through its long sequence of

definitions we can compute I'~~ as foBows. First
compute g~ from its definition, as illustrated in
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Qg = y

+FRuv (y2 +y5) FRuv &1

(2.14)

(2.15)

Fig. 12. This calculation gives Z,. Next we set
all masses to zero in g„and in I' to obtain I'„~
from (2.13). Dimensional continuation is used to
regulate infrared divergences. ' We directly com-
pute I'. . Next note that after integration over k'
and k' in Fig. 12 each graph for g~ is the integral
over k~ of a power of k~; there are no masses
available to give a scale. Such integrals are zero. "
Thus f's~=1' (zero mass) Z, .

The integral over k and k in g~ is convergent
even though the denominators in (2.8)—(2.10) are
1/k' or 1/k rather than 1/(P, k+k') or 1/(P, k
+k'). This is because there is no leading collinear
contribution. We will find the opposite situation
when we investigate the self-energy.

Finally let us note the renormal. ization-group
equations for g„and I'

g/

$
I

F
g

0 ~Q F' zY M

/
p

g

+ terms with no electron pole

FIG. 13. The Coulomb-gauge electron propagator writ-
ten in terms of the Feynman-gauge quantities.

are defined by Fig. 14. They have a label "g"
(for "gauge") to distinguish then from the Gram-
mer-Yennie vertices which we will define shortly.
Also, F(P) is a complete renormalized electron
propagator in the Feynman gauge, and C, and C,
are 1PI in the electron lines attached to &. More-
over C, =C2 (=C, say) by charge-conjugation in-
variance, and C2 is multiplicatively renormalized
by the ratio of the Coulomb to the Feynman gauge
wave-function renormalizations. Note that in
lowest order C = 1, with no g vertices.

Now since the electron pole is totally contained
in F, we have

8 8 2 8 2 8
"8 '&s yzM—s sM .+y3Ms'

sM a
e~ R R

z ~ 2
= z2zC„(Q),.Q 2 (3.2)

8
y5 =P lnZS,

8e~

(2.16)

(2.17)

and P, y„y„and y„have their usual definitions. "
III. FACTORIZATION OF z2(p)

A. Grammer-Yennie

Now the renormalized electron propagator S~ is
a function of P' and n ~ P/En' = Q/2. We wish to
find its residue z, (P /n~n) at P' =M'. First we
write the free photon propagator as

Dc z

k' —m'+ sg

(3.1)

Then we apply Ward identities to the 4„ factor in
(3.1), whenever D'„„occurs in Sz. This results in
Fig. 13, where the internal photon propagators
are in the Feynman gauge (i.e. , —g&„/(k' —m'+i@)),
while the extra vertices with their attached photons

where g» is the residue of the pole of I'~, and C„
is evaluated on the electron mass shell P' =I'.

If it were not for the gauge-fixing vector n",
the momenta contributing to C~ would be collinear
to P". But we also have important contributions
from soft momenta —these are small and have
rapidity in the rest frame of n that is much less
than ln(Q/M). We wish to take Q- ~ and it is
necessary to identify the regions that give a lead-
ing contribution to C~.

Following Refs. 4-6 we define soft momenta to
be loop momenta k" with k~ -XQ in the rest frame
of n~ with X- 0. Collinear momenta have

k'=, xP', k -XQ, kr-&'i'Q,

where F10 and A. -O. There are also important
ultraviolet contributions to C with all components
of k" of order Q. The Sudakov double logarithms
come from the region interpolating between soft
and collinear momenta.

The graphs for C~ can be decomposed as in

Fig. 15, where the external lines of S, are photons.
The decomposition is unique provided we copy

ER=Jd k + Q + g:, +etc

n" n ~ k
e ——k

n

rn~- k 2
gKV

k —rn +i~

fnz5
FIG. 12. Definition of Sz.

