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We illustrate how a field theory of confinement automatically leads to spontaneous breakdown of (flavor
nonsinglet) chiral symmetry, with accompanying massless pions. This breakdown is described as a tunneling process
involving a quark and virtual qq pairs (as in superconductivity), and is driven by the infrared singularities of the
confinement mechanism. Effective quark masses (not to be confused with either current or constituent quark masses)
are defined in terms of (y„$ '(p)) at zero momentum, where $(p) is the effective quark propagator (an entire
function in most gauges), and these masses yield values for F . Aside from messy numbers of O(1) discussed in the
text and leaving out short-distance corrections, F is essentially 2+3 a(2+i) '", where a 400 MeV appears in the
linearly rising potential V(r) = a'r. We calculate chiral-breaking effects in four models, beginning with d = 2+ 1

QED for massless electrons, to introduce techniques [using Ward identities and the full Dyson equation for S(p)]
for dealing with confining field theories. Two other models are d = 3 + 1 propagator models of confinement and the
fourth explicitly exhibits the tunneling to a qq pair mentioned above, in a theory with area-law confinement.

I. INTRODUCTION

There is a sense in which we understand the pion
less well in today's quark models than we did
twenty years ago as a Goldstone boson. ' The pion
coexists successfully in an SU(6) multiplet with
heavy particles like the p and the properties of this
multiplet are for the most part well-described in
terms of qq bound states. ' Yet this language leads
to no immediate understanding of the Goldstone
nature of the pion (in particular, its nearly zero
mass) as we see, for example, from early bag-
model calculations of the pion's properties. ' And
this language does not make it clear what the na-
ture of the chiral symmetry-breaking mechanism
is. Inevitably, the mechanism involves formation

. of a qq condensate and it is problematical how to
integrate this with a simple bound-state picture.
The difficulty is that in a quasipotential view of a
bound state, there is no machinery for a quark to
tunnel through to a virtual pair and couple to the
condensate. Such a possibility is inherent in any
relativistic field theory, but knowledge of the
(continuum) techniques necessary to treat even a
phenomenological confining field theory is not yet
widespread.

In fact, such techniques have already been par-
tially developed, "and used in various confine-
ment contexts. We have noted that in d= 2+ 1 QED
for zero-bare-mass electrons, the logarithmically
confining potential generates in perturbation theory
an infrared-singular electron "mass"; the singu-
larity is removed in the full Dyson equation and
replaced by an electron propagator S(P) which is
entire in momentum space. In this paper we ex-
tend these techniques to show that () „S(p)j& 0 in
several confining models. We also develop another
set of methods based on path-integral representa-

tions of quark propagators to show the explicit
connection between chiral breakdown and tunneling
to a virtual qq pair.

Quite independent of the above considerations,
other authors have given reasons to believe that
confinement and breakdown of chiral symmetry
are related. It has been appreciated for some
time that instantons can break SU(iV) x SU(N)
chiral symmetries' [as well, of course, as axial
U(1) symmetry which involves anomalies']. Callan
et al. also argue' that instantons confine, but the
connection between these two roles played by in-
stantons has not yet been made quantitative. Re-
cently, crasher' has argued in a general way that
vectorlike confining forces automatically break
chiral symmetry, and Johnson and Donoghue"
have calculated E, in the bag model, where chiral
symmetry is violated by bag boundary conditions.
This interesting result is obscured by a lack of
precise understanding of how the pion becomes
massless in a bag model.

In preconfinement times, it was easy to exploit
the connection between superconductivity and
spontaneous generation of a fermion mass. ' One
wrote down a gap equation which could have two
solutions: zero-mass fermions and Wigner-Weyl
realization of chiral symmetry, or massive fer-
mions and massless pions. 'The gap equation was
a statement about the pole of a propagator. Con-
finement poses a serious challenge to this picture
because the quark propagator in quantum chromo-
dynamics (QCD) does not even exist, strictly
speaking. We can —and will —usefully define an
effective propagator S(p), but it has no poles (in
most gauges); in fact, S(p) is entire in p'.'

These features show up as a very specific pro-
blem in the naive gap equation: The fermion mass
is infrared divergent. It is no accident that exactly
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the same divergence appears in the static potential
of the confining theory: The mass divergence and
the potential divergence conspire to cancel each
other in (and only in) color-singlet channels. In a
certain sense, the mass is subsumed in the gluon-
exchange force, but it leaves its mark on the
theory in the form of a nonvanishing value for
(y„S '(P)] =- —2y,M(P'). This momentum-depen-
dent "mass" breaks chiral symmetry and leads to
zero-mass pions for which we can roughly calcu-
late E,.

It would be nice to show these features in QCD
by making an ab initio calculation of the confine-
ment machinery. Unfortunately, we cannot do
this, so we turn to models. Four models will be
taken up: d= 2+ 1 QED with massless electrons,
two propagator models of four-dimensional con-
finement, and an area-law model for four-di-
mensional confinement. (By a propagator model
we mean one in which the forces between quarks
come from the exchange of an effectively Abelian
gluon whose propagator is chosen to have specific
confining properties. '"

The first model, d= 2+ 1 QED, is included for
two reasons: First, it really is Abelian, and an
undressed single-photon exchange correctly gives
the confinement law (corresponding to a logarith-
mic static potential). The second reason is that it
is a useful proving ground for the necessarily non-
perturbative technique needed to deal with confin-
ing forces. Furthermore, as far as we can tell
the electron propagator S(p) actually exists and
there is no reason to invoke an effective propaga-
tor. We will explicitly show that (y„S '(p)]& 0 by
calculating S(P) from the full Dyson equation using
a Ward-identity-preserving solution for the longi-
tudinal part of the vertex function [conserved
transverse parts do not contribute to the infrared-
singular behavior responsible for the entirety of
S(P)]. This idea, which actually linearizes the
Dyson equation, was independently exploited in
Refs. 4 and 12. However, in Ref. 4 it was only
carried out for eikonal vertices (i.e. , y„-v„, a
forward timelike velocity) which does not allow
for a proper consideration of antiparticle effects;
Ref. 12 uses Dirac matrix vertices, and we will
use this development of Delbourgo and West. 'The

upshot is that S(p) no longer has any logarithmic
infrared divergences associated with the electron
mass; it solves that problem by rejecting the no-
tion of a mass shell and becoming entire.

Once it has been shown that(y„S '(p)] + 0, an ar-
gument due to Goldstone" shows that the homo-
geneous Bethe-Salpeter equation in the pion chan-
ne1. has a solution at zero-momentum transfer.
We take this to mean the existence of a zero-mass
pion, both in three and in four dimensions [an as-

sumption related to the rapid decrease of M(p')
at large P', discussed below]. It is then more or
less straightforward to use chiral Ward identities
to calculate E„acalculation which amounts to
normalizing the pion Bethe-Salpeter wave function.

This work can be trivially extended to logarith-
mic confinement in four dimensions, which re-
quires the gluon propagator to have the behavior
(-k') '~' for small k. Logarithmic potentials have
been seriously advocated" for charmonium and
bb states and the strength of the potential for
heavy-quark systems is known. The resulting
values for quark masses (-1 GeV) and E,
(-300 MeV) are disappointing.

One feature of four-dimensional theories which
is absent from d= 2+ 1 QED is the presence of re-
normalizable short-distance singularities. We
propose to omit these from the present treatment,
although their inclusion is not difficult in princi-
ple. There are two reasons: First, the models
we use below for four-dimensional QCD may be
valid in the extreme ultraviolet and extreme in-
frared regions, but there is no reason to believe
that they model the transitions between these ex-
tremes very mell. Second, we have a feeling
based on some experience that short-distance cor-
rections are not likely to be more than about
+25/p, and we cannot even claim corresponding ac-
curacy for the part of the theory that we save.
Work is in progress to look at short-distance cor-
rections and mill be reported later. With the
proviso that we consider only confining forces, let
us take up more realistic models of QCD than
logarithmic confinement.

