
I'8 Y

CHICA

I, RK VIE% 0 Vo L UME 22, 5 UMBER 6 15 SEI r EMBER I980

New renormalization program for broken gauge theories

Ngee-Pong Chang
Physics Department, City College of the City University ofNew York, New York, New York 10031

Ashok Das
Physics Department, University ofMaryland, College Park, Maryland 20742

Juan Perez-Mercader
Physics Department, City College of the City University ofNew York, New York, New York 10031

(Received 26 November 1979; revised manuscript received 4 August 1980)

We derive a new renormalization-group theorem which expressly relates the parameters of the symmetric high-

energy theory to the parameters of the broken, low-energy theory. The relation is an analytic one. It summarizes the
threshold effects by leapfrogging across each threshold and provides a connection formula. The relation is derived
for an arbitrary group hierarchy structure.

I. INTRODUCTION

In the grand unification theory' of strong, elec-
tromagnetic, and weak interactions, a very large
mass scale of the order of 10" GeV naturally ap-
pears. ' This mass scale is associated with the
so-called leptoquark gauge bosons that mediate
between the leptons and quarks of the grand unified
multiplet. These same leptoquarks lead in turn to
a new effective four-fermion interaction that can
convert a proton into leptons. A central issue in
the grand unification theory is the estimation of
this masg scale M~ and its consequent effect on the
proton lifetime.

Previous attempts at this have largely ignored
the problem and essential complications of the
mass-dependent renormalization-group equations.
As we shall show in Sec. II, because the mass
scale here arose as a result of spontaneous sym-
metry breaking, the treatment of the mass-depen-
dent renormalization-group equation' ' must be
radically different from that used for the study of
heavy quark masses in deep-inelastic scatter-
ing. ' *" In the latter case, the gauge symmetry,
SU(3) color, remained strictly unbroken.

The essential complication which arises in the
case of broken symmetry comes in through the
proliferation of new couplings. In addition to the
expected g„g„g„and gx [respectively, the fer-
mion couplings to the U(1), SU(2), SU(3), and X
gauge bosons J, new quadrupole-moment couplings
appear which involve the X-gauge-boson trilinear
interaction with U(1), SU(2), and SU(3). These
additional couplings are important in the threshold
region and influence the estimation of Mx.

One way to handle this complication is of course
to enlarge the system. of mass-dependent renor-
malization-group equations to include these new
couplings. For SU(5), the minimal candidate for

grand unification, there are at least six new cou-
plings to be considered. The modifications which
result are hardly i~consequential.

The alternate way is to analyze anew the renor-
malization of a spontaneously broken gauge theory.
This we have done in the context of the minimal
renormalization scheme of 't Hooft and Velt-
man. "'" Kith this we are able to develop a new
renormalization-group equation for broken gauge
theories which avoids completely this complica-
tion. More precisely, we have been able to derive
a new set of rules for the calculation of all low-
energy matrix elements in terms of the parame-
ters of the high-energy theory.

The rules are very simple. For the calculation
of fully renormalized matrix elements, with ex-
ternal momenta p -=p'e',

(1) all vertices are those generated by the under-
lying, symmetric Lagrangian with, however, g(t)
replacing the original coupling constant,

(2) massive particles, such as the X, propagate
with an M(t), rather than the bare or renormalized
mass, and

(3) the overall matrix element is to be multiplied
by an external factor which depends on the canon-
ical dimension of the matrix element [see Eq.
(3.14)J.

Here g(t) and M(t) are the running coupling con-
stant and running mass, as calculated in the sym-
metric theory. Since M(t) has an exponential
behavior e, in the high-energy limit, the effect
of the masses disappears. Conversely, in the
low-energy limit, the running mass M blows up
exponentially. In comparison, therefore, with
graphs that have zero-mass gauge bosons running
around, the graphs with M~ effectively decouple.
Our rules thus manifest, in a mathematically
well-defined way through our Theorem 1, the ex-
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pected Appelquist-Carazzone decoupling. '4

As we shall show in Sec. V, the theorem pro-
vides the needed connection between the low-ener-
gy couyling constants and those of the original un-
broken gauge theory. It is through this connection
that an estimate for M~ can be correctly made.

The theorem can also be used to study the pro-
ton-decay probability amplitude. Our analysis dif-
fers from earlier attempts by including in addition
the mass-renormalization effects of X on the low-
energy decay. The simple -minded propagator

is valid only in the neighbor hood of the pole, while for
P' of the order of 1 GeV', self-energy effects of
M~ are no longer negligible.

Throughout this paper, where applications of the
theorem are made, we refer to an asymptotically
free SU(5) model, " in which all the quartic cou-
plings ~„...,~, as well as the Yukawa couplings
are fixed relative to the overall gauge constant.
In this model asymptotic freedom" is preserved
for the entire theory. As a result of the eigen-
value conditions, '~" the mass-renormalization
effects become directly computable. In the stan-
dard SU(5) theory where the Z's and Yukaara cou-
plings are arbitrary, the mass renormalization
cannot reliably be estimated.

The plan of this paper is as follows.
In Sec. II, we discuss the mass-dependent re-

normalization-grouy approach used by Ross to
study the threshold effect. We point out the need
for the inclusion of additional effective coupling
constants in the system of equations. In Sec. III,
we adapt the minimal renormalization scheme of
't Hooft and Veltman.

In Sec. IV we apply the theorem to a simple
SO(3) gauge theory in which W' acquires mass
while A, remains massless. The detailed sub-
traction scheme used is exhibited in that section.
Section V discusses the relation between the high-
energy renormalization-group equation and the
low-energy parameters. Section VI generalizes
it to arbitrary gauge hierarchies for the study of
the coupling constants of the subgroups. Section
VII presents the. result for g~, the coupling to the
massive bosons.