"-g = —ditto
FIG. 14. Definitions of the g vertices in Fig. 13.
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B. Factorization

C~R C2 x conjugate

(b)(~)
FIG. 15. Graphs for A@2.

g, (—'Q)=G (Q')z'—, ex,p(2f M 0 —1nZ). (3.3)

We now apply Ward identities to the R photons to
obtain Fig. 17. The rules for the g vertices in Fig.
17 are given in Fig. 18. Thus we have a factoriza-
tion

(a)
P P+k

= ie (2p+k) k+(p„+ &
k ) DK

K F

p -k+ —k +i62
2

the rules for the S&'s in Sec.'ll. (Every connected
component of an 8, is attached to a g vertex. It
may or may not have external photons coupling
to the jet J; but it it does, then the photon must
couple to the exhibited electron line, or to any
electron attached to it by P~ vertices. )

As in Sec. II, we split each connected graph 8,.
into a "g graph" and a "G graph. " Each line of
a K graph flowing into the "jet" J is given its
Grammer-Yennie approximation shown in Fig. 16,
while G is the remainder. All soft contributions
are in the E graphs and in Sec. IIIB we will apply
the Ward identities. Notice that the ie's for the
K photons in Figs. 15(a) and 15(b) are different.
This is why we did not apply the Grammer- Yennie
approximation directly to the propagator for we
would not have known which sign of ie to use. The
factor —,

' with the k' is arbitrary; any other non-
zero positive number would do equally well except
for some complications in lowest-order calcula-
tions. Similarly the P,

"a —,'k' can be replaced by

py except for the same complications. However,
we cannot replace P, ~ k+ —,'k' by ~, ~ k for we would
obtain spurious divergences. The 1/~, ~ k would
reproduce the soft region correctly but the k'
integral would diverge logarithmically at large k'
(if the k integral is performed first). This hap-
pens since there is both a soft and a collinear
contribution. Whereas P, ~ k» k' in the soft re-
gion, the two terms are comparable in the collinear
region, and k' dominates when k'&P'. It is nec-
essary for the K photons to provide a quantitatively
good approximation in the soft region and at least
a qualitative approximation elsewhere. In fact
the definitions of Fig. 16 imply that our Grammer-
Yennie approximation is exact, but only at the one-
loop level, of course.

Here we have set n P/Mn=Q/2, and we have de-
fined fBd'k to be the set of connected graphs for
the second factor of Fig. 17, as illustrated in Fig.
19. To exhibit the overall ultraviolet divergence
in fBd k, which is renormalized by a term —,'lnZ„
we have displayed the momentum coming out of the
k vertices and into the g vertices. GR is the re-
normalized contribution of the graphs with the
Grammer- Yennie contribution subtracted. It con-
tains a. renormalization factor g, ' '. By Hecka-
thorn's" argument Z, is independent of Q.

All the soft contributions are now in B, which we
will discuss in Sec. IIIC. The Q dependence of Gs
comes from large transverse momentum, and we
will compute its large Q asymptote by an operator-
product expansion in Sec. III D.

-ien,
k n(k' —m. '+is)' (3.4)

This has a singularity at k'=0 and there is no iE'

prescription to avoid it. Its neighborhood is the
soft region and gives rise to the double logarithms.
Note that the only knowledge that fB has of Q
comes from the g and k vertices.

It is convenient to integrate first over k at
fixed k' and k~, and to write

B[(kr, k'(P, /P,')'", k'(n /n')' ']—= k'fdk B(k), '

(3.5)

C. Computation of f8

Now B is the set of graphs in Fig. 19, with k

being the momentum leaving at the k vertices and
entering at the g vertices; all other loop integrals
are performed inside B. We will examine care-
fully the integral over k, since it is the source of
the Sudakov double logarithms. In the case that
B has no k vertices there is no k integral to per-
form, and we then define B to have a factor 5 "(k).

If we work in the rest frame of P" and if n'-0
(corresponding to Q- ~), then the g vertex of Fig.
14 goes to

p+k
= ie (Zp+k) kp. ( p„+—k) DK,

p„k —
2 k —ie

FEG. 16. Definitions of Grammer- Yennie approxima-
tions.

C2 // X Con jugate
x& g&g

FIG, 17. C after application of Ward identities to K
photons.
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' K e(p + —k) D
F

2 Kv

P, k+ 2k' ie
FIG. 18. Definition of K vertices in Fig. 17.

