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The zero-point (Casimir) energy of free vector (gluon) fields confined to a spherical cavity (bag) is computed. The
result is quadratically divergent, but it is argued that this divergence may be absorbed by a suitable renormalization
of a constant force parameter. If so, the result for eight gluons is E = + 0.51/a. This result is substantially larger
than that for a spherical shell (where both interior and exterior modes are present), and so affects Johnson’s model
of the quantum-chromodynamic vacuum. It is also smaller than, and of opposite sign to, the value used in bag-
model phenomenology, so it will have important implications there.

I. INTRODUCTION

Quantum chromodynamics (QCD) may well be the
appropriate theory of hadronic matter. However,
the theory is not at all well understood. It may
turn out that color confinement is roughly approx-
imated by the phenomenologically successful bag
model.!»? In this model, the normal vacuum is a
perfect color magnetic conductor, that is, the
color magnetic permeability u is infinite, while
the vacuum in the interior of the bag is character-
ized by p=1. This implies that the color electric
and magnetic fields are confined to the interior of
the bag, and that they satisfy the following bound-
ary conditions on its surface S:

#-E| =0, #xB|s=0, (1)

where 11 is normal to S. Now, even in an “empty”
bag (i.e., one containing no quarks) there will be
nonzero fields present because of quantum fluctua-
tions. This gives rise to a zero-point or Casimir
energy.®* It would be anticipated that this energy
would have the form —Z/a, where a is the radius
of a (spherical) bag and Z is some pure number.
Indeed, such a term has been put in bag-model
calculations, and a good fit has been obtained for
Z=1,84,"% It is my purpose here to insist that the
Casimir energy must be determined by the under-
lying dynamics, presumably QCD. I will calculate
Z in the approximation that the gluons are free in-
side the bag (which is roughly justified by asymp-
totic freedom), with a result that appears to be
quite incompatible with the phenomenological
value. However, the result is not completely clear
cut, because of the necessity of dealing with a
quadratically divergent term in the energy.

A related but somewhat different motivation for
this work comes from Johnson’s recent model for
the QCD ground-state wave function.? Effectively,
he supposes that space is filled with bags, the
boundaries of which confine color to small, asymp-
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totically free regions. He uses the classic result
of Boyer,® as subsequently improved,”?® for the
electrodynamic Casimir energy of a perfectly con-
ducting spherical shell, together with various
guesses for the higher-order effects, to estimate
the parameters of the bag model. But the QED
calculations cannot be properly extrapolated to
this situation, for they refer to a single shell in
otherwise empty space. There is a delicate bal-
ance between interior and exterior energy contri-
butions, so that only the sum is cutoff independent.
The closely packed bags in Johnson’s model pre-
sent a quite different situation. In fact, the energy
density Johnson requires will be provided by the
result of the calculation presented here, since the
energy of space filled with contiguous bags is
simply the sum of the field energies contained
within each bag.

II. CALCULATION OF ZERO-POINT ENERGY

Our discussion follows closely on the formalism
developed in Ref. 8, as extended to the cases of
dielectric and conducting balls in Ref. 9. For elec-
trodynamics the situation we consider is as shown
in Fig. 1(a). Duality (E ~ fI, fi— —-E) then allows us
to extend the result to the QCD case, Fig. 1(b),
where one also must allow for the fact that there
are 8 vector gluon fields.

There are several methods of proceeding. One
can compute the energy (or the stress on the sur-
face) when the dielectric constant ¢ is finite in the
exterior region, letting ¢ -~ at the end of the cal-
culation. This is the procedure followed in Ref. 9.
Alternatively, one can calculate the result directly
for a spherical cavity in an infinite conductor.
Since all methods agree, we simply derive here
the expression for the zero-point energy in the
latter case. It may be obtained from the interior
contribution of Eq. (3.9) of Ref. 8:
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1< *dw i [° - 1d [d ., ~
E:-z-i—z:(zl+1)f- -Z—T—re' J; yzd'r[2k2(F,+Gl)(1’,'r)+;§ET(Ey—,’r'[Fl(r,7")+G,(1’,‘V')]) ] (2)

1=1

00

r=r’

We should emphasize that the cutoff 7~ 0 emerges naturally from the overlap of field points, with no ref-
erence to the properties of the shell. Here 2= ]w [, and F, and G, are the transverse electric and mag-
netic Green’s functions from which the vacuum parts have been removed:

' <a { Flr,v")= -Agikj,(er)j, (er')
G 1(7’; r')=-A Gikj,(kr)j,(k'r') )

where

Ap=hka)/j (ka),
Ag=[kahka)]'/[kaj (ka)] .