The first of these is a propagator theory in
which the qq force law is like QED, except that
e'k ' is replaced by C~g'(k)k ' (C~ = ~ is the
quark Casimir eigenvalue). A linearly rising stat-
ic potential follows from Czg'(k) = —m'k ~:

m'
2v(r)= —r = a'r. —

Sm

Heavy-quark physics" tells us that a =400 MeV,
m = 1.9 GeV. [For details of how to extend this
theory to ultraviolet momenta, see Ref. 16. The
effective Abelian propagator g'(k)k ' correctly
reproduces all /eading asymptotic-freedom re-
sults. ] The same effective gluon propagator is
used for a gluon emitted and absorbed on the
same quark line, but in baryons the qq force is
attractive and one-half the strength of the qq
force.

We wish to imitate the successful techniques
used in d = 2+ 1 QED, and we begin by looking at
the naive gap equation. The result is a linearly
infrared-divergent fermion mass, which exactly
cancels the linear divergence of the static poten-
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M(P2) = (1.3)

As might be expected, E, is only logarithmically
sensitive to A, which we. argue below should be of
the order of the p mass. 'There is a precise for-
mula (see the Appendix) for E, in terms of M and

A, but we can orient ourselves to the main fea-
tures of the problem by once more setting logar-

tial (both for baryons and for mesons). One might
hope that this divergence goes away in the full
Dyson equation, as it did in d= 2+ 1 QED, but it
does not; the kernel of the Dyson equation appears
to have a log0xithmi c infrared divergence. This
is very much to be expected in QCD because the
conventional propagator of quarks (or other
colored fields) vanishes (by virtue of gauge invar-
iance of the vacuum, which is not the case for
QED). We can define an effective propagator, but

only with reference to the particular color-singlet
process in which this propagator is to be used.
Because of the way the model is constructed to
look like QED, any color-singlet object like a
hadronic Green's function has an Abelian gauge in-
variance which lets us shuffle various nonphysical
phenomena between the gauge-variant constructs
(such as the effective propagator) into which we
artificially resolve the color-singlet Green's
function.

Our essential point is that the logarithmic infra-
red singularity of the effective propagator is pure-
ly a gauge artifact totally absent from the color-
singlet Green's function. This means that lnp, '
(p, is the infinitesimal infrared-regulator mass)
will be replaced by ln&' in all physical quantities,
where & is a finite mass characteristic of had-
rons. Since F, is only logarithmically sensitive to
what co is, we do not, in this first attempt to esti-
mate F„worry about its exact value. Instead, we

simply replace logarithmic factors by unity,
which could be inaccurate by 50/0 (we hope not by
much more).

To calculate E, it is necessary to go through the
intermediate device of an effective quark mass M,
defined as

M =M(p'= 0), (y„S '(P))—= —2y, M(P') . (1.2)

M(p ) is not in itself a gauge-invariant quantity,
but it is useful to think of it as physically real. To
make its definition precise we specify that M(p')
is to be calculated in the Feynman gauge, the
reasons for which will be given in Sec. II. E, de-
pends not just on M, but on M(p') for all momenta;
if we took M(p') =M, E, would be logarithmically
divergent. There are good reasons"'" for think-
ing that M(p') -p ' for large p, so we use the
simple parametrization

ithms equal to unity because some simple for-
mulas emerge:

mM= —= 300 MeV,
27r

3' 'm 2a(3' ')
E, ), ( )3(2

= 87 MeV. (1 5)

Of course, no attention should be paid to the acci-
dental and embarrassing closeness of F, to the ex-
perimental value of 94 MeV.; we have made so
many approximations and simplifications that any
value from 50 to 150 MeV would be plausibly the
exact result for this model. But it is amusing to
see a number of order 100 MeV emerge from
another, namely m, of order 2 GeV.

Before going on to the last model, area-law
confinement, we should say a few words about the
meaning of M. It is certainly not the current
mass M of a few MeV for up and down quarks in-
duced by the weak interactions and responsible
for the nonzero pion mass. Nor should it be con-
fused with the so-called constituent mass which is
really an energy of the form MZ, where Z is the
usual relativistic factor; this energy is of course
finite even when M = 0 (as illustrated concretely
in Ref. 5). At the moment, M merely stands for a
parameter characterizing the strength of chiral-
symmetry breakdown; other dynamical aspects
await clarification.

So far we have worked in momentum space. The
last model" has to be worked out in coordinate
space using another set of nonperturbative tools
useful in confining theories. In some ways this
makes it the most interesting model of all because
it explicitly exhibits the connection between chiral
breakdown and tunneling to a virtual qq condensate.
The essential element, invoked by Feynman and

Schwinger in works some thirty years old, is a
representation of a charged-particle propagator
as a four'-dimensional path integral followed by a
proper-time integral. Feynman graphs corres-
pond to approximating the paths by straight lines,
clearly inappropriate for confinement. In fact,
the dominant classical paths must be periodic and
confined to a finite region of three-space. Such
paths automatically remove""'" all infrared sing-
ularities from infrared-singular theories like the
propagator theory above, or the area-law theory
of present concern. But Casher' has argued that
these paths inevitably imply chiral-symmetry
breakdown, as we will show.

Earlier works" using the bouqd-state path tech-
niques restricted themselves to paths x„(s) (s is
the proper time) which had a direct classical in-
terpretation: The proper velocity i,(s) was al-
ways forward timelike (FTL). This is quite ap-
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propriate for heavy-quark systems where the
quarks do behave almost classically, but not so
for light-or zero-mass quarks. These can give
important contributions to the path integral from
paths that fluctuate so that i„ is spacelike or
backward timelike, corresponding respectively to
a tunneling process or to an antiparticle. An
otherwise FTL path which has a fold (a backward
timelike segment joined by two spacelike seg-
ments, or a Z shape) has the physical interpreta-
tion of a virtual qq pair coupled to the original
particle by tunneling —just the ingredient which
characterizes the gap equation in superconductivi-
ty.

It turns out (see Sec. IV) that it is these folds,
and only these folds, which give chiral-symmetry
breakdown, either in the propagator model above
or in the area-law model. Without them, quarks
stay massless. So a static potential model, cor-
responding to pure FTL paths, cannot give a
nonzero E, (unless one wants to take seriously hy-
brid relativistic-potential models such as the
Dirac equation with a static. potential which exhib-
its a sort of tunneling in the form of the Klein pa-
radox).

The area-law model is motivated by considera-
tions of vortex condensate formation in massive
gauge-invariant QCD,"but that need not concern
us here. The main point is that the (Euclidean)
action associated with a fixed Wilson loop is given
by an appropriately scaled minimum area (inde-
pendent of the spanning surface). The Wilson-
loop expectation values are then subjected to
proper-time and path integrals to give hadronic
Green's functions. For FTL paths, the propagator
model discussed above and the area-law model
are virtually (in d= 2, exactly) identical, but they
differ somewhat for non-FTL paths (the difference
is related to the existence of long-range van der
Waals forces in the propagator theory).

We have tried to estimate E, by summing over
these non-FI'L folds, a procedure very much the
same as summing over barrier-penetration "in-
stantons" in ordinary quantum mechanics. " The
calculations are technically messy, and depend
somewhat sensitively on hadronic parameters
(e.g. , radii and bound-state periods) which have
been estimated' with path-integral techniques, but
are not really accurately known. In consequence,
values for the effective quark mass M could range
from 50 to 500 MeV, with corresponding variabili-
ty (15-150 MeV) in F,. The importance of this
calculation lies not in this wide range of values
for E„but in the insight it yields as to how infra-
red singularities can be tamed to give some non-
zero value for E, independent of spurious cutoff
effects.

A final note on the practical significance of F,.
It is very natural that the first predictions from
QCD (or models of it) will be properties of isola-
ted hadrons: masses, static moments, and E,. It
will be much harder to calculate, from QCD itself,
multihadron properties such as coupling constants.
Fortunately, we do not need to do this: Knowledge
of the mass spectrum and E„plus unitarity, com-
pletely determines all phenomenological hadron
couplings of hadrons with spin &1, as discussed in
Sec. V. So E, is not just another hadron paramet-
er; it helps to unblock almost every difficult cal-
culation in QCD.