(3.6)

where P,'n /(P, n') =Q'/M'+O(1) as Q- ~. When

kr is of order Q or larger we can safely say that
all momenta are of order k~, since B is con-
nected, so that we have a purely ultraviolet prob-
lem. This is controlled by the renormalization
group with the aid of an operator-product expan-
sion, as we will show shortly. So we will now

examine, the region kr«Q.
The crucial point is that there are three re-

gions to distinguish, in each of which either p
or n' or both is effectively zero so that one or
both of the variables in Eq. (3.5) that depend on
k' will drop out.

Soft region: k'- ~kr~(n'/n )"'. Here we can
treat p as zero: The only dependence on p
comes from k vertices when the momentum
through it has its k «k', i.e. , the region of
"Coulomb momenta" P, ~ k =0.' But the contour of
integration can be deformed away. ~ " In the rest
frame of n" the dominant region of integration (by
a power) is' k', k -kr (or masses) so effectively
all momenta are order k~.

Col/ines region: k'- -p'. We would like to set
n' =0 so that n' =0 and k'(n /n')'" - ~. The limit
exists provided we do not meet any k - n singularit-

where the explicit factor k' gives invariance under
boosts in the z direction. The only (z-boost-in-
variant) quantities on which B can depend are kr,
k'(p, /p,')"', and k'(n /n')'", since p'p is fixed
at M'/2 and B is invariant under scaling of n".

Next we integrate over k'. A potential problem
arises since the three momentum variables on
which B depends can have widely different values.
Thus large logarithms which invalidate the use
of perturbation theory can occur. ~horning hoM

this problem does not in fact exist is the key step
in this paper.

Let us perform the k' integration to obtain

Tl(i„,P'n /(p, m')'i= f di'di B

2B(k r, Q, m, M, p, , e) =f,(k „,m, M, p, , e) lnQ'

+f2(kr, m, M, p, , e)

+ O(1/Q), (3.7)

where we deliberately choose not to fix the scale
that comes with Q' in lnQ'. Since by power count-
ing f, and f, are of order 1/kr' for large kr, the
Sudakov double logarithm comes from integrating
the lowest-order term in f, up to kr- Q and multi-
plying by the explicit lnQ' in (3.'I).

To separate the behavior at small and large k~
we write

2B= (f, lnQ'+ f,)Q'/(Q'+ k„')

+2B„(k„,Q, m, M, g, e) .

The factor Q'/(Q'+kr') means that while

(3.8)

d'k„(f, lnQ' +f, )Q'/(Q'+ k „')

is convergent at large k~ it also reproduces the
complete kr«Q region. Since then @ -0 as

apply Grammer —Yennie here

ies. These singularities are only important if
some g vertices have, in fact, ~k+~«p', i.e. , if
there are soft lines. But some other lines are
collinear, and as B is connected the soft lines
must couple to a loop of collinear elect"on lines
by power counting, 4 as in Fig. 20. Thus applica-
tion of the Grammer-Yennie approximation and
of Ward identities shows that the total is zero.
Hence we can set n'=0 for the leading power in Q,
but only after summing over a gauge-invariant set
of graphs.

Intermediates egion: p'» -k'» [(kr'+ m')n'/n ]'~'.
This region interpolates between the collinear and
soft regions, and we can apply the results for both
regions to set P =n'=0 to give B(k„,0, ~) for the
leading power. Consequently, 8 has a contribution
of order B(kr, 0, ~) ln[Q/(kr'+ m')'t'] from this
region.

The limits k'-~ or -~ can be considered as
end points of the soft and collinear region, re-
spectively, with the k'-integral convergent by a
power.

The result of the above is that in fact the only
important momentum scale is k„. Then if Q»kr,
m, M we have

/
I
I

i +
k~ Vg

Ii /'t V k g

c ollinear

9
soft

9

inear

FIG. 19. Definition of B.
FIG. 20. Showing decoupling of soft and collinear con-

tributions to B.
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kr/Q-0 we can set m =M =0 in B without en-
countering IH divergences.

