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Asymptotically free, one-coupling-constant, one-mass-scale SU(5) model
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We describe an SU(5) model that is an example of a true one-coupling-constant, one-mass-scale, asymptotically
free-grand unified theory. We present the derivation of the renormalization-group equations in a convenient tabular
form.

Grand unification is an exciting attempt at syn-
thesis of the strong, electromagnetic, and weak
interactions. At present, the leading candidate
for a theory at energies of order 100 GeV or less
is the Yang-Mills' gauge theory involving SU(3)
xSU(2) x U(1) which, apart from the three gauge
couplings, has nine Yukawa couplings for the three
generations of fermion masses and one quartic
coupling and one mass scale for the Higgs bosons.
In a total synthesis the three gauge couplings will
be absorbed into one coupling of the grand unified
group G. In such a grand unification, a leadirig
minimal candidate for which is SU(5), there is
naturally again a question of Higgs bosons and
their couplings.

If we entertain the minimal scenario, which ad-
mits a 5 and a 24 Higgs multiplet, and we include
three generations of light fermion multiplets in
the 5* and 10 representations, then we again must
have two mass scales, five quartic couplings, one
gauge coupling, and six Yukawa couplings. A
grand unified theory with 14 arbitrary parameters
in the original Lagrangian is less a grand unifica-
tion than a grand synthesis of the original patch-
work of couplings and constants.

One suggestion for the economy of grand unifica-
tion is to invoke dynamical symmetry breaking
as the source of the mass generation in this theory
and remove the Higgs boson altogether from the
ultimate theory. This is the hope that heavy-color
theory addresses itself to.'

The other suggestion is to take advantage of the
arbitrariness and fix all the couplings by a new
eigenvalue principle. While the plethora of Higgs
bosons that seems to be necessary continues to
proliferate, the asymptotic freedom of the original
Yang-Mills theory has been destroyed. To restore
the asymptotic freedom, 4 eigenvalue conditions have
to be applied on the Yukawa and Higgs-boson quar-

tic couplings. ' The advantage of this approach is
the total lack of arbitrariness in coupling constants
for the resulting grand unified theory. It is a true
one-coupling-constant, one-mass-scale, asymp-
totically free grand unified theory.

The fact that the couplings are calculated rather
than arbitrary evidently reflects on the "compos-
iteness" of the Higgs field. It would be nice to
speculate that someday when dynamical symmetry
breakdown is better understood, the "induced"
Yukawa couplings and quartic couplings of the
"composite" Higgs field can be calculated. Pre-
sumably in this fundamental version of the theory,
the asymptotic freedom of the theory remains true.

At the present phenomenological level, we ad-
dress ourselves to the following question. Can a
SU(5) model with a 5 and 24 Higgs boson and an
unspecified n& generation of light fermions (in the
5* and 10* representation) be asymptotically free'P
An immediate answer to this is in the negative.

As has already been pointed out by Cabibbo,
Maiani, Parisi, and Petronzio, it is not impos-
sible to live with this lack of asymptotic freedom.
The quartic couplings ~,. are arranged to be ~ 1
for all energies less than 10" GeV and since there
are no experimental constraints on Higgs-boson
masses the ~, are essentially five arbitrary con-
stants subject to some loose constraints.

If we believe in the true asymptotic freedom of
the theory, then the next question is whether the
SU(5) model can at all be made asymptotically free
with the addition of new fermions. These fer-
mions must necessarily be superheavy, i.e., of
the same mass scale as that of theX gauge bos-
ons. This is because the loss of asymptotic free-
dom is associated with the ~, coupling constants
and the only way to reduce the dX&/dt is to intro-
duce additional fermion loops that couple to all the
Higgs bosons. Through symmetry breakdown,
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these new fermions acquire the same mass scale
as the M~.