II. REVIEW

Early attempts at the estimation of M~ used as
input the knowledge of the low-energy renormal-
ization-group equations for g„g„g„respective-

I

ly:

16m ' = ——', (33 —4ny) g,',dt

16m = -3(22 —4') g~
6V

(2. 1)

where n&
——number of light fermion generations

(udev being the first generation, cs p, v„ the next,
and so on). In Eq. (2.1) the effect of the lepto-
quark interactions has been neglected. By a
straightforward extrapolation from low-energy
data, relying on the asymptotic freedom of g, and

g„ it was estimated that the grand unification
scale where g, becomes equal to g, is of order
10"GeV.

A more refined estimate would. obviously have to
involve the leytoquark exchanges. This was done
by a detailed study of the mass-dependent renor-
malization-group equation. In this approach, the
renormalized coupling constant is defined to be the
value of the full three-point vertex function at the
symmetric point with all p'= Q3. The study of the
change in the g„, as the subtraction point Q is
varied, gives the mass-dependent renormaliza-
tion-grouy equation.

For Q'- ~, the effects of Mr are negligible and
the renormalized coupling constants g„g„g, all
approach a common g. For finite Q the effects
of M~ reflect upon the broken gauge symmetry
and g„g„g,are no longer equal. The original
study looked at the broken coupling constants g„
g„g„and g~ and wrote down the system of equa-
tions involving them. In the equation for g„ for
example, are the graphs of Fig. 1(a), which in-
volve, by definition g,', while Figs. 1(b) and 1(c)
involve again by definition g,' g, and g, g„respec-
tively. Figure 1(d), in which the gauge-boson
self-energy involves the gluon loop, will contribute
a g3 term to the renormalization -group equation.
This is as a result of SU(3) gauge invariance which
remains unbroken and serves to relate the gluon
trilinear coupling to the fermion-gluon coupling.

Figure 1(e), however, in which the gluon self-
energy involves the leptoquark boson loop, cannot
be said to contribute to g~'g, nor g,'. Indeed even
the space~time structure of the GXX coupling is
now broken into a minimal "charge' interaction
and a quadrupole-moment coupling. ~ More pre-
cisely, the broken-symmetry interaction of the X
reads (i=1,2, 3, a=1,2)

ig, gc, X'„gB„G„',—B„G„', ig,[G„,O—„]~/X'„, --'. B„X„',-ig,c'„X'„,+ig, X„',W'„, —(~/2 3)g B„X„',—(V, v) )'

+ig, ~,x„",fB„W'„, B„W'„, ig, [W„X-„}-',}X'„,—(iv 5/2v 3)g, a,(B,B„—B„B„)X';,X„', . (2.2)
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FIG. 1. Corrections to the g3 vertex due to gauge bosons.

Only as Q'- ~ will all the g, approach a common

g and the z,. approach unity.
In principle, therefore, the original system of

equations must be enlarged to include the new
quadrupole couplings z„x„~,together with the
quartic self -couplings involving the X leptoquarks,
etc. This complicates considerably the original
analysis of the low-energy mass-dependent re-
normalization-group equations.

For Q'«M»', the effect of Fig. 1(e) is of order
Q'/M»2 compared with the other graphs and the
misidentification of the new coupling is not a
severe error. In the threshold region, however,
with Q'-M»', the misidentification could lead to
an appreciable effect on the estimation of Mx.

III. NEW RENORMALIZATION SCHEME

To study anew then the renormalization-group
equation in the presence of spontaneous symmetry
breaking, we recall first the minimal renormal-
ization scheme of 't Hooft and Veltman. ~~" For
this we start from L~, the bare Lagrangian that
includes the kinetic and interaction terms, gauge
fixing and ghosts, but no counterterms.

This L~ is the shifted Lagrangian, having been
obtained from the original symmetric theory by

has to be done consistent with the quantum re-
quirement that the new vacuum maintain itself in
the presence of radiative corrections. "" To
maintain

(o) =0, (3.1)

v cannot be the classical vacuum expectation value
m/v X but must be (m is the Higgs-boson pseudo-
mass scale here)

m T+ 2m' ' (3.2)

where T is the total tadpole contribution as cal-
culated with L~. Apart from the terms thus ob-
tained by shifting, L~ has no added counterterms.

Let I'„'"' be the one-particle-irreducible n-point

shifting the Higgs field o. All the coupling vertices
in this L~ are specified by the original coupling
constants g, ~. In spite of the spontaneous sym-
metry breaking, the SU(3), SU(2), U(1) coupling
vertices remain symmetric. In the language of
Eq. (2. 2), the constants that appear in I,s are
go=8'a=g3=A &y= I('~= I('3= & ~

The shift
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Green's function calculated with L~. F„as usual
has infinities which can be regularized in a gauge-
invariant way by working in complex n-dimension-
al space. "

The minimal scheme consists in absorbing the
1/e parts in coupling, wave-function renormal-
izations. ' Let 2, and 2, be the minimal diver-
gent parts of the gauge-boson wave-function and
vertex renormalization, and let o. specify the
gauge. Define

" 3/a" -X
+r Z3 Zg gg p

(3.3)M„=g„e„,
A

Q„—Z3
then

r„(p,g„M„n,)= (Z, )-"/'r„(p, g„,M„, n„, q)

(3.4)

and 1", is a finite function of the renormalized
parameters g„, M„, n„. Z, would be Z, if the ex-
ternal leg is a gauge boson, 2, if it is a fermion,
etc.

By construction, we have

Zs Z~(g/»» na»A p)

1 1(gB» +B» A» )

(s.5)

r„(p,g„,M„, ~„,p, }=(z,) "/'r„(p, g„,M„n„,Q, g),
(s.6)

where

. Z, =Z, (Q»g»»M~» ~, » &)»

Q being the subtraction point.

(3 ~ 7)

where we have understood 1/e term as in(A/p, ) in
terms of the regulator mass A. What is important
for us is the observation that the 2 constants are
independent of M~ and are completely given by the
unbroken theory.

I'„while finite is not yet fully normalized for on-
shell matrix elements. To perform the remaining
finite renormalization, we must extract further the
finite external wave-function renormalization
through the relation

As is usual, we can derive a lemma for the I"~

from the simple observation that I'„does not ex-
plicitly depend on p, ,

= 0= ~ (z s/nz n/&r )
dp, dp,

or
Lemma:

I' 8 8 8
f
p, —+ P —y M„—2ya„- -ny

(s.s)

x I'„(p,g„M„,o.„,Q, p) = 0, (3.9)

aP= p~ g»'

a
y~M„=- -p, —M„

A

y=-~ p, —lnS
3 JLL

(s. lo)

y-=~ p lnz, +-,'g- =- lnZ, (Q, g„,M„, n„, p).