@)

4)

In the spherical-shell calculation of Ref. 8 there were both interior and exterior contributions to the ener-
gy, and as a consequence the surface term [the second term in (2)] vanished. This is not the case here:
In fact, the surface term cancels a portion of the first term in (2), leaving us Withk

E=— 11 2 (21+1) [u Z—iﬁe'i“’T(AF+AG)ka{([kaj,(ka)]')2 +[(Ra)? =11 + 1) ][§ (ka)]?}.

1=1

’ ”
!

=_—1—-Z(2l+1)f dxcosxbx{— §++2(6282—6187)}(x), ®)
2ma T3 ()

s
S S

where we have performed a Euclidean rotation ®

w=iky, k=ilky|, T=ilx,—x]) (6)
and let
x= |ky|a, 6=(x,-x))/a. (7

The Bessel functions of imaginary argument here
are

s I(x) = (ﬂx/Z)mI, *1/2(.75) ) (8)
e;(x)= (2/7r)(7rx/2)1/2K1+u2(x) .

Expression (5) is nearly, but not quite, the same
as that found by Bender and Hays.!° Apart from
an overall sign, their formula has an extra term
which arises precisely from the neglect of the
surface term in (2).

The result (5) is exactly what one would antici-
pate from the earlier work in Refs. 8 and 9. The

9 )

(b)

FIG. 1. (a) The geometry of a spherical cavity imbed-
ded in a perfect conductor. () The dual geometry of
the bag model.
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term proportional to

’ ”
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is just the inside part of the spherical-shell re-
sult, Eq. (3.15) of Ref. 8, while the remaining
term is just the corresponding “contact term,”
Eq. (31) of Ref. 9, which cancels for a shell. [It is
the negative of what one would obtain from use of
the free-space Green’s function in (2).] What we
have here is simply the “mirror image” of the ex-
terior result of Ref. 9, Eq. (51). That means we
can with no labor obtain a numerical result, since

Einterior= Esney = Eexterior * 9

Now Eshent is cutoff (9 independent, and has been
numerically evaluated to four significant figures
[Eq. (5.21) of Ref. 8]:

Egen =0.04618/a . (10)

On the other hand, Eexteior has a term depending on
0; when the finite part was extracted using uniform
asymptotic expansions it was found that [cf. Egs..
(55) and (56) of Ref. 9, but here included are

O((Z +3)™) terms in the expansion of the term in
curly brackets of (5) as well]

g.l(i_l) 3 ‘ C(11)

exterior — 7o \352 8 /)" 1284 °



For consistency we should use the same very good
approximation for Emen [see Eq. (5.17) of Ref. 8]

Eshe].lg 3/64a. (12)

[Note that half this value appears as the second
term in (11).] Then the zero-point energy of a
single, free, vector field confined by a spherical
cavity of radius ais

4 1 (16
Ei"“"’i°'=_31ra52 128a< +3) (13)

Note that the cutoff-dependent term in (13) has the
form predicted by Balian and Bloch.

III. CONCLUSIONS

The cutoff-dependent term in (13) reflects our
continuing ignorance about field theory. Renormal-
ization remains a recipe for dealing with difficult
physics that we do not really understand. Howev-
er, let us suppose that the constant force term
(recall 6=7/ia) involving & can be absorbed by a
suitable counterterm.?'> One is left then with

X 1 /16 0.063
Eﬁfe?igfgfz—s;<—;+3)= Pt (14)

The QCD bag value is eight times larger:

1 (16 0.51
ESSS m( +3>="a— . (15)
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We can now make various comments.

(i) The numerical value in (15) is substantially
smaller than, and of opposite sign to, —Z used in
bag-model parametrizations. (A typical value
there is Z=1.84."2 However, part of this is a
center-of-mass effect,!* so the appropriate number
to compare with ours is Z’~1.) The force here,
like for the shell, is repulsive, contrary to one’s
naive expectations.

(ii) The value here presented is of the same sign,
but 40% larger than that appropriated by Johnson
in his model of the vacuum.® This may have sig-
nificant numerical implications for the phenomen-
ological applications; however, since his para-
meter b (representing higher-order effects) re-
mains uncomputed, no decisive statement can yet
be made.

(iii) The presence of the cutoff-dependent term
in the zero-point energy (after all standard volume
energy subtractions have been performed) is a
serious matter which must be understood, and may
prove to be quite important. The validity of the
asymptotic expansion used in obtaining these re-
sults might also be questioned. In particular, it
is disturbing to note that the O((I+%)™%) terms
appear to introduce an additional, logarithmic de-
pendence on §. [It appears fortuitous that the shell
result (10) is independent of 3.]

(iv) I am presently recomputing the Casimir en-
ergy due to massless quarks in this model. (The
previous calculation is in Ref. 10.) The results
will be presented in the following paper.!®

*On leave from Department of Physics, University of
California, Los Angeles, CA 90024.
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