In this search for asymptotic freedom, a prime
issue is the fermion content of the theory. On the
grounds of simplicity, we have chosen a set of
superheavy fermions to be in the 5 and 24 repre-
sentation, so that it is supersymmetric with the
spin-0 5 and 24 Higgs bosons. The result of our
computer search is that indeed an asymptotically
free SU(5) model exists with the following par-
ticle spectrum:

1 set of 24 gauge bosons,
1 set of 5, 24 superheavy Higgs bosons,
1 set of 5, 24 superheavy fermions,

7 sets of 5*, 101ight fermions.
That an asymptotically free SU(5) model exists

at all with a given particle spectrum is far from
obvious. Fradkin and Kalashnikov' reported on an
example with an involved particle spectrum. Our
example is perhaps simpler in structure being
supersymmetric. It is not, by any means, unique.
However it may be a good example upon which to
study detailed gauge hierarchy questions such as
the generation of the m~ mass, etc. In this paper
we limit ourselves simply to the search for
asymptotic freedom itself. We reserve the appli-
cations to future publication.

Let us exhibit the complete SU(5) Lagrangian

2
2= --,' Tr(B„A„-8„A„-ig[A»A~1)'- a Tr(s„p —ig[A„, $1)'-Is„H—igA&HI'+ 2»(p') —~&(Trp')'

V2
Tr(p')+ —H~ H- —'(H B)' ~H ~ HTr(f') —~H (Q')SH -$ y (& -igA )g2 2 4 2 2

-g~„&y (6 g~~-igA" g&~ -igA pz&) —X y (8 X"-igA„"SX ) -Bsy&(8 B„—ig[A&, B)„)

—(W2hg~„s(g H +H.c. )-h2X X 4s ("~Be X H +H.c.) —h, B&B&p& h, B&B8-$„.

As we shall show, asymptotic freedom of the theory forces upon the theory the following set of eigen-
values:

h = -0.066 58 g, k, = —0.903 92g, k4= —1.3384 g, k, = —0.965 76g, k6= 0.692 65g,

0 017 20 g, X = 0.662 75 g, A, = 2.872 32 g, A, = -0.060 13 g, X5= 2.408 14 g
(2)

With these eigenvalues there still remains a de-
gree of freedom in the choice of two mass scales
p.
' and v'. In fact, the renormalization-group an-

alysis of p.
' and v' shows' that they are coupled

equations even when the eigenvalues are employed,
viz. ~

=-,'(- p'+0. 7993 p, '),

16m' = 27.2117g P,'+ 2.1075 g v,2 dp.

16m' = 20.2321 g'p, '+ 73.474 Og v'.dV

In general, this coupled system of equations has
the asymptotic behavior

V2
= 6.3752 . (4)

However, with the Higgs potential as given in
Eg. (1) the masses of the H' (i =1, 2, 3) SU(3) trip-
let and H' (a = 4, 5) SU(2) doublet are given by

=2(- v'+2. 0286 g'),

and in the t-~ limit, both the SU(3) and SU(2)
groups would be spontaneously broken, a highly
undesirable state of affairs.

Fortunately, there exists a sPecial solution to
the system of equations, viz. ,

V2—,=-1.5058 for all t .

With this solution, both H' and H' have positive
masses and they preserve the stability of our or-
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iginal vacuum even at high energies.
The set of eigenvalues in Eq. (2) preserves the

positivity of the mass squared of the Q 24-piet as
well [v ' = p, '/(X, + & A.,)],

m'(y& ) = p. '+ (A., + -', X,)v' = 0.6766 p, ',
m'(y', ) = —g'+ (A., + —,

' X,)v' = 2.7066 p, ',

m'(o)=2 p, ',

and for completeness we record the value for the
X-boson mass

M'= ~ g'v'=1. 2762 p, '. (6)

The set of eigenvalues in Eq. (2), together with
the special solution Eq. (6), makes our example of
an SU(5) model into (i) a truly one-coupling-con-
stant theory, with (ii) one mass scale, and (iii)
one which preserves the asymptotic freedom of
the theory.