Note that y, in contrast with the usual anomalous
dimension y, is of order g4 here.

By the usual dimensional analysis we know that

«p M„«Q
z(&P» g'~»M»» &»» «Q»P)=P "rs»A»» &»»» I/I»

0, P,

d„=canonical dimension of the n-point function

(3.11)

or

« —r«(«p» g„M„e„»«Q» p, )
a

8K

a a+ d„-M, I r&(«P» g„,M„&„«Q,g) ~"BM„j

(3.12)

Combining this with our lemma, we obtain the
new renormalization-group equation for a broken
gauge theory

a a a a

a~ " "aM„ag„"aa.„
—« ——(1+y~)M„+ p —2yn„+d„ny r«(«p»'-g, »M„» a„»«Q» p)=0, (3.13)

whose solution can be presented as- a theorem. "
Theorem 1:

I

dg
dt
—= I » g(0}=—8„»

t
=exp d„t -n dt'y I' P, g, M, &, , p, ,

dt
= -(1+y„)M, M(0)= M„, -

dQ
2yn, a(0) =-o.„.dt

(s. 15)

(3.14} Theorem 1 incorporates the new set of Feynman
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rules for the calculation of low-energy matrix
elements in terms of the parameters of the high-
energy theory, viz. , I.I. Note that the P calcu-
lated this way is identical to the P function of an
unbroken, symmetric theory. This is the direct
result of the use of a minimal renormalization
scheme. Similarly, the y and y„are identical to
that calculated in a symmetric theory.

For our applications of the theorem, we shall
always choose Q to be equal to p in the calcula-
tion of the right-hand side of Eq. (3.14).

IV. EXAMPLE: SO(3)~U(1)

To better exhibit the two-step renormalization

scheme, we shall apply the procedure to the sim-
ple SO(3) gauge theory with one set of Higgs bosons
and n& generation of fermions, ' both being in the
triplet representation. " For simplicity, we have
ignored the Yukawa couplings so that the theory is
not asymptotically free. Since we shall be inter-
ested only in the low-energy behavior here as a
general example. of the decoupling theorem, we
have suppressed the appearance of the Yukawa
coupling. In our complete treatment in the next
sections, Yukawa couplings will be included.

The unshifted, bare, Lagrangian reads

--,'(3„A„—a„A„+gA„xA„)'--,'(a„y+gA"„x y)'-(L y„(a„g+gA„x g)+
2

P'-4 (P )

=,'(3„A,' —My')' --,' (s„&,' +My')' --,' (3„&'„)'+&,„„,. (4. 1)

Because of spontaneous symmetry breaking, the
correct perturbation theory is with respect to the
field operators (t)„(((),, v, where o is related to the
original (t), field by

p, = v+v.
As already pointed out in Sec. III, e is not the
classical vacuum expectation value but must in-
clude radiative corrections in order that the con-

I

dition (3.1) remain true in the presence of quan-
tum corrections. The tadpole contribution T can
be calculated self-consistently from the shifted
Lagrangian. Its explicit form will be important
for mass renormalization but not for g-coupling-
constant renor malization.

Consider the two-point function for the fermion
I'„~'~(f). From I~, and to lowest order in g', we
find (C-=-0.577. . .)

I', (fn~cl, MC) PyI)+=, —+Cx(n4x —4 - xCkln, — xdxln
M'x+ x(1 -x)p' ' x(1 -x)p'

0 P. 0

(4.2)

(4.3)

where the remaining function I'„ is a finite function of the renormalized coupling constants and masses.
For our example, we have clearly

In Eq. (4.2), 1/e can be read as ln(A/p), with A as the cutoff needed to make the theory finite. There-
fore, (4. 2) in spite of appearances really does not depend on p'. It actually, of course, depends logarith-
mically on A.

Now minimal renormalization consists in the extraction of the infinite wave-function renormalization
constant through the relation

I'„'"(P,g, M) =Z,-'I'„"'(P,g„,M„),

Z, = 1 -15, ——15, (C+ 1n4m)
4g' 1 2g

16@' e 167t' (4.4)

4', '(f (y, c„M,)=y'(y l-(4", I+ xckln ', + xdxln, }.2g, ' ' M„'x+ x(1 —x)P2 ' x(1 —x)p'

0 p 0 p,
(4.5)

I'„'" while finite is not yet properly renormalized
for the calculation of S-matrix elements. To ex-
tract now the finite external wave-function renor-
malization, we perform the usual subtraction at
p'=Q', so that

I"„"&(P,g„,M„, q) -=Z,'(q, g„,M„, q)i'„")(P,g„,M„,q)
(4.5)

and
I'„"'(P,g„,M„,q)I;,.=& p. (4.7)
From Eq. (4.5), therefore, we find
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2 2

Z, (f Q, g„,M„, g)=1+ ", 1+
16+ t ~0

M„'x+x(1-x)q' ' x(1-x)q'
xdx ln ", + xdx ln (4.6)

The explicit dependence of Z, (f) on in' is by in-
spection identical to that of Z, [recall that 1/&
= in(A/p, )]. Therefore, in the calculation of y, the
"anomalous dimension" in E(l. (3.10), the O(g')
terms cancel while the additional terms obtained
by ~/dp acting on g„' and M„' will be of O(g').

According to our theorem, for the study of the
low-energy coupling constant, where p -=p e', we
need only to calculate I'„(p',g, M, Q, g). The
choice of p' is arbitrary. For convenience we
can take p to be at Q. Therefore, in the calcula-
tion of I'„we need Z, (p', g, M, g).