Section II of this paper describes general prop-
erties of propagators (or effective propagators) of
confined particles, with emphasis on questions of
entirety and gauge covariance. Section III illus-
trates the momentum-space Dyson equation in the
paradigm of d=2+1 QED. Section IV takes up
three models of confinement in four dimensions,
and Sec. V contains conclusions and possible di-
rections for the future. An appendix gives well-
known formulas for getting E, from (y„S '(p)).

Note added. As I was writing this, I saw a work
by Pagels and Stokar" which overlaps the present
work. These authors relate the effective quark
mass to E, and give exactly the same formulas
and approximations as in the Appendix of this pa-
per. They also relate M(P') to the pion electro-
magnetic form factor, emphasizing the importance
of M(p') -P ' for large P. They do not address the
question which is the crux of my work: How does
confinement break chira1. symmetry'P My attention
has also been brought to the work of Brout, Eng-
lert, and Frere" which discusses the issues
raised here in the d= 2 't Hooft version of QCD.

II. CONFINEMENT AND ENTIRE PROPAGATORS

Presumably for QCD in four or fewer dimen-
sions, the conventionally defined propagator of
confined quarks (or of any gauge-variant quantity)
is identically zero because the vacuum is unique
and gauge invariant. Propagators exist in ordin-
ary QED because the vacuum is one of a degener-
ate set related by gauge transformations. (Ap-
parently this holds even for d = 2+ 1 QED, a con-
fining theory. ) It is nonetheless useful to speak
of quark propagators in QCD, because in the
phenomenological models of confinement'" de-
veloped in Sec. IV there are effective propagators
with all the properties discussed in this section.
In particular, they have an Abelian gauge-covar-
iance property, just as in QED. So we need make
no distinction between QCD and d= 2+ 1 QED in
what follows.

The question is how to extract physical, gauge-
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independent information from the propagator. If
there were a mass shell this would be easy; the
position of the propagator pole is gauge invariant.
Unfortunately, the general case for confinement is
that there is no mass shell. In this section we de-
velop several standard representations for the
propagator (in coordinate and in momentum
space), which will be used in succeeding sections,
and find their gauge-transformation properties.
Vfe will always be interested in infrared effects,
that is, large distance and small momentum,
which leads to certain simplifications. There is
one trivial result which holds in any case:
S(p)]W 0 is gauge invariant.

There are only two continuum techniques known
to the author for treating propagators in confining
theories (of course, perturbation theory fails).
One"'" uses the proper-time techniques of Feyn-
man and Schwinger and is formulated in coordinate
space; the other' turns the full momentum-space
Dyson equation into an equation linear in the prop-
agator by approximating the proper vertex by its
longitudinal part. These techniques are closely
related, and are especially suited to treating in-
frared-divergence problems nonperturbatively
(because transverse proper vertex parts vanish at
small momentum, thus eliminating infrared sing-
ularities). In the eikonal approximation they are
identical, ' but this approximation is too drastic to
use for chiral-symmetry breakdown.

In the propagator models of this paper, we are
given an effective Abelian gluon propagator of the

form g'(k)k ' in momentum space; whether or not

a model is confining can be immediately deduced
from this propagator. We assert: A. theory is
confining if and only if the lowest order graPh -for
the fermion self-mass Mis infrared divergent
(with zero bare mass). Similarly, the theory is
confining if and only if the static potential deduced
from the zero-frequency propagator is infrared
divergent; these divergences are correlated in
such a way that they cancel in color-singlet (or
zero-charge, for QED) sectors. These assertions
are elementary and will be illustrated by examples
in succeeding sections.

Evidently, an infrared-singular mass signifies
the nonexistence of a fermion mass shell. The
nonperturbative expression of this is the entirety
of the fermion propagator in momentum space
(at least for a wide class of gauges). An entire
propagator has the usual spectral representation

j dvv"'p(vv')
(2.1)

S(x)= —i Jt ds G(s x)
0

(2.2)

where G is a path integral. For example, in
scalar QED,

with some special features. First, p(W ) is itself
entire, so there are no thresholds and no gap on
the real W' axis where p= 0. Second, in the nor-
mal case with a gap S(P = W) (W being an ordinary
complex variable, not a Dirac matrix) is defined
for real 5" as the boundary value on top of the
right-hand cut but below the left-hand cut. This,
definition cannot be used for the case of no gap
and we define S(W) explicitly by (2.1) in the upper-
half W plane, and by its analytic continuation in
the lower-half plane. We will assume that S(W)
-8' ' for large W anywhere in the upper-half
plane, which requires that j dW'p(W') = 1. [Of
course, in the lower-half plane S(W) diverges at
large 5', since there must be an essential singu-
larity at W= ~.] The behavior S(W) - W"' is viola-
ted by powers of logarithms in an asymptotically
free theory because of short-distance effects, but
we have already said that we will ignore these.

The spectral function p(W) is not unique even in
a given gauge. One u'seful choice is p(W) = P(W),
where p is real analytic; another is p(W) =i(27) )

'
S(W), in which case (2.1) is Cauchy's theorem
(with the contour closed at ~ in the upper-half
plane). Because p is ill behaved even in the.upper-
half plane (except on the real axis), it is not use-
ful when one wants to close contours.

Next we want to look at the coordinate-space
propagator S(x), in part because it has simple
gauge-transformation properties. It has the pro-
per-time (Laplace transform) representation

S 2 S S

G(s; )= f(edpeStttv)exp —( dv—(x'+))+— dv. dv x(v)x„(v')e""(x(v) —x'(v'))
0 2 0 0

(2.3)

in the approximation of dropping closed charge-
particle loops. Here N is a normalizing factor and
M is the particle mass; the path x„(r) goes from 0
at v= 0 to x„at r =s. Quite aside from any approx-
imation such as (2.3), a change of gauge

leads to the exact transformation law

S(x)-S(x)exp(-ze'[A(x) -A(0)]}. (2.5)

9 8A„„(x-y)-&„(x-y)+ „„A(x-y) (2.4)
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S()()=. -(f ds e'~d(s),
0

where the inverse Laplace transform of (2.1)
yields

(2.7)

E(s)=— dWe " S(W) .2' (2.8)

For s& 0 the contour in (2.8) can be closed in the
upper-half plane, giving E(s) = 0 for s& 0. [One
can also define a function E(s), equal to E(s) for
s& 0, but nonvanishing for s & 0; this is

We cannot conclude from (2.5) that it shows the
s dependence of G(s; x} to be gauge invariant, but
this is true for the approximation (2.3) since the
substitution (2.4) in (2.3) yields

G(s; x) -G(s; x) exp{-ie'[A(x) -A(0)]] . (2.6)

Furthermore, it is well known that (2.3) correctly
characterizes all the infrared singularities even of
fermionic QED (and even for light fermions once
the closed-loop contributions to A „are included).
We therefore assume that the more restrictive
gauge transformation law (2.6) holds, rather than
the exact (2.5); of course, (2.5) is a consequence
of (2.6).

Under these circumstances the s dependence of
G is gauge invariant and physically meaningful
consequences can be found in its behavior. Of
particular interest is a "mass" term, which is
characterized by a factor e""' ' irr G for large s.
(The other half of the mass comes from a term in
G depending also on x.) In general, if lnG is 0(s)
for large s there is a mass shell, but if s 'lnG di-
verges for large s, the propagator is entire. [The
propagator will also be entire if (x') '~'lnG diver-
ges as x'-, but this sort of entirety can be
gauged away in most cases, including a case of
practical interest to us. ]

A convenient bridge between coordinate space
and momentum space comes from a third repre-
sentation of the propagator,

SI(x)=(iy' —W) . H"'(Wi) i=(x'-ic)' ' (2.11)
S'

Swan
7

is the Dirac propagator for mass O'. When the
representation

H"'(Wg)= — ds'e" 's'(s"-4') ' ' (2.12)
1TQ

is used in (2.10), the integral over W yields de-
rivatives of the function 5(s -s'}, and the lower
limit s'~ j in (2.12) shows that the large-x behav-
ior of S(x) can be read off from E(f) and converse-
ly. In particular, we can see the effect of a
change of gauge (2.5) on E(s).