It is an open question at this point whether with
this as a starting point we can generate the second
stage of hierarchy, at the right place, as we go
down in energy. At the high-energy end, in view
of Eq. (6), Eq. (3) implies that

have made on the Lagrangian (1). It is convenient,
for this calculation, to work in the Landau gauge.
In the minimal renormalization scheme, ' the re-
normalization-group analysis is not at all sensitive
to the masses of the gauge bosons. This is cer-
tainly true of energies P» M~. We study the re-
normalization group in this domain and look for
asymptotic freedom. The strategy, once we have
found an asymptotically free solution, would be to
resort to the broken-symmetry renormalization
program to study the low-energy behavior of the
theory.

In the Landau gauge, then, we quote the wave-
function renormalization for each one of the fields.
For generality, we quote our result for an SU(N)
theory although our interest is ultimately in SU(5).
Let n& denote the number of generations (udev

being the first generation, csp, v„ the second, etc.),
while nz denotes the number of sets of heavy fer-
mions, each set consisting of 5 and 24 of all four
Dirac helicities:

Z (H)=1-, ln ——3g' + 2h'n& (N —1)
1 A, (N' —1)

16~~ p, N

+ 4 k4'n~
(N' -1)

dp,1«' = 24.0382 g p,
cg

so that [m, '—= m'(H'), m, '= m'(If' )]

Z ((„") = 1—,ln —( h'(N —1)],
A

Z (g ~ ) = 1-, ln —(2h'],

(12)

(13)

dm '
1 6

m
27 7052

cQ

16'~ ~ —42 4803 g~ p
&2 dm. '

dt

(10)
Z(y") =1 —16, ln — (h, '+h, '), (14)

A N-1
16m' p,

Z(&f)=1—,ln —h, '+ (h ~+h ~)
1 A, N'-2

It is clear by inspection that as t decreases, m, '
decreases much faster than m, ' so that chances
are better than SU(2) will be broken first as t de-
creases. This would of course lead to a 9'mass
being spontaneously generated. Detailed study of
this question involves a study of the broken-sym-
metry renormalization-group analysis. This work
is in progress.

With all the analyses and conclusions out of the
way we now present the details of the renormaliza-
tion-group analysis, at the one-loop level, that we

I

A
Z(ps) =1 — ln ——6g'N+4h 'n

16~2 ~ 2 P

+ 4 (h, '+ h, ')n„
' —2)

16——n k,k

(15)

(16)

Next we tabulate the contribution of each vertex renormalization graph to the corresponding renormaliza-
tion-group equation":

Contribution to 16m'dh/dt:,

-3g k
(N'-N -2) (17)
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Contribution to 16m'dk, /dg:

3g (18)

2 3
2 (19)

(20)

Contribution to 16m' dk, /dt:

-3Ng k4, (21)

-- A'~k4k5+ k~ k4ke,
4 2(N'-2)

(22)

Contribution to 16m' dk, /dt:

-3g'N k5, (28)

5 6 N 5 6 (24)

Contribution to 16w'dk, /dt:

—3g 'Nk (26)

2k, 'k, , (26)

——k' k'k —kk'-- k'
N ' N ' ' N ' N

(27)

Contribution to 16m'd&, ldt:

f permutations 2(N +7) X ~y 8k X +A. ~ +NA ~+2k A.2 ~ 2 N2 4 4 5 (28)

+ permutations
16 4 64

(96+48N')nz ——,nz k,k,' ——,nz k,'64 3 16
(29)

+ ~rmutations 9 4 (80)
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Contribution to 16m'dX, /dt:

q permutations Q4 A. A. + 8A. +» A,
, (N'-9)

(31)

+ permuta ti ons -4k' n +—k'kn +—k, k, nz, (N' —4) 64, 96
F

64, 4(N'-4)
5 6 F (32)

+ permutations
3N 4

Contribution to 16w'dX, /dg:

+ permutatlons (N+4)+2k, '(N'-1)+4~ ~, +~,', +, '(34)
(N' —1), N'+ 2 N' —4

N

+ permutationa
N' —2N+ 1

(35)

+ permutations
4

N»+ g &»-4
(36)

Contribution to 16m' dA,,/dt:

4 permutations 4&,'+ &,'+ &,&,(N + 1)+ A.,A.,+ 2X,A.,(PP+ 1)

+ 4A, »A4 + 2~~X5 + 4A.»~5
(2N' —3) (N' —1) „(N'+ 3)