Recall that

M(f)=e-'M(f), M(0)=M„,

where

(4.9)

—,M(f)=-y„M. (4. 10)

M can at most grow with some power of t, so that
the exponential behavior dominates in cN. For low

energies, t being large and negative, . M is much

larger than M„. It is, therefore, clear that the

appr oximatiori

M»P, p, (4. it)
is a valid one for Z, and we have the result

Z (p', g, M, g)=1—,ln —+in ———l.
2g' M p'

16m p. Jtl 2 j

(4. i2)

Next we turn to the photon two-point function.
Since the residual U(1) gauge invariance is un-
broken, the photon remains strictly massless.
The general form of I'„'"(y} reads

I'"(r P, g M)=-'P'6. .—'(6..P'-P. p. )f(p g M}

2 6 8

Z, =i-, — ' ~ -(3 —4nq)(C+ln4)[)

+ O(g') ~ (4. 16)

with

1/o.,=Z,/o. .
A

The operational definition of Z, , therefore, is
simply to calculate the coefficient of -ip'5 in
the photon two-point function. To perform the fi-
nite external wave-function renormalization we
again define

I',"(r) p, g„M„o..y &)-=Z.(rl qyg. M. o.. &)

x r„" (ylp, g„,M„, a„,q),

(4.17)

(4. 16)

with

I"~['~ ~a.ou= -i Q'5„„—(1 ——p„p„. (4. 19)

Just as before we set Q=p' and calculate Z, (y po,

g, M, c[, p, ) in the limit M»p, p, and find

Z, (y p', g, M, n, p, )

The coefficient of p„p„ is taken care of by re-
normalization of n, the gauge-fixing parameter.
Although we have taken a to be 1, in higher orders
e is renormalized. This can be seen by rewrit-
ing (n =- n, ,= 1)

I'„(~)(y p, q, M, c(}= i(p-5„„-p„p„)——p„p„

-i(6„.p'-p. p, )f(p g M)

3 ~y (y Pygyf 4'4 Ft P'}

(4. 16)

with

(4. 13)
g2 M 8 p 20=1—,61n ———n 1n —+—n —1

16m' p 3 ~ p, 9

(4.20)

(4. 14)

The coefficient of -ip'5„„ is directly related to
Z3 . In fact, by minimal renormalization, we

find that

Finally, we turn our attention to the three-point
function which defines the fermion vertex function
for the emission or absorption of photons. Ac-
cording to our I-~, the calculation of j."„'"yields
the general form, at the symmetric point,

2
f"„' '(44 M, e)= —ffy»I)+, [8/4» 4(f:4)44e)efmtte]I+ee(4)4 y f»f, '

+ r „(q)P.r 'ef +&.,4)r,f3.
=- -gpss Zg + finite ~

(4.21)

(4.22)
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In Eq. (4.21},f„f„f, are all finite functions of
g, M, e and 4» is the transverse projection for
the photon momentum q. In Eq. (4.21), P is the
incoming fermion momentum, and at the symme-
tric point,

g„= z,z,"'/z, g,

3

g„=g—,—(-7+ -'~~)+ o(g').167t' g

(4. as)

(4. 26)

P'=q'= (P+q)'= -2P 'q ~

By the renormalization theorem,

(4. 23) From Eq. (4.26), recalling that I/a=in(A/g), we
find the symmetric renormalization-group equa-
tion

we find

(4. 24)

16m'
d
—= -(7 —', nq-) g'= ---', bg'(16m') . (4.27)

To study the low-energy coupling constant, we
need the relation

r,'»(P Og, M, a, il)=Z, (f~P', g, M, a, q)Z."'(y~p', g, M, n, q)Z, Z, '~'r»(Po, g, M) (4. as)

M pO= -gy 1 —— 7ln ——'n ln ———,'-+ —"n +O(g4) +n, (q)F .
1677 p, 3 ]0,

(4.29)

In Eq. (4.29) F, is finite and of order g'. The co-
efficient of -y~ is, by definition, the l.ow-energy
charge eR, and so we have derived

g3 M 4 po 1- 10
e =g—,Vln —--n ln —--+—n

16m' p, 3 f
p, 3 9

+ o(g') . (4.30)

V. "UNDRESSING"

Equation (4, 30) exhibits a useful relation between
the coefficient of the in(M/p} term and that of
1n(P'/p), viz. , the two add up to the coefficient
b/2 in the renormalization-group equation for g
[see Eq. (4.27)]. The ln(M/p, ) terms come from
graphs involving massive particles in the virtual
loop while ln(P'/p) come from graphs whose loop
integral involves only massless particles. Be-
cause they add up to 5/2, it is a very useful nu-
merical check on the arithmetic addition of the
many graphs which contribute to I'R, especially
for SU(5).

Equation (4.30) is still too general for our needs.
The reference point po, in general, may be dif-
ferent from the renormalization scale p. The the-
orem [Eq. (3.14)] holds regardless of the relation
between p and p. We shall, in our applications,
choose p' equal to p and set p, equal to M„.

dg 8 g 4
dt 3 ' 16~'= -(14 —-nq), —= -bg (s.2)

while at low energies, I'R approach the ordinary
charge e„of QED, which should satisfy

deR' 8 eR

dt 3 f 16m' (5.3)

For simplicity of notation we shall from this
point on refer only to the (-y, ) part of I"„, but
continue to write I'R for it. Our perturbative re-
sult reads (P'= p=M„«M)

+ o(g') (5.4)

=-g +g (-a+bt)+O(g'). (5.5)

In principle, Eq. (5 ~ 4) is only the first two
terms of a perturbation series which must be
summed to give eR at low energies. To do this
sum, it is convenient to study the differential equa-
tion satisfied by eR', viz. ,

[rs(P e g. M P}]
4=g'- g, [141n(M/p) ——'+ "n ]-16m' g f

In this section we study the "undressing" that
takes place in the renormalization-group equation
as the energy scale is lowered from p»M„ to p
«M, . At high energies, the coupling constants
are

(s. 1)

or

dt R dt
2 g2+ bg4~ O(g6)

= -(b-b)g'+o(g')

4
dt
—eR = -&eR ~

(s.6)

(s.7)
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A
B (s.e)

But by the remark following Eq. (4.30) in the
last section, the 8 coefficient precisely represents
the contribution of graphs in which only massless
particle loops occur, so that as far as e„' is con-
cerned, the massive bosons have, to one-loop ap-
proximation, completely decoupled from the low-
energy renormalization-group equation.

