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Hamiltonian of the massive Yang-Mills theory
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The Schrodinger equation for a Yang-Mills massive field is written by using a physically useful formulation of the
Kemmer-DuAin-Petiau equation due to Sakata and Taketani. It is shown that the linear terms correspond to the
usual spin-1 equation, An interaction between the spin and the Yang-Mills field is obtained, even in the 'absence of
the electromagnetic field.

I. INTRODUCTION

It is known that the non-Abelian gang-Mills
system displays many similarities to its classical
version as was recently emphasized by Maciejko. '
It seems natural to investigate similarities be-
tween Yang-Mills and Kemmer equations for mas-
sive particles of spin 1. The procedure to be fol-
lowed was developed nearly forty years ago by
Sakata and Taketani, ' who used the Peierce decom-
position. This method was described recently by
Krajcik and Nieto, ' and earlier by Heitler. ' Sakata
and Taketani were able to obtain a physically use-
ful formulation of the Kemmer equation by separa-
ting out the (2s+1) && 2 components into one Schro-
dinger equation and a subsidiary condition. The
equation obtained by eliminating the redundant
components of the wave function exhibits the oc-
currence of charge operators, with the two ob-
servables of the charge +1, as well as the fact that
the Hamiltonian is essentially not Hermitian, a
fact that was also pointed out by Giambiagi and
Tiomno. ' Nevertheless, if the wave function is
normalized, then the resulting new Hamiltonian
will automatically become Hermitian. ' In a recent
publication of Okubo and Tosa, ' the Duffin-Kemmer
formulation of gauge theories was made by using
an approach different from the one used here.

In the present paper we shall use the procedure
of Sakata and Taketani to obtain the Hamiltonian
of the SU(2) Yang-Mills fields over Euclidean
four-space E4, for the sourceless case. The first
step is to write the Yang-Mills equations in the
form of the Kemmer equation, by introducing a
conveniently chosen mass term. The introduction
of the minimal electromagnetic coupling is stand-
ard. After some calculations the Schrodinger
equation is obtained. The Hamiltonian is found to
consist of the linear part that already appears in
the usual spin-1 formulation and, of course, a
nonlinear part that depends on some components
of the Yang-Mills field. To each term of the usual
electromagnetic interaction there corresponds a

term where the four-potential A„ is substituted by
the Yang-Mills field B~. We obtain, in this way,
a term containing the three-dimensional scalar
product of the spin-vector s and the spatial com-
ponents of the Yang-Mills field E;,,&f&,, (i,j,k=1, 2,
3), even in the absence of the electromagnetic
field.

II. FUNDAMENTAL RELATIONS

9„(f) „—imB =[B„,P „] (2)

for the sourceless case. If we introduce the wave
function 4 defined by

(~121 413) ~141 4231 ~24& ~34& 1 t 2 ) 31 4)

(3)

and 4' defined by

+'=([B,B ], [B~,B), [B~,B4], [B,B), [B,B~]

&[B., B,],IB„,e„l, [B„e,„l, [B„,e„1,[B„,e.„l)',
(4)

we can write the relations (1) and (2) as

(p,s„+m)4 =i% ',
where the matrices P„satisfy the relations

p. p.pi+ pA. p. = p. &:i+p~&.. ~

i4'' can be written as

iC ' = (B,P„-F)4',
where I" is a- 10 && 10 matrix defined by

0 0
I' =-i

0A,
(Sa)

with A. being given by

We shall consider the Yang-Mills field Q, „over
Euclidean four-space E4, given by

B„B„—BP —im(f)„„=[B,B,] .