This fact, plus (2.6), are the main results of
this section; they show how to untangle the gauge-
independent and the gauge-dependent parts of the
propagator both in coordinate space [through
G(s; x)] and in momentum space [by comparing
(2.5) and (2.10)-(2.12)]. For example, if we could
find G(s; x) independent of x (in a certain gauge),
we know that this G(s) is gauge invariant.

Actually, this is not a far-fetched hope. In Sec.
IV we discuss a propagator model of QCD with

e'A„„(x) in (2.3) given by (m'/16)T) g„„8(x'). It is
easy to see that, if the paths x„(r) in (2.3} are all
forward timelike, the 8 function is always unity.
The double integral in the exponent of (2.3) is then

path independent and produces the phase
exp(-im'x'/32m), which of course can be gauged
away. 'The contribution of the near-forward-time-
like paths gives a masslike term which is gauge
invariant. It is clear for this model that there is a
distinguished gauge, which is in fact a simple gen-
eralization of the Feynman gauge [since A«(x -y)'
in (2.4) yields only a g„„term]. Such gauges
would never be used in conventional QED because
they completely distort the physics, but there is
nothing wrong with them in principle. It turns out
that there is, no essential difference between using
the ordinary Feynman gauge and this generalized
Feynman gauge in the uses we make of them in
Sec. IV, so we will refer to both as just the Feyn-
man gauge.

00 00

S(x) =— dsE(s) dWe' eSv(x},
277 0 ~ DO

where

(2.10)

E(s) is a real function of is ]A c-onc. rete example
of the connection between these functions is the
choice p(W) =v '~'e ~, with E(s) = e ' ~', E(s)
= 8(s)e ' ~', S(W) is the complex error function.
Note that even though P(W) is ill behaved at W=~,
S(W) —W ' in the entire upper-half plane.

A few steps of algebra show that the coordinate-
space propagator in terms of E(s) is

III. NONPERTURBATIVE TREATMENT OF DYSON
EQUATIONS AND WARD IDENTITIES IN d = 2+ 1 QED

The main features of confinement in d = 2+ 1
QED have already been outlined using eikonal
vertices. 4 In the eikonal approximation y„ is re-
placed by v„, a forward timelike unit vector (v'
=1}, and the free fermion propagator S(p)=(v p
-M) ' has only a particle pole, no antiparticle
pole. G(s; x) in (2.3) is approximated by saving
only straight-line paths with x (v) =v„. The result
satisfies the full nonlinear Dyson equation with a
special choice for the proper vertex I'„, which
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It is simple to check that

k„r"(p,k) =S '(p) -S '(p —k) . (3.2)

This solution of the Ward identity is, of course,
not unique, but any transverse parts added to I'„
of (3.1), such as fo„,k", vanish at least linearly in
k for small k, so (3.1) is especially suited to the
study of the infrared regime. In theories with a
mass shell the renormalized on-shell vertex is
just y„; again, corrections to this vanish for
small k.

Radiative corrections to the photon propagator
do not change the infrared structure of the theory
(even for zero-bare-mass fermions), so in the
Dyson equation for S(p) we use just the bare pho-
ton propagator. Remarkably, with (3.1) the ap-
parently nonlinear Dyson equation linearizes.
With the bare fermion mass set equal to zero, the
Dyson equation is (in the Feynman gauge)

ie' d'k
1=ps(p)+

(2 )3

1 1
dWp(W)y

~ ~ y ~
(3.3)

with S(p) given by (2.1). The integrals over k are
easily evaluated to give

1= W dW' — — dW'- Z W, W'
W- W' W- W'

(3 4)

where Z(W, W') is given by the one-loop Feynman
graph Z(P, M) for a fermion of mass M and P- W, M - W'. Equation (3.4) holds for all the
propagator models of this paper and will be used
again in Sec. IV. The explicit form for d= 2+ 1
QED is
Z(W, W')

satisfies the Ward identity. 'The theory is confin-
ing because lnG -.s lns.

Independent of Ref. 4, Delbourgo and West" have
invented a better scheme which allows use of Dirac
vertices y„. The starting point is a representation
for the vertex I'„ in terms of the spectral function
p(w) in (2.1) which determines the propagator
S(p):

S(p —a)r„(p, a) S(p)

dw p(w) y„. (3.1)
1. 1

~ 00

We digress to the entanglements of perturbation
theory, to illustrate the assertion made in Sec. II.
Define the perturbative fermion mass (for zero
bare mass) M~ as the solution of the gap equation

This divergence reveals the confining nature of the
theory, for the static potential between a fermion
and an antifermion is also divergent:

d2k
V(~) =(. . .e'"'= 2o'. ln pr,

but 2M&+ V(r) is free of (leading) infrared diver-
gences. If V(r) were not confining, there would
be no infrared singularities in it and no need for a
fermion mass to cancel them in the charge-singlet
sector.

To return to (3.5), observe that Z(W, W') behaves
no.worse than a constant for large W, so (3.4) at
W=~ yields J dWp(W)=1, as expected. Far
more interesting is the behavior for small W:

Z(0, W)=3~.
When (3.4) is evaluated at W= 0, we find

1 = —3QS(0),

(3.6)

(3.7)

which directly shows that chiral symmetry is bro-
ken [S(p = 0) either vanishes or. is infinite for a
Wigner-Weyl realization of chiral symmetryj. For
purposes such as calculating E„which do not de-
pend so much locally on S(p) as on integrals over
p of this function (see the Appendix), it should be a
good approximation to take S '(P) =p —3o.', since
this S(p) has both the correct large-p and small-
p behavior. In this sense the effective mass is
3o'. , but this is not a real mass since S(p) is entire
in the Feynman gauge.

This can be seen somewhat obscurely in (3.4)
and (3.5) because if p(W) has a normal threshold
W, [where p(w, ) 4 0 in d = 3], it is impossible to
satisfy (3.4) due to the logarithmic term in (3.5).
A more direct demonstration follows from writing
(3.4) in terms of the weight function E(s) in (2.7).
After some algebra, we find

ds'E(s') dW
dE 1
ds (2v)'

Mp = Z(Mp, Mp) .
'This quantity is infrared divergent, so replace the
photon propagator k ' in (3.3) by (k'- y, ') ', where
p is infinitesimal (in particular, p«o'. ). Then
find

2M'), 2& Q
M& = n ln = a ln —+ 0 n ln ln—

+ 2
— ln

(3.5)
dWI eiw s'wws

~J

where n = e'/4w; note that n has dimensions of
mass.

Z(W, W)
W- W'

(3.8)
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with the boundary condition E(0)= 1 [so that S(W)
-W ' for large W]. The same equation holds for
E(s), which does not vanish for s& 0. In order
that E(s) vanish for s& 0, an appropriate branch of
Z(W, W') must be chosen so that Z is analytic
when W is in the upper-half plane and W' is in the
lower-half plane. The integrals over W and W' in
(3.8) can easily be evaluated, but there is no need
to give details here; we;, ed only note that (3.8)
becomes an integro-differential equation for E.
The fact that the support of the integral over s'
does not collapse to the point s'=s can be traced
directly to the coupling between particles (W, W'

& 0) and antiparticles. An approximation which
does lead to a local differential equation for F is
to save only those terms in Z(W, W') which are
singular functions of the difference variable W'
—W, otherwise replacing W by O'. The resulting
function we term Z(W- W') and the equation for
E ls

dE E(s) "
Z(W)

ds 2m' „W
For d = 2+ 1 QED, Z(W) = n ln W, and we find

E(s) e 5& 8 lhs

(3 9)

(3.10)

which is precisely the eikonal answer given earli-
er.' 'The scale of lns is undetermined, but it is
obvious that 1ns is shorthand for In(gus), where
the dimensionless number q can only be deter-
mined from the full equation (3.8). In effect, we
have determined it through (3.7) already. In the
next section we use these techniques in four-di-
mensional confinement models.