N

(37)

+ permutations

N'+ 1» 32

+ permutations 3g (39)

Contribution to 16m'dA. , /dg:

+ permutations A.,A.,+ 4A.,~, + 8 ~,A,, + &»~5+ ~5'4(N -6), (N —4)
N

(40)

per mutations
16»» 32» 32» 16

+—nl k, 'k, k, +—n~ k,'k, ', (4],)
96 , 48
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+ permutations 3Ng4 . (42)

To each of the above equations, the effect of the wave-function renormalization must be added. For each
external leg the added term reads

wave-function renormalization contribution to 16)r dh/dt due to

6 162=2(-„',(1Z'*(6,"') (43)

h 1
=2 16~'~ "'~ ' (44)

From Eqs. (43) and (44) it is clear that the operational rule for including the external wave-function re-
normalization in the 16w'dldt equation is to include half of the quantity inside the curly brackets in the
z expression for each external leg.

With this rule in mind, we display the full set of renormalization-group equations:

]62(2 —= -['-,'N —~ (N+1) - ,'n& (N —1) —-—', (2N+ l)n~jg',

16 '—„=h — ( 22'(- N2- )1+2n Fh' +h' whz( h(1)I
,dh 3g', , (N' —1), N+1

N f

(45)

(46)

4 5
(47)

4 =k g (3Nz ]) —k k + k,k + y(N —1)h'

+ k4 + 2ng, N'+N —1 N'-1
2N

N

12 S,N'-4 2(N'-2) 4

(48)

(49)

16m' ' =2k 'k, ——k,'+k, —6g'jV+2n k, '+ nzk5'+ k '+k '

(50)

k k

——,k,k,'nz —
z kzQz + Snzk, 'X, + 8nz (k,'+ k, ')A., ——nzk k,X, , (51)

16m' ' =24~ A, +8X ' —+ ' + —g'N —].2''A, —4k n — k n +—n k 'k,d&2, (N'-9) &,2 3. . . 4(N3 —4) 64

+—k, 'k, 'Nz+ —k,k, 'nz —, k,4nz+ Snzk, 'A.,+ Snz A, (k,z+ k, ')'- nz k,k, )(, , (52)—
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gjfA,

g'X, —16nz, k,' —8n& h'(N —1)+4n&h'A. ,(N —1) + 8nzk, 'A, , (53)

16m~ = (N+1)A3A, + 33'., +4K 2+A., + 23~3~(N + 1)+4&,&~ +2&~X,

+ 4~2~5 N2 + 3Z' — g'~, —16n~k4'k2' —16n~k4'k2 k, ——,n~ k, 'k, '

nzk—skeX4+2n&(N —1)h &4+ 4nz k42A4,
N (54)

16+ ~3~5 + 4~y~5 + 4~2~5 + 8~4~5 + ~5 N
+ 3NP

g + ~z k4 k +—~~ k4'k2k5+ —n~ k4'k, k,5 N F 4 2 N E 4 25 N E 4 26

N'-3

+4n (k 2+k, ')A., —nz k,k, A.,+ 2n& (N -1)h &, +4n„ '-1)
k4 X5. (55)

The solution of this set of coupled system of
differential equations is fortunately reducible to
a set of algebraic equations. By looking for
eigenvalues of the form

h, k, ~g,
A] ~g2,

the eigenvalues become the roots of a coupled
system of polynomial equations. Furthermore,
the system decouples into two disjoint sets of
five equations, one involving the Yukawa couplings,
the other the quartic couplings. On a computer,
once the full set of equations has been correctly
punched in, the search for roots of a system of
five polynomials is not a time-consuming one."

Not all the roots for N = 5 satisfy the stability

I

conditions

A.,& 0, A., +,-', A.,& 0, A., & 0,

except the one reported in Eq. (2). In the search
we have left as unspecified both nz and n~. There
is room for n~ = 2; however, none of those n~ = 2
cases have acceptable roots.

Note added in Proof An asymp. totically free
SII(5) model with three generations has recently
been found by us [Phys. Rev. D (to be published)].
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