Hence

2 8 —lnZ6= d k~, ln + ~ +kr'

+ d" k~ k~, , 0, 0, p, , e

—ln Z, + O(1/Q) . (3.9)

S = — d'k T Q2~k 2 2~k 2)I

x [f,(m =M =0) lnQ'+f, (m =M =0)]

We need to control the large-Q behavior of (3.9)
by the renormalization group, for which purpose
we notice that ~B=0 so that Sf, =K)f2 =SB„=O,
where 5) is defined by Eq. (2.16).

The large Q expansion of (3.9) is obtained by
writing

D. OPE for G&

To the extent that its virtual lines have trans-
verse momenta much less than Q, we see that Gs
in Eq. (3.3) has a finite limit as Q- ~, which is
obtained by setting n = 0. This happens be cause in
takingn =0, i.e., n = 0, any divergences arise from
1/k .n singularities at the@vertices. This diver-
gence, at@ = 0, is in the soft region if kT «Q, and, by
the very definition of G~, it has been subtracted off.
Thus the problem of the Q- ~ limit of G„ is aproblem
in UV behavior. An immediate consequence is that the
dominant contribution is of the form of Fig. 21.
Here the momentum p" has small transverse mo-
mentum, while all lines in J, G have transverse
momentum of order Q. Transverse momenta in
G and J are much less than Q. Thus we have an
operator -product expansion

Gs-Gs»(m, M, n = 0, tu, e(p))Glluv(Q/V. , e(p)).

(3.16)

d" kqB„~ m =M =0 +lnZ6,

k
Iy = d kz' 1 2 2 1

kp +p

(3.10) Here G»R is G~ with n set to zero. Since there
is no longer any cutoff on k~, G~,„has an ultra-
violet divergence which is multiplicatively renor-
malized by a factor Z, ' so that

so that

d'kr ~ + i»W'

k '
2 [f2(m =M = 0)k~'+ p.
'

+ln0'f (m M =0)]j,

(3.12)

where

8
y, =P lnZ, .

8eR

IV. CALCULATIONS

+ ~ Gl2la = yv(es)Gll» I8p, BeR
(3.17)

(3.18)

2 B-lnZ, =-S, -I, ln ' p' —S, +0 1

(3.13)

I.et us combine the results of Secs. II and III,
viz. , Eqs. (2.2), (2. 13), (3.3), (3.13), and (3.16).
It is convenient to take the logarithm of the form
factor so that we have

and

SS, =y, ln(Q2/y, 2) +y, +y, ,

SIy ~s ~

&S =2I, —y, ,

(3.14)

in V = —U -I, ln(Q'/p') I, + O(1/Q), -
where I, is defined by Eq. (3.11), while

I~ =S, —g~ —2 lnG„l~ —in@~,

U = Sl 2 lnGz„v- ln I'zUv

(4.1)

(4.2)

where

p, 'k
y 2 d kT( 2 k 2 2f1(kT

LV. +kg j
2 2

y, =2 d kT 2 k 2)2 [f,(kT, 0, 0, p, e)p k~
jtL. +k~

+inll2f, (kT, 0, 0, ll, e)],
(3.15)

8
y2 =P 1nZ2.88'

Q lng =0, (4.3a)

FIG 21 Struct re of dominant region for GR

The quantities in Eq. (4.1) satisfy the following
renormaliz ation-group (RG) equations:
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»"=r.»(Q'6') +r&,

QI = —y.

&12 = -yR+2I

where r, is defined by Eq. (3.15) and

yR —Y '+y 2Y7 Y y2c

(4.3b)

(4.3c)

(4.3d)

(4.4)

+ U(1, e(Q)), (4.5)

where the effective coupling e(g) satisfies, as
usual,

Q I 2

U(Q/v, e(g)}= —
J ~ rs(&(u ')) +r,(e(p ')} ln

P

The large-Q' behavior can be conveniently ob-
tained by choosing p, of order m and M in I, and