IV. CHIRAL-SYMMETRY BREAKDOWN IN @CD

Here we give three different ways of estimating
effective quark masses M (defined precisely be-
low) from which follow values for E, (roughly,
E,= 0.3M). The first is a literal transcription of
the work of the last section to a logarithmic poten-
tial in d = 3+ 1 dimensions, as advocated for char-
monium and bb states by several authors. '4 The
numbers which emerge are very large, e.g. , M
= 1 GeV, E,—330 MeV, so that this exercise is
not a success. But there is no reason to believe
that logarithmic confinement is a good model of
QCD over the entire range of masses from pions
to heavy quarkonium, and no reason to be dis-
mayed. We do the exercise only because it follows
so easily from the work of the last section.

The second way is also a propagator theory, but
this time the phenomenology' is that of linear con-
finement: The product of the coupling constant
g'(k) and the quark Casimir eigenvalue Cz = &4 is
written g'(k)C~ = -m'k ', with m = 1.9 GeV. When

one attempts to use the machinery of Sec. III,
there is a new problem: A logarithmic infrared
divergence persists in Z(W, W'). We show that
this divergence can be gauged away, and that the
infrared mass regulator should be replaced by a
mass scale characteristic of hadronic bound
states (essentially the inverse radius). The pre-
cise value of this mass depends on in what colo~-
singlet process the propagator will be used; that
is, in a confining theory with a linear potential,
the quark propagator simply cannot be given an in-
dependent status. It has meaning only as part of a
whole: the color-singlet process. We are hardly
justified in calculating the consequences of this
theory to better than, say, 30/0 accuracy, so we
replace the now-finite logarithm by unity and esti-
mate M = m(2v) '= 300 MeV, E,= 100 MeV, very
reasonable values.

In these propagator theories, which so closely
resemble potential models, where is the signal
that a tunneling process between particles and

antiparticles is involved? We will see that this
resides in the ostensibly infrared-divergent logar-
ithm of the linear-confinement theory, but it is not
quite as clear where the tunneling signal is for
logarithmic confinement, perhaps because this
theory is on the boundary between confining and
nonconf ining.

The third method for estimating M and F, is the
most interesting because it reveals and clarifies
the deficiencies of the other two models. It uses
a confinement phenomenology based on an area
law (continued to Minkowski space) for Wilson
loops, such as might arise from a condensate of
vortices. " The Wilson loops are converted to
color-singlet quark propagator products by pro-
per-time and path integrals; the essential differ-
ence between confining and nonconfining theories
is that the dominant paths are periodic and re-
stricted to a finite region of three-space, as one
expects for a bound state. ' In many interesting
applications the infrared properties of such an
area-law theory are virtually (in d= 2, exactly' )
the same as the propagator theory with g'-k '
(- constant in d= 2). For a single hadron, they
are the same (or nearly so) when no two elements
of the quark paths stand in spacelike separation to
each other. This means that all quark proper ve-
locities i„(s) are forward timelike, which is to
say that all quark paths are pure particle and all
antiquark paths are pure antiparticle. This seems
to be a reasonable approximation for heavy had-
rons (p, N, Jjg, . . . ). But the propagator theory
breaks down in two respects, which are related:
It has long-range van der Waals forces, and it
does not give quite the same results as an area-
law theory does for chiral-symmetry breakdown,
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which necessarily requires consideration of non-
FTL paths. (The area-law theory has no van der
Waals forces even if vortices are present. ")

Chiral-symmetry breaking comes from tunneling
between a, quark and nearby virtual qq pairs (as
evidenced by paths which have non-FI'L seg-
ments). Propagator theories prescribe forces be-
tween the quark and the pair which would become
illegal van der Waals forces if the separation be-
tween the quark and the pair became large. Of
course, long-distance tunneling is severely sup-
pressed, so there are no gross differences be-
tween the area-law theory and propagator theories
for chiral-symmetry breakdown; that is why we
are able to give consistent estimates for E, in dif-
ferent models.

It turns out that in the propagator theory with
g'-k ', the entire effect of the infrared-singular
propagator can be gauged away for ETL paths.
This is not essential for further developments,
but it helps us to understand how to find (in the
area-law theory) a term linear in s in the proper-
time exponent of (2.2). We treat the tunneling
amplitudes associated with finite-length non-FTL
segments analogously to the handling of barrier-
penetration instantons in quantum mechanics. "
Unfortunately, it is not easy to calculate an accu-
rate value of M (even if we believed the underlying
theory justified high accuracy). Values for M
range from 50 to 500 MeV, with a "best" value of
around 300 MeV, so F,=100 MeV.

How are these effective masses precisely de-
fined and how are they converted to values for
E,? It is, of course, useless to define the mass
as the position of a propagator pole, since there
are no such poles (in most gauges), and even if
there were such a pole F, depends on more than
just the pole position.

As discussed in the Appendix, F, depends on a
momentum-dependent quantity M(p'), defined as

time" that this equation has two solutions, an
ultraviolet-dominated one M(p') -(lnp') ~, and an
infrared-dominated solution -p '(lnp')'". As
Pagels" and Lane" have emphasized, this second
solution is the one relevant for chiral-symmetry
breakdown because it is consistent with operator-
product expansions in the presence of Goldstone
bosons and also consistent with quark-counting
rules for the pion form factor.

We have no justification to do anything more
-elaborate than introduce a parameter A to des-
cribe the transition from infrared to ultraviolet:

1VIA'
M( )= (4 3)

When (4.3) is used in (A10) we find

(4.4)

2E,' Int
em h f I (4.5)

where h= (48m') ' (33 —2N&) is the lowest-order
coefficient in the P function. It cannot be far off
the mark to take A'= 2b 'F,', since the pion Beth-
Salpeter amplitude used to construct E (t) is es-
sentially M(P'). Highly accurate values of A' are
not needed because E(A'/M') in (4.4) is not rapidly

l.4

with E(x) = 1. For x& 10, E'(x) is well approxi-
mated by Inx -1.2. A plot of E(x) is given in Fig.
1.

What do we use for A'P In the first place, it is
very reasonable that A scales with M (or with

E,), but it is not necessarily the case that A = M.
For example, consider the QCD calculations" of
the asymptotic pion electromagnetic form factor
E..(t):

O'„S '(P)}-=—2&5M(P') (4.1) 1.2

where S(p) is the effective quark propagator in the
Feynman gauge. (In principle, any gauge could be
used for calculating F„but we have given reasons
in Sec. II for believing that the Feynman gauge is
best suited to the approximations we make. ) The
effective quark mass hl is defined as

I.O

0.8

0.6

M =M(pm= 0) = -S '(0) . (4.2) 0.4

If M(p') =M is substituted in the formula (A10) for
F, there is an ultraviolet logarithmic divergence,
so we need to say something about how M(p') be-
haves for large p'. This is not hard to do because
the Dyson equation for large p' has a known ker-
nel, given by renormalization-group-improved
perturbation theory. It has been known for a long

0.2—

0
O. I

I

IO

FIG. 1. A plot of 5'(&=A /M ) which determines the
ratio of E to the effective quark mass M.
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varying (see Fig. 1). With this estimate for A'
(A = 600 MeV for the experimental value of F,) we
have

(4.6)

One could as well argue that A should be the p
mass, or more accurately the mass used in the
dipole fit to nuclear electromagnetic form factors. -

For M = 300 MeV, (4.4) continues to predict E,
= 100 MeV. But for M = 1 GeV (as in the logarith-
mic model), E, is about 200 MeV instead of over
300 MeV, as found earlier.

A. Logarithmic confinement

We use the formulas of Sec. III (in four dimen-
sions) with e'k ' replaced by C~g'(k)k~ and

C g (k)=~( k )~I (4.7)

Here Cz= -', is the quark Casimir eigenvalue. The
corresponding static potential, appropriately regu-
lated, is

V(r) =, ln pr . (4.8)

Mq =—Z(M~, M~) =, ln
m

4m' p, )
(4.10)

As before, the sum of the mass term and the qq
potential is free of leading infrared divergences.
A new feature arises for QCD where three-quark
states are color singlets. 'The qq potential is just
one-half the qq potential:

1 m
V»=2 2, Inpour, -r,

~

. (4.11)

Clearly, 3M~+ V»+ V»+ V» is also free of leading
divergences.