Still another way to look at this decoupling, at the
one-loop level, comes through the realization that
Eq. (5.7) has as its solution

It is worth noting that in contrast with the mass-
dependent low-energy renormalization-group ap-
proach, we have in Eq. (5. 14) an analytic relation
between high- and low-energy parameters that take
into account all one-loop effects including the
threshold effect.

VI. GENERALIZATION

In this section we extend the calculation of Sec.
IV to a general broken gauge theory. Let G be
the grand unified group, with its symmetric cou-
pling constant g satisfying

where & = 0 refers to a low-energy point m and is
related to t by

d
dt

(6.1)

t= -7+7'. (s.8)
where

C
g =I+cS~' (s. 10)

where c measures the symmetric g' at the same
low-energy point. Substituting (5.10) into (5.5),
we find

Here T is the logarithmic distance from M„ to the
low-energy point.

But Eq. (5.2) also has the solution

~

~

N if G=SU(N)
c,(G) =

2(N -2) if G= SO(&)
(6.3)

16@' b = —C (G) - - Q T„(R)—— Q T(R).
Higgs fermions

bosons
(e.2)

In Eq. (6.2), the group-theory coefficients are
the standard ones,

=g'+g'(a+ b r) + ~ ~ ~,
], +

with

a= -a —bT.

(s. 11)

(s.12)

representation

SU(N): fundamental

while T„(R), T(R) depend on the representation:

T„(R) T(R)
1 1

Clearly our perturbation series, in the one-loop
approximation, must sum up as a geometric series
in order to obtain Eq. (5.8). As a result, we find
the immediate relation between the high- and low-
energy parameters, viz. ,

A =, B=b-b.
1 —ac (5.13)

Reexpressed in terms of the coupling constants,
Eq. (5.13) reads

a + bin —+a.e„'(m) g~ (m) m
(s. 14)

Equation (5.14), avithout the constant a, may be
easily inferred from the well-known result of Georgi,
Quinn, and Weinberg. ' The inclusion of the con-
stant summarizes, within the context of our theo-
rem, the so-called threshold effect. The theorem
allowed us to leapfrog across the threshold region,
where the subtraction was done (PD= p=M„),
directly into the low-energy region. The constants
that appear are remnants of the typical logarithms
that occur in the massive loops in the limit M
»P'. In the t +~ region, of course, our I'~ re-
duce automatically to simply g(t).

adj oint

antisymmetric rank 2 (N -2)j2 (N-2)/2

(6.4)

SO(N): ve ctor

adj oint 2(N —2)

spinor(&=even) 2'" e' ' 2 "8' ', &we

spinor(A=odd) 2 " ' 2 N "~I,¹3.
(e.s)

Let G be broken down to the subgroup

Q xg xg x ~ ~ ~

by a mass scale M. We focus our attention on the
calculation of the coupling constant associated with
the 9, subgroup:

C,(9,)= Q f,„f, .
gA

(summed over the massless bosons of 9,.},

c.(g;)=-p f, „f, „
X, F

(summed over the massive bosons of G) ~
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Then

c,(9,)+ c,(9,) = c,(G) . (6.6)

In terms of these coefficients, we can tabulate
in a convenient fashion the results needed for our

calculation. Because the I/e are good arithmetic
checks we have included them here for complete-
ness, but for brevity we have absorbed the con-
stants —', (C+In 4m) into 1/e and called them I/e.
We have

gauge + ghost

g2 10 10 po 31z z =I — -c(9.) =-—I —+-
16m' ' 3e 3 p, 9

massive gauge
+ massive ghost

L

massive Higgs boson
+ massive gauge

10 10 M 1--c,(9) =-—in —+-
3e 3 p, 3

+T (R) = -ln —-T (R) —ln
2 2 M -) 2 MH

H 3~ 3 ~ H

massive Higgs boson (incl. Goldstone bosons)

2 pO+T (R) = + T (R) ——ln —+-
H 3~ H 3 ~ 9

massless Higgs boson

massless fermion

4 ~ po 10+ T(R) ———' ln —+-
3e 3 p, 9

massive fermion

+T(R) =--'in4 ~ M~
36 3 p.

, C,(9,) -=+31n—-3+g' 3 p~ Ss
low' ' ' e

3 M 1+ C, ( 9,.) -= + 3 in —+-
a p, 4

1 p'+c (9) =-in —+ —
I2j

1 M 1+ C (9) -ln —--
4

(s = 2.029884. . . ).

Upon putting it all together, we find (p'= p =M„«M)

1~(Sc)=g, C, (9&)[-—+ (5s/3)( 3)]+C, (9&) —ln —— + p Tz'(R) --ln38 21- M(t) 1 -
) 1 Ms (t)

8 3 p,

+ Q T' ()))(-)+ET(R) ——)n + QT(R)(—')I. (6.7)

where H (h) and E (f) refer to the heavy (light)
Higgs bosons and fermions, respectively.

In Eq. (6 ~ V) the group-theoretic reduction from
T„(R) to T„'(R) is given by

T„(R)= T„'+-,' c,(9,), (6 ~ Va)

if the breaking of G into g, is due to this particu-

(6.Vb)

lar Higgs-boson representation, and

T„(R)= T„'(R)

otherwise. In Eq. (6.7a) the C, coefficient sum-
marizes the contribution due to the Goldstone bo-
sons associated with the symmetry breakdown,
and in the 't Hooft gauge they have the same mass
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as the massive gauge bosons. The T'„(R) sum-
marizes the contributions due to the physical,
massive Higgs bosons which result. " In writing
down Eq. (6.7) we have ignored the "fine struc-
ture' among the physical Higgs bosons, although
in each particular case the fine structure in the
T„'(R) for different physical Higgs-boson submul-
tiplets can be easily incorporated.