I,. Then we have to write tJ in terms of its value
when g =Q:

g —e(p, ) = P(e(g)} .d
d JLt,

Hence

(4.6)

li( m, N, p) o dg''"v -))i) ~i))))+ ~ v, (e(u'))+~.(~is')))n, I[)+oi)iq)].
u p,

(4 &)

lnV = -g A„~e'" l.np(Q'/p, ') +O(l/Q),
N,P

(4.8)

where A„, and A„, may depend on m/p, and M/g.
The calculation can be done in the Feynman gauge,
since V is gauge independent, and, given Eqs. (4.1)
and (4.3), we would like to compute U, I„ I„r~,
and yR. However, the result is not unique, for if
we make the transformation

I,-I, +f(e), (4.9a)

(4.9b)I,-I,+g(e),

then V and Eqs. (4.1) and (4.3) are invariant if
we also let

There is an overall normalization e "and a power

I, of Q-' that are determined by infrared pheno-
mena. In @ED these are of course computable in

perturbation theory. However, in view of exten-
sions of the methods of this paper to QCD, it is
useful to consider what would happen if QED were
asymptotically free. Then I, and I, would have to
be taken from experiment. But then it becomes
important to see how they vary for the various
form factors we might wish to consider. The varia-
tion is an ultraviolet problem.

It is also convenient at this stage to point out
that there is a certain arbitrariness in our con-
structions of the terms in Eq. (4.2)—as can be
seen, for example, in Fig. 16 where the —,

' can be
replaced by any nonzero number. For calculation-
al purposes it is unnecessary to know anything
other than that Eqs. (4. 1) and (4.3) are true and

that U, yR, and y, have valid perturbation expan-
sions. The purpose of our work in Secs. II and

III is to assure us that this last sentence is in

fact true and that the quantities considered can be
defined outside of perturbation theory.

Suppose we compute lnV in perturbation theory:

8rs-rs-Pq (4.9d)

r -r —P —+2f.Bg
R R (4.9e}

%e can now impose some convenient conditions
on these quantities to permit a unique calculation.
Consider first the order e' terms in Eq. (4.8).
The e'ln'Q'/p, ' term in U has coefficient A», so
that r~ =-4A„e'+O(e') by the RG Eq. (4.3b). We
need two conditions to fix the rest of tJ; let us
assume that r„=0 and that U =0 when Q = p. . Then

I, has to be A„e', and the RG Eq. (4.3c) pro-
vides a consistency check. Finally, I,=A„e',
with Eq. (4.3d} as a check.

In general, let us write

U = PA~(e) ln~(Q'/p, '),
P-1

where U =0 when Q = g. Then

r, »(Q'/I') +r& =&U

(4.10)

Ap = PA~, /(2P}

for I'~3, while if y„=0 we have A, =O and

r~ =-4A, .

(4.12}

(4.13)

Now consider the O(e'") terms in lnV. The only
contributions to A.» for I') 2 are from U. Thus

A„p for P) 3 is given by Eq. (4.12) in terms of
lower-order values, and in particular A» =0 if
P)N+1. Then the ln'Q'/p, ' comes from A„,:

= g [PA& —2(P +1)A~+|1»'(Q'/V') .
P=O e

(4.11)

This equation determines A~ in terms of P and

AP -a:

U- U -fin(Q'/g') -g, (4.9c)
¹ j.

(4.14)
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I, =pe' A„, , (4.15)

Finally, the InQ'/p, ' and Q-independent terms are
fixed since we choose A, =A, =0. Hence

not computable in an asymptotically free theory,
the changes due to change of operator are com-
putable. These changes are in U(1, e(Q)) and, if
the operator has nonzero y„ in y~.

I, = Qe'"Ago. (4.16)

o d & 2

+
J

", In „e,(p{n')1+O(I/q)).
p

(4.17)

This reproduces Mueller's results. '
Now let us consider changing the particles or

the operator whose form factor we are discussing.
The only dependence on the operator is in I'R
The only dependence of lnV on particle type that
is not a sum of a term for each particle is in gR.
But this term depends only on the particles'
charges.

In Eq. (4.17) the only quantity that is independent
of particle type and of the operator is the order
e' value of y~, and this is what determines the
leading, Sudakov behavi. or.