Define an effective quark mass M by

M = -S '(W= 0) = Z(0, W') =—= l.l GeV .
4w

(4.12)

Things look bad for I, if the effective quark
mass is this large; Eq. (4.6) gives F, —300 MeV.
We will not pursue this model further.

According to workers" who have fitted such a po-
tential to charmonium and bb states, m has the
astonishingly large value of 14 GeV.

The kernel of the integral equation (3.4) is easily
found:

m ' (1 -P)'I2[-2W(1 —P)+ 4W']
2w' J [PW"+ (1-P) '-P(1-P)W ]' '

(4.9)

Just as in d= 2+ 1 QED, the perturbative self-mass
N~ is infrared divergent:

B. Propagator theory of linear confinement

It is known that the leading logarithmic singular-
ities of QCD, both in the infrared and in the ultra-
violet regime, sum up to Abelian exponentials. '~

Quarks in a single hadron interact through an ef-
fective gluon propagator just as in QED with the
replacement (modulo gauge terms)

g (k) (4.13)

&(g) = - &g'(I+ &g') '. (4.14)

Rather than use the complicated g (k) which
emerges from (4.14},' we simply use the confining
part:

C~g (k) = —m k, m=1.9 GeV. (4.15)

%ork on the nonconfining corrections will be re-
ported later. The gluon propagator defined by
(4.13)-(4.15) is rather strange; it has no particle
interpretation, and it leads to off-shell infrared
singularities in Feynman graphs. The lack of a
particle interpretation means that we must sup-
press processes involving would-be on-shell glu-
ons. This can be done in coordinate space by tak-
ing the real part of the propagator, or in momen-
tum space by taking k as a principal part. ' The
latter leads to complicated integrals and awkward
divergences which cancel in physical processes.
Instead, we use the simple tactic of regulating k
to (k —f2+i) and suppressing on-shell gluons
"by hand, " if necessary.

We appear to be stuck with the infrared diver-
gences as p. -0, but in fact this is not the case.
The reason is that color-singlet Green's functions
in this propagator theory possess an Abelian gauge
invariance and the choice of different infinitesimal
p, 's is just a choice of different gauges. For- me-
son Green's functions this gauge invariance is pre-
cisely analogous to that of QED [see (4.28) below];
for baryon Green's functions it is slightly more

for gluon exchange between q and q or for a gluon
beginning and ending on the same quark line; for
qqq processes e'ach pair of quarks interacts(

through (4.31) multiplied by —,. Note that this ef-
fective propagator is not the (gauge-dependent} ca-
nonical gluon propagator in any gauge, but rather a
compound object receiving contributions from ver-
tex graphs; it is completely gauge indepen-
dent. ' ' '~ This motivates (but certainly does not
justify) the extrapolation of g (k) to a nonperturba-
tive function which yields a linearly rising poten-
tial. (A better motivation will be found in the area-
law theory discussed below. ) This can be done, ~ ' ~

for example, by using an effective P function of
the form
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,"ln[ p, '(-x'+ rg)]+ O(p, 'x') .
(4.16)

[For future reference we record the real part of
the propagator,

=m'Res, (x) = ' 8(x') + (4.17)

This is regulator independent, ] A different choice
of p, , say p, ', leads to the propagator

2 ~2

Z.',(x)=~., (x)-f, In ", a„a,x'. (4.18)
32 tt' p,

The existence of such a gauge transformation (real
in Euclidean space) means that no color-singlet
Green's function can depend on p, (as long as p, is
infinitesimal). Of course, a quark propagator is
not a color singlet, but to the extent that an effec-
tive quark propagator can be defined at all, (4.18)
entitles us to replace lnp, in this propagator by
ln~, where ~ is no longer infinitesimal but instead
is of mass typical of hadrons [e.g. , A of (4.3)].
One recalls similar arguments used long ago to
dispose of spurious infrared divergences in the
Lamb shi.ft.

We proceed as before, calculating Z(w, W') and

M~, the perturbatively defined infrared-singular
mass:

m' TY'
~(~.~ )= - l" n g)

m~(2W' —W) 8 (1 —8,)
) 8,(1 —8

where
2 @A~2 2 ~~2 2 4 2 i/2

P, —~ 1+ 2 + 1+

(Note that Z must be treated as a real quantity in
order to avoid problems with would-be gluon emis-
sion processes. ) For infinitesimal ir the pertur-
bative self-mass is

(4.20)

On the other hand, the static qq potential is

elaborate, '~ depending on the fact that the qq glu-
on-exchange potential has one-half the strength of
the qq potential [see the remarks below (4.11) about
cancellation of infrared singularities between quark
masses arid potentials].

To see that different choices of p, correspond to
different gauges, look at the effective gluon prop-
agator in coordinate space:

2 4
)Ax

A~~(x)™g, g (2v)4
d k

(~g ~g)g

m' m'
v(r) = — + + o(v, )

Bm p, 87t'
(4.21)

and, as before, 2M + V(x) is free of divergences
(a.iso for qqq processes). This allows us to evalu-
ate m as = 1.9 GeV, based on fits to charmonium
spectra. "

For logarithmic confinement the integral-equa-
tion technique of Sec. III removed all the infrared
divergences associated with M~ and made the prop-
agator entire. In the present case, Z(W, W') still
has an infrared divergence which we have argued
can be gauged away [it is interesting to find the Inrr
terms in (4.19) by using the gauge transformation
(4.18) in momentum space]. When the Dyson equa-
tion (3.4) is evaluated at W =0 we find, not the
propagator at W =0, but instead essentially its
first derivative:

m' „,, rr(W'), W'
4~2 ~~2 p2 (4.22)

m2 aS (w=o).
47t 8& (4.23)

For a normal propagator with the form S r(W)
= W -M, this predicts

M=—=300 MeV.
m
27r

(4.24)

Even though the effective propagator is entire, we
use (4.24) to define the effective quark mass. Then
(4.6) gives E,= 100 MeV.

One expects that chiral-symmetry breakdown in
@CD should resemble the generation of fermion
masses in a superconductor where the gap (fer-
mion mass) has a factor e ir~. Here g is the cou-
pling constant for the potential which binds Cooper
pairs and which is not infrared singular. In a
sense, the propagator theory we use does have
such a factor; it is signaled by the logarithm in
(4.22). The closest we can come to a relativistic
superconductor is to define the mass from
Z(M, M), as given in (4.19), with the proviso that
p»M; now one finds the solution M =0 as well as

M= p. exp(-2rr p. m ), (4.25)

with m playing the role of g. The idea of taking p,

finite probably makes some sense (for the effective
propagator) but it is not possible to have p. »M.
The physical situation is more like 2' p, = m,
p. =M.

We have already argued that p, can be replaced by
a finite mass, say of O(A) in (4.3). At this stage
of hadronic physics it would be pointless to do any-
thing more than estimate the logarithm in (4.22) as
essentially unity; when this is done (4.22) is simply
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C. An area-law theory

Earlier, we motivated a gluon propagator -k
as a relativistic generalization of a linearly rising
potential. But any propagator theory for d & 2 ap-
parently has trouble with long-range van der Waals
forces, a defect not shared by area-law theories.
The prototypical continuum area-law theory has
confinement of fractionally charged particles by a
condensate of vortices; examples are the Abelian
Higgs model in d =2, ' and possibly massive-gluon

I

QCD in d =4 (if the vortices condense). Of
course, d =2 massive-quark QCD is also a confin-
ing theory, but it is a propagator theory (as far as
infrared behavior goes). Actually, in d =2 the two

types of confinement are very similar.
The area-law theory and the propagator theory

have the same general structure, so let us first
recall the coordinate-space expression for some
hadroni. c Green's function in the propagatory theory
discussed immediately above:

(0~T( Tt(x)$(x)5(yg(y)) ~)
- t ds, ds, (d path)e'"o""~,

0

M
Ao = ——Q ~ d 7[x(i)2 + 1],

i=i 0

S~ Sy

A, =-2
~

dr; J dT,'q;,x'(i)x"(j ) ReA„„[x(i)-x(j)] (q, ;=I; q, , = —1 for i aj)
i i 0 0

(4.26)

(4.27)

(4.28)

The path integral is over all quark paths x'(1)
going from x to y in proper time s& and all anti-
quark paths x'(2). M is the intrinsic quark mass
(aside from that produced by chiral-symmetry
breakdown); the above Green's function is perfect-
ly well behaved in the limit M =0 relevant for us. '
Equations (4.26}-(4.28) are written for spinless
quarks, which is not an oversimplification; the
main point in chiral-symmetry breakdown is to
distinguish particle from anti. particle which is con-
veniently done with Dirac matrices but which we
can do by other means. Moreover, spin-dependent
gluon forces are short range, ' thus outside the
scope of this paper. Our area-law theory has the
same general structure as (4.26)-(4.28) except that
A, is differently defined.