A word of caution is needed for Eq. (6.7a). It
is to be used only in the basis appropriate to the
surviving group g, . Consider, for example, the
breakdown of SU(2) x V(1) into U(1)~ With respect
to the photon field A„ the complex doublet Higgs-
boson contribution actually behaves like a real
triplet contribution. That is, T„(R)= 1 with re-
spect to e' even though with respect to g, and g~2

we have T„(R)=', . This-is because A„=cos88„
+ sin8 W'„, anti

sin'8 g, 'T~H(R) +g,'Tg(R)cos'8 = Q+-,')e'
= (1)e'.

Before relating to Eq. (5.14), it is clear from
our tabulation that in fact our calculation can be
ultimately generalized to several gauge hierarchy
breakdowns. " For at each stage of hierarchy
breakdown, C,(g j) will further break into C,(g}

For g„ the coupling constant associated with the
subgroup g„we define

c, -=C,(gj)

(6.6)

a
j ~ fjXRrR 5

Xa.~a

so that

c, + Q c',. = C, (G) . (6.9)

Then the generalization of Eq. (6.7) reads (M'„
»m; M„„M~»m)

+C,(g), where gCgj and the C,(g) will, accord-
ing to the table, be associated with its massive-
gauge-boson diagram including the emission and
absorption of the massive Higgs boson which
caused the breakdown. Thus, let us label the hier-
archy stage by a, the gauge bosons X„F„... as-
sociated with the generators X„Y„... having ac-
quired mass scale M, (M, »M, »M, ...), through
the Higgs-boson multiplets H, and let the residual
group be

gj X gm X $3 X ' '

3

1'„(5,)=R — Ic,[-—, + (5c/5/j)]+ + c',[—1n(M;/m) —-]++ '(TR)[ —,')n(M„ /m)]+ —I T „(R)(-)
a Hg h

+ ET (R)[—,)n(M, /m)]+ g T(R)(-', )I,F f
(6.10)

where

m =M'e'r (6 ~ 11)

is the low-energy point.
Throughout our discussion we have made the

assumption that at each stage of hierarchy break-
down the Goldstone bosons acquire a mass equal
to that of the massive gauge bosons. This requires
that the gauge-fixing terms have to be prearranged
to make this happen.

By the arguments of Sec. V, Eq. (6.10) is but
the first two terms of a perturbation series which
can be summed to give the low-energy coupling
constants. The analog to Eq. (5.14) now reads

18m 16m' 10s 76 ~ 21 M~

+g T„j(R) ——in "' +g T„(R)(-,')3 m
d

+gT(R) -in ' ~+gT(R)(—';).
3 m)

(6.12)

In Eq. (6. 12) the T~z(R) refer, for each sub-
group g„ to the set of massive physical Higgs
bosons which couple to the massless gauge bosons
of g].

Equation (6.12) is an analytic relation between
the low-energy coupling constant g, and the pa-
rameters of the high-energy theory. It is valid,
however, only if m satisfies the constraints

M»m,
M~, M~)) m,

jjj»mj (gauge bosons of subgroup gj),
m» mz, m„(light fermions and Higgs bosons) .

Therefore, Eq. (6.12) cannot itself be used right
at each of those thresholds although it can be used
to leapfrog across the thresholds.

Finally, before closing out this section, it should
be pointed out that the Yukawa couplings, even when
they are present in the theory, do not contribute to
the I'„(gj). They cancel out in the I'~(gj). This is
as expected since even for low energies the re-
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normalization-group equation for g„at the one-
loop level, does not depend on Yukawa coupling
nor on quartic Higgs-boson self-couplings.

VII. X COUPLING

Then

a a
Zb= 1 ——-- (C+ In4w),

2

M '=M' 1+ + (C+ln4n)
b-a b —ar, 6 2

(7.3)

So far we have only looked at the couplings of
the unbroken subgroups g„g„g,. We now pro-
ceed with the study of the coupling gx, which in-
volves the emission and absorption of the massive
& gauge boson. Since proton decay involves such
emissions, the study is far from being academic.

Let us go back to our discussion of the minimal
renormalization scheme in Sec. IV and indicate
the changes that now are expected to occur. Equa-
tion (4. 16) for the X boson now reads

I'„'"(XP, g, M, n)

= -b(p'5„„-p,p„) —(b/o. )p„p„-fM'5, „
-&(P 5„„fi-P„P„f2)—iM 5„„fb, (7.1)

where

(7.4)

To do the finite external wave-function renor-
malization one temptation might be to subtract at
the physical mass of the X boson. Since the X
mass is of order 10"GeV the actual need for nor-
malizing the propagator residue at that energy is
not likely to occur soon. Instead it is more con-
venient to choose a normalization which connects
smoothly across gauge hierarchy thresholds, i.e.,
we choose to define

Z, (X Q, g„,M„, o.'„, 1i)=1+f,(Q, g„,M„, a„, p).
(7.5)

a af, = —+fi+ —(C+ In4m),

f,= —+f, + —(C+ In4m), (7.2)

fb = —+fb +—(C + ln4 n') .b

Here f„f„f, are finite functions of P, g, M, p,
with the property that as M» p, , p, f„f, at most
grow logarithmically with M, while M'f, in the
same limit is independent of p'.

For the application we require Z, for the argu-
ment p, g, M, n, p, which implies that we simply
read off the coefficient of -ip 6„„in the limit
where M» ii, p in Eq. (7.1).

With these preliminaries, we can now again
tabulate the graphs for I'„(X). The Higgs-boson
and fermion contributions to vacuum polarization
of X are identical to their contributions to g,
vacuum polarization. For brevity, therefore, we
have omitted them in our tabulation.