While Eq. (4.17) gives a useful summary of the
large effects at high Q', it cannot be used when
actually Q'-~ for then the coupling e(Q) becomes
large and perturbation theory inapplicable. " In
view of the applications of the methods of this
paper to non-Abelian gauge theories it is of inter-
est to see what would happen if Eq. (4.17) were
being used in an asymptotically free theory. In
the first place Mueller's remarks' would apply,
so that the leading behavior would be determined
by {6= ae, y = be'

If we only wish to examine the electromagnetic
form factor, we may choose y„=0 and U(Q/Q)
=0. This is a convenient condition to apply in
perturbation theory. To extend calculations to
other operators we can require I„I„and y~ to
be the same as for the electromagnetic case and
write

(4.16)

with

Sb,U =y,(e),
where y, is the anomalous dimension of lnV:

X)lnV=-yo

(4.19)

since the operator is not now necessarily con-
served. Thus although I, and I, in Eq. (4.7) are

In terms of the definitions with ys =0 and U(Q/Q)
=0, Eq. (4.7) becomes

m M Q' m Mp-eep — I, —,—,e(n) e~)nl, —,—,e(n))

V. SUPERRENORMALIZABLE CASE

In space-time dimension d& 4, QED is super-
renormalizable. It is easy to read off the altera-
tions to the results of Sec. II, III, and IV. First
of all, the anomalous dimensions vanish. Then
the UV behavior of higher loops in the 1PI vertex
is reduced, so that Eq. (2.13) becomes

I -e'(I + O(I/Q')), (5.1)

where g now needs no renormalization, and ] is
number greater than zero.

Then in Sec. III all the divergences at large k~
disappear so that Eq. (3.9) is replaced by

2 J3= d" 'k'~, ln '+, +0 1 (5.2)

while (3.16) becomes

GR GR lR

Hence

(5.3)

V=GRexp ln ' d" '0»+ d" 'k»+g

where

~2 +M2 a(m, g,e,d)

b(m, M, e, d)(1+0(1/Q')),Q'

(5.4)

a=- d" 'k (5.5)

and

b=G»Re&p 8 —aln m'+M' + d" 'P~,

(5.6)

Hence there is a power law- falloff of V which is
not renormalization-group controlled. The pur-
pose of the m'+M' factors in Eqs. (5.4) and (5.6)
is to ensure that 6 is dimensionless.

VI. CONCLUSIONS

We have seen how to factorize the large-Q be-
havior of the electron's form factor, and that the
UV part is the exponential of a quantity computable
by renormalization-group methods. The main
contribution came from the overlap of the soft
and collinear regions, and was factored out by
the Grammer- lennie method.

There are many processes to which these tech-
niques should be applied in QCD. The precise form
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of the factorization and exponentiation will depend
very much on the process. There seem to be two
main difficulties, viz. ,

(I) The Iactorization and exponentiation are in
coordinate space whereas the required answer is
in momentum space. See Refs. 8 and 20 for cal-
culational methods.

(2) QCD is non-Abelian, with two problems en-
suing: (a) We proved that the K, 's in Fig. 5 cannot
have collinear external lines. The proof relied
on using Ward identities to show cancellation of
soft contributions internal to a K, . Because non-

, Abelian gluons are colored, this proof does not
apply. Bather we must construct a definition of

K, in which internal soft contributions are sub-
tracted off when the external lines are collinear.
Exactly analogus remarks apply to our work in
Sec. III. (b) When we apply Ward identities to a
K gluon (as when we derived Fig. 9) we pick up a
term for each colored external line of a jet. Such
lines include soft gluons in a non-Abelian theory,

'when one obtains commutators of the vertices
emitting the soft glue. In Ref. 3 it was shown that
then one simply applies the Grammer-Yennie
method to the commutator vertices.

None of these problems seems insurmountable,
but they do prevent a trivial extension of the re-
sults of the present paper.

Note added: The extension to low-transverse-
momentum dilepton production in hadron collisions
(the Drell-Yan process) has been accomplished.
See D. E. Soper and J. C. Collins, lectures at the
XXI International Conference on High Energy
Physics, Madison, Wisconsin (unpublished); re-
port (unpublished).
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