In (4.28), b, „is the effective gluon propagator in
(4,16) and (4.17). The real part is a 8 function
prescribing a timelike separation for its argument.
It is more convenient to make a gauge transforma-
tion of (4.17), which leaves (4.26) unchanged:

m2 m2
ReA 8(x)- g ~g(x ) — B,B~x2

g 88(-x2} (4.29)
16m

because this greatly simplifies the quark self-
energy terms [i.e. , the terms with i =j in (4.28)].
Indeed, it is easy to see that these vanish for all
FTL paths [those for which x'(s;} is FTL every-
where]. There are many circumstances in which
it is physically reasonable to approximate (4.26)
with only FTL paths, for example, when the quarks
are heavy. Then (4.26) has a potentis. l-theory limit
in which the dominant FTL paths are periodic and

confined to a finite volume of three-space. These
paths are easily generalized to relativistic FTL
motion and have a sensible M =0 limit; they have
been used'- to discuss the WKB bound-state spec-
trum of (4.26) and shown to yield a linearly rising
Regge trajectory. But such paths yield zero quark
mass and do not produce chiral-symmetry break-
down. Paths which are almost FTL, that is, which
have non-F TL segments of finite duration sprinkled
on an otherwise FTL path, give rise to quark self-
energy terms in A, which are linear in the s; and
are thus identified as quark masses. Such terms
can be calculated for the propagator theory defined
by (4.28} and (4.29), but we will calculate them in-
stead in the area-law theory.

The Minkowski-space area-law theory is defined
by an obvious continuation of the Euclidean theory.
In the Euclidean version (with s - —is, , x —ix )
iA, in (4.26) is replaced by -(m /8v)8, where 8 is
the area of a certain surface spanning the qq loop.
It is a somewhat delicate question what 6 should
be for the most general loop, but we will only con-
sider loops where it is apparent that 8 is the abso-
lute minimum area; these loops will be flat and in
one space and one time dimension. Such simplifi-
cation is consistent with earlier crude WKB analy-
sis, but needs to be eliminated in future work.

In two dimensions the area-law theory and the
propagator theory (which is essentially d =2 QCD
for spinless quarks) are exactly the same in the
infrared regime, provided only FTL paths are
kept. 4 The demonstration holds in the light-cone
gauge and is assumed to be true in all gauges.
Evaluate A, in the light-cone gauge and in two di-
mensions. For FTL paths, the i =j terms vanish
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and we find

m'
A, = — ~ dr) drgx (1)x&2) ~x,(I)-x.(2)

~8m

where

x5(x (1)-x/2)), (4.30)

1x, = (x, +x,).
. g2 (4.31)

For FTL paths, x is always non-negative and the
5 function has a unique root, so the integral over
one v can be evaluated:

(4.32)

where the x,'s are evaluated at a common 7. It is
easily seen that this is the same as the area-law
action

m2
Jl ded7I'(z, 'z, )' —z, 'zg']' (4.33)

)where z' =z'(o, r) gives the points of the surface,
and subscripts indicate derivatives] in the light-
cone gauge z =f(7). This gauge allows one to do
the o integration explicitly to come to (4.32).

The propagator theory can be evaluated in any
gauge and the gauge of (4.17) is just d = 2 @CD in
the Feynman gauge (with m /4w identified as Czg )
for FTL paths.

For non-FTL paths, (4.30) and (4.33) do not
agree either because x is negative somewhere, or
because the 5 function in (4.30) has multiple roots.
To see this graphically, consider Figs. 2 and 3.
Figure 2 shows a quark and an antiquark in peri-
odic straight-line motion at (nearly) the speed of
light. 6 In the propagator theory, the q and q in-
teract at a common value of x and it is easy to see
how (4.30) measures the area. Figure 3 shows a
sample of different insertions of non-FTL seg-
ments on an otherwise FTL path. In Fig. 3(a), for
example, line segments at constant x are con-
nected by propagators both inside and outside the
area defined by (4.33). It is clear that segments
of Fig. 3 which go backwards in x, or x can be in-
terpreted an antiparticle segments on a particle
path; these are like z graphs and exhibit a particle
accompanied by a virtual qq pair. There is an
evident similarity between the non-FTL segments
of Fig. 3 and the usual Bardeen-Cooper-Schrieffer
BCS gap equation of Fig. 4.

The formation of these pairs is described by a
tunneling amplitude, from which we can read off
the effective quark mass. Let us take seriously
the graphs of Figs. 2 and 3 as a description of
meson bound states. The unit step for these paths
is ~0=~& ———,T, where T is the bound-state per-

FIG. 2. Approxilnation to the space-time paths of a
quark and an antiquark in a periodic bound-state orbit.

iod. We have made' crude WKB estimates of T
earlier based on simple circular classical orbits
somewhat like those of Fig. 2. This work used the
bound-state frequency =2~T, which we esti-
mate to be ~ ——0.3m-0.35m = 600-700 MeV. (This
number was not reported as such in Ref. 5, but
was used in numerical work given there. ) For the
circular orbits of Ref. 5, co is the meson radius
and the qq action per half bound-state period is
(m /Bn)2m~; we use this as the definition of ac- .

tion per unit square of Figs. 2 and 3. (Roughly
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FTL insertion of Fig. 3 can be summed just as for
instantons, so the Green's function is proportion-
al to

&4(qq } y+~ e 4~+ e 4y + ~ ~ ~
N(N-1) /

2t

=exp -N qq + e ~& . 4.34

(a) (b)

(c) (cI)

FIG. 3. The FTL paths of Fig. 2, with non-FTL in-
stantons added; an infinite number of such instantons
could be drawn.

S =S
FIG. 4. The gap equation for superconductivity show-

ing the excitation of a particle-hole condensate.

speaking, this part of the action should be =m in
the WKB approximation to a bound state. )

Let us. now go to a gauge where the quark self-
interaction terms are small or vanishing for FTL
paths [such as (4.29), or the light-cone gauge for
d =2j. The only remaining term in A, for FTL
paths is the qq term; let us denote its contribution
to the Green's function, for the FTL paths of Fig.
2, as e "' ' (in Euclidean space). Here N is the
number of bound-state half periods which have
clasped, i.e., the number of diamonds in Fig. 2

from beginning to end of the Wilson loop. The non-

The summation index j refers to different config-
urations in Fig. 3. In particular, one should be
prepared to sum over non-FTL fluctuations of all
sizes (like instantons of all sizes), but very small
fluctuations are suppressed by their large kinetic
energy and large ones are suppressed by the area
law. A combination of analytic and numerical work
whigh is too tedious to report in detail suggests
that a reasonable estimate is obtained by taking the
size scale of Fig. 3 literally. We identify the quark
mass as the coefficient of t via N =t/4t=~t/v in
(4.34), where t is the common quark/antiquark
time. Unfortunately, it is impossible to achieve
high accuracy both because of the uncertainty in
the ratio &o/m (which is exponentiated) and because
many graphs must be summed in a series which
appears to be rather slowly converging. .Saving
the twenty or so graphs of the type in Fig. 3 (aside
from reflections) of largest value and taking &u

=600-700 MeV gives values for j/I from 50 to 500
MeV, with a best value in the middle of this range.
It does not seem worthwhile to try to improve this
spread much until one is more certain that suffi-
cient detail is included in the underlying theory,
especially short- and middle-ranged effects. As
in the propagator theory, M =300 MeV gives an
estimate for E, of =100 MeV. Of course, the
closeness to the experimental value is entirely
accidental.