The following equation is satisfied:
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r
4 12 413 ~14

-&23 -&24
A=

~13 423 ~34

414 ~24 ~34

In (7), B„commutes with P . Here B„repre-
sents a 10 && 10 matrix which has B„ in the princi-
pal diagonal, the other elements being null. There-
fore, in (7) each term of the sum B„p, is a 10 && 10
matrix whose nonzero elements are obtained by
substituting each i of P„by iB

Some well-known relations to be used in what
follows will be considered now. We have from (6)

Finally, the only column of F~ different from
zero is the tenth, and this one is given by

(11d)(0, 0, y„,0, y„,y„,0, 0, 0, 0)r.
It can be seen from (11) that F„F„F„and F»

contain the elements of the last four columns of
the matrix [Eqs. (8a) and (8b)].

If we use (5), (7), (10), and (11), we obtain

[p„(s, c„}+m]4=o, (12)

where

C„=B - I'

The introduction of the minimal electromagnetic
coupling is standard. We obtain

p 3=p„(p, =1, 2, 3, 4).

If we define q„q, and 7 by

n, =(2P, '-1), n=n11i21i3t 7'=P4',

we obtain

(9a)

(9b)

(P D„+m) tlt=0,

where

D = 8„—C„-i'
satisfies the commutation relations

(14)

T'=T, rp, =p,r, p, (i ~) =o—,

~(1 r)=(1 ~)r=O

as well as

p2r = (1-r)p2 (k =1,2, 3).

(9c)

(9d)

(9e)

and

[D„,D„]= -T „-2eF„„

[D., P„] = [C„,-P„]

(16)

We use also

P4n2 = n2P4, -
~'~k 4~5 &

q,.
2 = 1, q2P2' = P2' (without sum),

P4n = 1iP4t-
Tn —n7' 7 n7 -7

7'pp = p4 .

(9f)

(9g)

(9h)

(9j)

(9k)

T,„ is defined by

T„„=s„C. s„C, - [C„C,], (18)

and I",„ is the electromagnetic field.
In order to obtain the Hamiltonian from Eq. (14),

we shall proceed as follows. We multiply Eg. (14)
by P+„D„and use (17) to put D and D„ together.
We obtain

[p.p1p~ P~-pA(CA p~c.) ~™-e1D.]+=
(i9)

If we interchange p with v and use (16), we can
write (19) as

In Ref. 7 Eq. (2) has m' instead of im, so that
the matrices P~ are real.

We can write E„as
FC =P„F 4,

where I" are 10&& 10 matrices. In I", only the
seventh column is different from zero and this
column is given by

(412t413t414t t t t t t t (iia)

In I', only the eighth column has elements dif-
ferent from zero, , and is given by

($,2t 0, 0, $23t Q 24t 0, 0, 0, 0, 0) (11b)

(0, f13, 0, hatt 2„0, ttt 34, 0, 0, 0, 0) (iic)
In I, the column different from zero is the ninth:

[p,p1ppg, p„p),p„(T-,„+2eF,„)

—P,P„(C„P,—P C„)D, +mP„P„D„]tlt=0. (20)

If we add (19) and (20) and use (6) we obtain

I P,D,D. +Pg~, 2P.P, (CP.— P.c.)D. -
+2mp„p, D„p„p,p„(T„„+zeF„„)]e=0. (21)

We then can write

(-2mD„+ 2 [C„P,]D„—P„(T,„+ieF„1)
- 2P P ([C„,P„]D„-mD„)

p, p,p„(T„„+2eF.„))e=o (22).
With the help of (9a), (9b), and the antisymmetry

of T „and I" „, the expression for &~4 can be
written as
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2m(1 P,&)D, +2(1 P ')[C4(P D4+P»D») yp»C»D, —P»C~D»-P»(T», +ieF„)]
+P P~[2mD»+2P, C»D, —P, (T»+ieF», ) —2C»(P~D~+P, D, )])4'=0. (23)

U we multiply (14) by -2mP~, add the result to (23), and use (14) we obtain

~ ~ ~

ia-, -B,+E, —ieA4+mp, + (1-P4 ) C4+ P»—C4D, —P—»C»D, + P»—(T»4+ieF»4)
I 1 1

0e0 D——C, ——0CD, e 0(T, e(eD„) el3 0 D, I0 =0. (04)
1 1

III. SAKATA-TAKETANI METHOD

H =H~+H2,

where

H, =rHr+rH(1 —r)

and

(25)