The contribution to Z, Z, (X) is

M

gauge + ghost

g " 10 10 M 83-C, (G) = ——ln —+-
16m' ' '

3& 3 p, 36

—
16 ~ [-C,(~)(-l)],

Mg

G;

1 + 'g~ 2g(
15 & ~fXabfXab (1 )2+ (1 )3" -8~

The last entry cornel from the emission and absorption of the subset of Higgs bosons belonging to the g&

subgroup whose masses are M, '=-i),M'. For example, in SU(5) the 24 Higgs bosons responsible for the
breaking of SU(5) into SU(3) x SU(2) x U(1) is itself broken up into the SU(3) octet y,'. , SU(2) triplet u&ba, U(1)
singlet o, plus the unphysical P, Goldstone bosons with mass identical to the X bosons. In this embedding

Xag X&
Xgg

if Q, =SU(n),

if g, = U(1) where SU(N) —SU(n) x SU(N -n) x U(1),N
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g 3 M 5
C~(G) -=+31n—--

16m' e p, 4 .'

g' 1 1 po 1 (1 1 M 1-&

, C, (G) =-- in —+- + C,(G)
~

=16»' ' 2e 2 p 4 ' '
&2e 2 p, 8), '

Or, all told, we find (p'= p=M„«M)

I's(X)=g-
6 „C,(G) —ln —— +-', g»+g T„(R) (--In +g T„(R)(-,)6 p, 72 ( 3 p.

+ gT(R) --in ' ~+gT(R)(-'),
&i

1+9 2't'» Q——f»„f», I ( )2+ (
31nq, summed over g, f gnat g3$ ~ ~ p

Xg)

where G has been broken down to gg ~ Q2~ Q3
X ~ ~ ~

Here we have ignored in the T~ contribution
terms of order ln(M/M„) as well as terms of order
1n(M„,/M+), ratios of masses in the Higgs-boson
multiplet having been assumed to be of order uni-
ty. Similarly, we have ignored the fine structure
in the heavy fermion sector (see the Appendix).

VIII. CONCLUSION

In this paper we have presented in some detail
the new renormalization program suitable for the
study of hierarchy in broken gauge theories.
Equation (6.12) summarizes the result of a mas-
sive program of manual calculation of SU(5) grand
unification graphs. By means of a well-defined
minimal subtraction scheme, spelled out in Sec.
IV, we have an analytic relation between the pa-
rameters of the high-energy theory [SU(5)-sym-
metric theory, for example] and those of the
broken low-energy theory in which only U(1)
x SU(3), is symmetric.

Applications of Eq. (6. 12) to SU(5) are done in
the Appendix. %e merely quote here the result of
that analysis. Vfith an input of

a,(m)=0. 2 at m=6 GeV

a(m) = 1/133.058,

M& ——85 GeV

the determination of the M„parameter gives 5.97
&& 10'~ GeV while sin'8(m) is 0.2139. These num-
bers are independent of the Higgs-boson and fer-
mion content of the theory. To get an estimate of
sin 8 (m ) (Ref. 31)would require knowledge of the
Higgs-boson and fermion content. Itis, however, in
any case highly encouraging that a two-state hier-

ar chy formula yields a much improved value of sin'8
so that the earlier largely pessimistic view of SU(5)
grand unification is no longer justified.

The value of the minimal renormalization pa-
rameter M„ is not strictly speaking the physical
value of M» ~ However, since at that energy g'/4n
is 0.048, the actual value of Mx is not significantly
different from M„.

The study of proton lifetime involves the question
of mass renormalization and will be deferred to a
later paper in this series. "

Note added in Proof. P. Binetruy and T. Schucker
[Report No. CERN TH-2857, 1980 (unpublished)]
have proposed an alternative two-step renormali-
zation procedure, which they have named the de-
coupling subtraction (DS) scheme.
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APPENDIXS3

In Eq. (6.7) we have applied the correct book-
keeping in separating the'Goldstone-boson con-
tributions from the physical Higgs boson. As a
result of that bookkeeping, T„'(R) depends on both
the subgroup 6, and on the representation.

An alternate bookkeeping turns out to be more
convenient. In the 't Hooft gauge, the Goldstone
bosons have mass M, identical to the heavy gauge-
boson mass. Recognizing this, we can restore
the Goldstone-boson contribution to T~ and obtain
the modified Eq. (6.7):
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I'e(g, )=g-, C, (g,)[- nn + (5s/3&3)]+ Cn(g, ) —ln -- + gT„(R) --ln
H

+ +T„(R)(1)+LT(R)( —)n
)

+ LT(R)('—)I. (A1)

In Eq. (A1) we have allowed for the inclusion of
mass differences within the Higgs-boson multiplet.
An example would make this clear. Let SU(5) be
broken down into SU(3) && SU(2) & U(1) by a 24-piet
(Pg), then with the decomposition

y =y'+V'2/15&'. (7 y'=(d' —v'3/10&'(x y' y'.

g, :T„(24)= —,
' with M„=mass of (p&

(A2)

(i,j=1,2, 3; a, b =4, 5)

+ —C, (g,) with M„=mass of M»,

T„(5)=— with M„=mass of H,
2

g, : T„(24)= —' with M„=mass of ~„'

+ —' C, (g, ) with M„=mass of M„,
T„(5)=-,' with M„=mass of H',

g, : T„(24)= —, C, (g~) with M„=mass of M»,
(A5)

T„(5)= -'(-,' ) with M„=mass of H'

+-,'(-,') with M„=mass of H'.
The advantage of Eq. (A1) is that if one is able

to ignore the fine structure in mass splittings with-

p~—= M(H )/M», pn=M(H )/M», (A6)

and separate it out from the symmetric T„(R).
Thus we find

isa' 16m'

g,'(m) g,'(m) no f~o
structure

16m 16m'

g, '(m) g, '(m) no fine
structure

——ln p3,
1 (A7)

(As)

16p2 16g2
2( )

——
n( )

——' ln p, ——ln p2) (A9)
gj m gg m

structure

in a multiplet, T„(R) does not depend on the sub-
group g& and numerical analysis becomes much
more convenient.

For applications to SU(5), the fine structure in
the heavy fermion multiplets may safely be ig-
nored, as can the fine structure in the split 24-
piet. The 5-piet, however, is expected, for
phenomenological reasons, to be badly split after
two hierarchy breakdowns when m is of order 6
GeV. For this we can single out the mass ratios

16m

g,.'(m) „.i- .
structure

16m', 2-2 M, 1
+ g co& —ln —' —— + c,[(10s/3~3) ——"]—QT„(R) -,'ln MH

g m H

-g~.(n)(--:)-Z~()(-:). )-gnn)(--;), (A10)

where in Eq . (A10) the TH (R) now is simply the sym-
metric unbroken T„(R) and M„refers to the aver-
age mass of the Higgs-boson multiplet.