V. SUMMARY AND OUTLOOK

We need not detail the deficiencies of our esti-
mates of E„which are partly the result of using
models which only inaccurately reflect QQD, and
partly the result of our inability to deal with th'e
models exactly. But it was not at all obvious when
we stated that, say, the propagator model would
give a value of E, within a factor of 3 of the exper-
imental value. As it turns out, we can optimisti-
cally hope that all factors of 2w, 3', and the like,
which differ significantly from unity, have been
identified in the formula E,= 2a3'~2(2v) ~ ~t = 88
MeV for a=400 MeV. At the least, it is instruc-
tive that I' „the smallest of all hadronic mass pa-
rameters (except for current-quark masses),
should be simply given in terms of the parameter
a determined from the heaviest-known hadrons.

The same parameter a (or its equivalent, the
mass m occurring in the running coupling constant)
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sets the scale for every hadronic mass in the
idealization of zero current-quark mass. This
means that QCD must yield a,set of dimensionless
mass ratios varying over at least an order of mag-
nitude. In itself this poses no particular problem;
witness the success of the bag model or the more
crudely explored propagator model used here
[which, e.g. , predicts the Regge slope to be u'(0)
=(8a ) ]. But the successes are strictly limited
to calculations of the properties of an isolated
hadron; we are far from being able to make the
crudest estimates of hadronic coupling constants
from QCD or even from models of QCD.

Now E, plays a critical role in determining these
coupling constants. In fact, knowledge of Ne ha
dronic mass spectrum, and of F„plus unitarity
constraints completely determines all couptings of
hadrons with spin (1 (in Ne zero-quark-mass
limit), without further reference to Ne dynamical
properties of QCD. One could replace the words
"unitarity constraints" by a plethora of older re-
lationships, such as Goldberger- Treiman, Kawa-
rabayashi-Suzuki-Riazuddin-Fayyazuddin (KSRF),
and the first Weinberg sum rule, which are de-
rived from a variety of assumptions, but all these
relations are consequences of the bound isin5

i

( 1,
where 6 is a scattering phase shift. The point is
that perturbative unitarity for the phenomenologi-
cal hadron Lagrangian demands that this Lagrang-
ian be that of a spontaneously broken gauge the-
ory

We briefly discuss a simple example here, de-
ferring details to a later publication. Suppose the
meson spectrum (for spin (1) contains isovector
multiplets with J~ =0, 1, and 1' (v, o,A, ): In each
multiplet the masses are equal and M, =O, M&

wM, . It turns out that pions are necessarily mass-
less and E,IO reflects the fact that M+i +~p.
Then, in addition, there must be three isosinglets,
two 0 particles and a 0 state. All these couple
to each other and to nucleons. Unitarity tells us
that p and A& must couple in a Yang-Mills fashion
under the chiral group SU(2)i xSU(2)s,- in particu-
lar, only one coupling constant g characterizes all
p and A& couplings, to themselves and to anything

else. It is very instructive to derive, directly
from the constraint of tree-graph unitarity, the
Goldberger-Treiman, KSRF, and first Weinberg
sum rules, plus a few others, which determine
completely all the remaining couplings such as
G,»., once we know E,. These couplings are
strong simply because E, is small (e.g. , the KSRF
relation is g = M~/ E2, ).2At this point one may
well wish to resurrect the old bootstrap principle,
augmented with unitarity constraints, to see how

well it works in predicting mass ratios, that is,
to see how far we can go in the direction of QCD
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APPENDIX: CALCULATING F FROM THE FERMION
PROPAGATOR

We collect here the well-known formulas neces-
sary to calculate F, from (effective) fermion prop-
agators and proper vertex functions. The axial-
vector current for quarks is

d5'(x) = g~(x) 2r'y „y,i (x), - (A1)

with a trace over color indices understood. The
quark-quark-current proper vertex r (p5,p') obeys
the Ward identity

q r (p p)=[S (p)v5+rsS (p)] r

with q=p p'. Define a "mas-s" M(p ) by

(A2)

without QCD. Should this be successful, knowledge
of F, alone becomes supremely important.

The same concepts and means of calculation will
also be useful in discussing other strongly inter-
acting systems, e.g. , "weak" interactions at =1
TeV. With the assumption of no elementary scalar
fields 2' it may be that an analog of color" (but
with a=1 TeV) is responsible for the appearance of
broken-symmetry physical multiplets, with all
masses scaled by the ratio of a' s.3

We do not know exactly what to say about the ef-
fective quark masses M which determine E,. These
are not really constituent masses, which is a mis-
nomer for constituent energies, and they are cer-
tainly not any sort of genuine mechanical mass.
Their dynamical role is not yet clear because they
tend to get swallowed up in what we usually think
of as the potential; that is, in the linearly rising
potential a term m/8mp-, is exactly canceled by
the infrared-divergent fermion masses. A related
and more cogent puzzle is: Exactly how does it
happen (as we know it must) that the pion is mass-
less in QCD? How does this emerge naturally in
the qq Bethe-Salpeter equation (or similar dy-
namical scheme)? This seems considerably
harder to show for infrared-singular forces than
for the ultraviolet-singular forces invoked twenty
years ago by Nambu and Jona-Lasinio, ' but work
on this problem is in progress.
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lr5 S '(P))-=-2&5M(P') (AS)

If M 0, I'~' has a zero-mass pole and for q suffi-
ciently small,

rf„=-,'v' -2rPS(P')++ " (A4)

G, (P,p) =',(P')
(Av}

)For pion-nucleon physics we would identify G&
'

with 2g,„(0).]
Unfortunately, the values of the other G, at q =0

depend on the regular terms in the axial-vector
vertex and on the exact form of S (p). We will
make the following approximations, if only be-

where the omitted terms are regular at q =0.
The quark-quark-pion proper vertex I'" has the

kinematical decomposition. ::-

r,'( p, p'}=fy,(G f + /G2+[g III+/ ]G'3+(p+p')G )'T'—.
(A5)

(These G, are not to be identified with the corre-
sponding p; of Farrar and Jackson, ' who use the
improper vertex with quark legs attached. } Charge
conjugation demands that G4 be odd under P -P'
and thus vanish at q =0, so only G, i.s relevant at
q=0. With the definition of E„

(v'(q) ~J'„'(0) ~0) =iq„EP", (A6)

we ideritify the residue of the pole in (A4) at small
q with i Ep&, thus finding the Goldberger-Treiman
relation (for unit axial-vector form factor)

cause they are consistent with exact chiral sym-
metry and because we see no reason why infrared
confinement effects should alter them greatly: (1)
The regular term in (A4) is given exactly by y„y~,
(2) the quark propagator can be replaced by the
form

S (p) =p -18(P ) ~ (A8)

12i "4 M(P)' =
(2 )' . "t~'-M(S')j'

x M(P ) --,'P, M(P )
he ~II

(A 10)

Qf course, this is not an entire function, but it
has three properties of the correct propagator:
S(P) behaves like P' ' at large P; S(0) is, by defi-
nition, -M '(0); the anticommutator (AS) is (by
definition also) exact. The Ward identity (A2) now

yields G2 ——G3 ——G4 ——0, at q=0. G2 will be nonzero
if the coefficient of y y& is not precisely unity, but
we estimate that a +10%% change in this coefficient
will not alter E, by more than 25%%u~.

We return to the evaluation of E,. Clearly, (A6)
can be written in terms of (A5) and quark propaga-
tors as

4

)4»S(P)f'"(P,P -q}S(P -q)-'r'~ ~„
(A 9)

where the trace is over Dirac, flavor, and color
indices, and on the right the limit is to be taken
as q -0. With the approximations made above, one
finds
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