(26a)

We shall now use the Sakata and Taketani meth-
od. A matrix H can be written as

We shall not consider the relation corresponding
to (26b), for it gives the development in time of
the components (1 —r)4' of 0', which are entirely
expressible by ~4, as we shall see. As was pointed
out by Heitler, ' an equation similar to (27) holds
for (v41 )~ and densities of the type (4tA4) can be
transformed into an expression containing v4' and

operators of the form vA7 only.
In order to eliminate the factor (1-r)4' from

(27) we shall use Eq. (14). We obtain
H, = (1 —T)Hr+ (1 —r)H(1 - ~) .

If we use (9) we see that

2' =0

yields

(26b)
(1-r)4' = ——(1 —T)P (8, -B —ieA )4I)

1

——(1 )P,FP .1
(28)

II,4 =0,

so that from (24) we obtain

r( is, —B-4+F4 —ieA4+P~P»D»+mP4)r414

+r(E, +P,P„D,)(1 r)e =0.-(27)

The last term of (28) can be written as (i/m)Hr4,
where H is a 10 ~ 10 matrix. The only rom of H
different from zero is the tenth which is given by

(0, 0, 0, 0, 0, 0, y„,y„,y„,O).

If we insert (28) into (27) we obtain

2 is, —B-4+F~ —ieA~ P+~P»D»+ mP~ — rF,P»(B—» —B» —ieA, ) +—TF~H ——P4P, (s, —B,—ieA, )P, (B,—B» —ieA»)
1 . i 1

P,P,F,P (s, -B—
»

—ieA»)+ —P,P, ( BB, —ieA, )H+ P4P, F,H T+ =—0. (29)

Some simplifications can be made in (29). As B„A», and B„commute with r, we can write

P4P»D»'~ = P4P»F»'~ .
We also have

E4&4 =0, zI'~ =I ~ .
As

P4P, F, (1 —&) = o,
we have

1
P,P,F,P, (s, ieA—,—-B,)re = 0. -

The last term of (29) is null because only the last row of H has elements different from zero, whereas
all the elements of the last column of P,F, are null.

With these simplifications (29) is reduced to
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1 . . 1
i-8, —B4 —ieA~+ mP, ——P4P, P»(8, -B, —ieA, ) (8» B-» —ieA») ——E4P» (8» -B» —ieA„)

Z z
+—&++p,p»F, + —p,p, (8, -B, -ieA, )a re =0. (30)

If we define the quantity S, by

zs, =c„,p,p, ,

we have

p.p, p,p,. = q(S,.S,+S,S,.),
p~'QS)' = —p4» (-q+ "I&) ~

p,pg' = p, a(1 + n)) .
%e can write

——p,p, p, (8, B, —i—eA, )(8„-B„-ieA„)=-—p, )~
(8, —B,)(8, -B,)

P,(1+R)&~„,S~[(8 B)(8-, B,) —-(8, B)( 8„-- B)»]

P,@[ST—;(8, B,)(8 —-B )1,1 (31)

where

aq
—eq —ieAq-.

If we compare (30) and (31) with the formula
(4.17) indicated by Krajcik and Nieto, ' we see that
the last four terms of (30) are entirely of nonlin-
ear origin. The five remaining terms of (30) are
analogous to the terms of the above-mentioned re-
lation (4.17) with one difference: Instead of the
electromagnetic four-potential we have the sum

ieA„+B~. We obtain in Eqs. (30) and (31) a term
of the form

Z

P (I+&)~s»A&»r

which gives an interaction of the spin S& with the
Yang-Mills P„even in the absence of the electro-
magnetic field. The nonlinear terms of (30) de-
pend on P«, P», B», and B4.
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