Equation (A10) is valid for every range of m that
satisfies the constraints

M, »m,
M~, M~ &&m,

(A11)
m»m, (gauge bosons of subgroup g&),

m» m&, m„(light fermion and Higgs bosons).

Therefore, Eq. (A10) itself cannot be used at each
of the threshold regions (m -M „M„etc., or m

M», M», etc.).
For phenomenological applications, an appro-

e'(m) g, '(m) ' g, '(m) ' (A12)

where cot'OQ 3 if all fermions in the fundamen-
tal representation have the usual charge assign-
ments. Then

I

priate choice of rn might be -6 GeV which is well
below the 10-GeV threshold of the third generation
and at the same time is well above the end of the
second generation at 3.1 GeV. Equation (A10) can
thus be applied, in turn, to g, (m) and e(m), the re-
normalized gluon and electromagnetic charges,
respectively. For this we need to introduce the
SU(2) x U(1) mixing angle as it has been embedded
in G. Let

sin'8» —, ——(sin'8, c, —c,)[(10s/~3) ——]+g(c', sin'8n+ c', cos'8 —e', )
16»' 16»' 76 a. 2 a 2 a ~~ M, 1' e'(m g,' m

+ (-'+ —', sin 8n) (ln p3 —ln pn), (A13)
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while

sin'8 (m) = sin'80, , + c, cot~8,[(10s/g 3) —'6 ]+g cot'8, (c ', —c', ) —in —' ——c'(m} lcm' 22 Mg 1' lem' e'm

+ —,', cot'8, (ln p, - ln p, )
I
. (A14)

For SU(5), assigning the Higgs boson to a 5 and 24 representation, the first stage of hierarchy break-
down brings G down to SU(3) x SU(2) x U(1). This is the situation for m in the range (-10~ GeV» m
» 80 GeV). For m in this range then

Q~=u(1), c,=0, ci=5,
Q, =SU(2), c,=2, c,'=3, Mi=Mz,

93= SU(3), c,= 3, ci= 2.
(A15)

Our input data must necessarily involve low-energy data, however, and in that case, for m -6 Gev, there
will have been two stages of hierarchy breakdown,

G -U(1) xSU(2) x SU(3)-U(1) x SU(3),

9,= U(1), c1=0, 1c,=5, 2c,=0,
Q, =u(1) CSU(2), c,=0, c,'=3, c',.=2, Mg™»,M2™w, (A16)

9,= su(3), 1 2c3= 3~ c3= 2~ c3= 0 ~

With the input'

o.', (m)=-gs'(m)/4m=0. 2 at m -6 GeV,

o.' (m) -=e'(m)/4w = 1/133, 058,

M~ ——85 GeV, P3=10 3, p, =10 '2

we find

Mx= 5.97 &&10" GeV

sin' 8(m) = 0.213 9 at m - 6 GeV .
To get an idea of the variation of sin'8 as the

mass scale changes, we have used Eq. (A10} for
m -800 Gev, in a region where only the first
stage of hierarchy is important. Assuming the
number of light fermion generation remains at 3
even up to 800 GeV, we find

sin2 8(m) = 0.217 0 at m - 800 GeV

with

a (m) = 1/127. 978.

Equation (A10) cannot itself be directly used for
m -m~, so that we cannot give a rigorous value
for sin'8 at m&. However, based on our study at

I

m -6 vs m -10m~, it is fair to expect a 0.21 value
also for sin'8 at m~. This is then to be compared
with the sin'8 experimental value of 0.23+0.02.

Finally, we turn to our estimate for the SO(10)
hierarchy chain. If SO(10) is broken down in the
sequence

SO(10)—SU(5) —U(1) xSU(2) xSU(3) —U(1) x SU(3)

then, with c, [SO(10)]=16, we have

Q, =u(I), ci=0, c', =11, c', =5, c', =0,
92= U(1)'C SU(2), c,=0, c,=11i c', =3, em=2,

Q, =SU(3), c~=3, c,=11, ca=2, c3=0. (A17)

Equation (A13) immediately yields the result that
the low-energy inputs (a and n, ) do not determine
M1 while M, =- Mx is fixed to be the same value as
the SU(5) number given earlier. Constraints on

M, [the bosons responsible for SO(10) break down

into SU(5)]will have to come from proton lifetime,
and not from grand unification input.

On the other hand, if SO(10) is broken in the se-
quence

SO(10)—[SO(6)]x [SO(4)]—[U(1}x SU(3)] x [Su(2)]

—U(1) xSU(3),

we have (assuming sin'80= —' as usual)

9,= U(1) c so(e), 1c1=0p c1=8p

Q, =su(3) cso(e), 1c3= 3~ c3= 8~

92 = U(1)' C SU(2) C SO(4), c~ = 0, c2 = 12,

c', =8,
2
2 2~

2c,=5,

3c,=0,
3C2= 2

3c,=0.
(A18)
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By Eqs. (A12) and (A13), and using as input o.„
a, and sin'e(m) (assumed to be 0.23), we find, if
we ignore all fine structure,

M, = 1.091 x10" GeV,

M, = 2.861 x10' GeV,

masses which are potentially at the edge of the
allowed range according to proton stability re-
quirements.

In conclusion, we make two remarks on the un-
ification formulas Eqs. (A13) and (A14).

(i) They are valid for every range of m that sat-
isfies the constraints in Eq. (A11) and are inde
pendent of the Higgs-boson and fermion content of
the theory if one can ignore fine-structure effects.
The scale of hierarchy masses can be determined
independent of the ultimate asymptotic freedom of
the theory.

(ii) In using Eqs. (A13) and (A14) we have as-
sumed a linear hierarchy. This is clear from the
table in Eq. (A18). In this linear hierarchy the
U(1) embedded in SO(6) is not mixed with SU(2)
embedded in SO(4) until the third (and last) stage.
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