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On the calculation of phase shifts produced by complex potentials
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A formula for the complex phase shift, pertaining to the one-turning-point scattering problem with a complex
potential, is given in. a general form based on a kind of arbitrary-order phase-integral approximation. The accuracy
of the formula is illustrated by application to a real Coulomb potential supplemented by an imaginary potential term
proportional to 1/r'. For that case the arbitrary-order phase-integral expression for the complex phase shift is

evaluated in a closed, analytical form, which displays the simplicity and accuracy of the higher-order corrections.

I. INTRODUCTION

Complex potentials are extensively used in scat-
tering theory to describe inelastic, absorptive
processes, for instance in molecular-beam exper-
iments (see Ref. 1 and references given therein)
and in heavy-ion collision theory. ' In the exten-
sive literature on singular potentials, many au-
thors have in recent years considered complex
coupling constants. ~' Since the wavelength asso-
ciated with the relative motion of the colliding par-
ticles is in many cases small compared to the di-
mensions of the region in which the interaction is
appreciable, the conditions are favorable for the
use of semiclassical methods for the calculation
of phase shifts.

The justification of the extension of the JWKB
expression for the phase shift to the case of com-
plex potentials is, in the literature, usually taken
for granted, and generalized formulas are merely
written down. In the case of weak absorption, the
complex phase shift is often expanded with respect
to the absor ptive, imaginary part of the potential,
and only the linear term is retained, which yields,
of course, a strongly oversimplified picture of the
phenomena involved. In the review article by
Koeling and Malfliet, 3 the generalization of the
JWKB formul~. a for the phase shift to allow for com-
plex potentials is discussed on the basis of Feyn-
man's path-integral method, and in Ref. 11 the
phase shift for the case of inverse-power, singular
potentials with complex coupling constant, is de-
rived along the same lines followed by Goldberger
and%'atson in the derivation of the JWKB phase
shift for real potentials.

While a merit of the semiclassical treatment of
absorptive processes is that it provides necessary
physical insight, such a treatment often yields
only a qualitative description and is hence too
crude. In heavy-ion collision theory, the possibil-
ity of improving the accuracy by including higher-
order correctioris to the complex phase shift has
been considered occasionally but not systematical-

ly. A correction to the semiclassical phase shift
was derived by Malfliet (see pp. 10-12 in Ref. 4)
who, neglecting the imaginary part of the poten-
tial, arrived at the same correction as obtained by
Rosen and Yennie'3 by a different approach.

In the present paper, attention is drawn to the
fact that the phase -integral method developed by
N. Froman and P. 0. Froman is applicable to the
case of complex potentials also. For a general
background of the method we refer to Refs. 14-17
and pp. 126-131 in Ref. 18. A detailed documen-
tation of the advantages of the higher-order phase-
integral approximations used in the method versus
the usual higher-order JWKB approximations is
given in Ref. 19. Assuming that there is only one
complex turning point to be taken into account, we
derive in Sec. II the arbitrary-order phase-inte-
gral formula for the complex phase shift.

In Sec. III we illustrate the role of an absorptive
potential by considering a real Coulomb potential
supplemented by an imaginary potential term pro-
portional to 1/r . The integrals occurring in the
phase-shift formula can then be evaluated analyti-
cally. The resultant closed analytical expression
for the complex phase shift displays the simplicity
of the higher-order corrections. The great in-
crease in accuracy obtainable when higher-order
approximations are used is illustrated numerically,
and the inherent property of the approximations to
break down at very high orders is shown as well.

II. ARBITRARY-ORDER PHASE-INTEGRAL
FORMULA FOR THE PHASE SHIFT FOR THE CASE

%HEN THERE IS ONE TURNING POINT TO BE
TAKEN INTO ACCOUNT

Using standard notations, we write the radial
Schrodinger equation as

(la)

with
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Q (I; r) = k —
@2

V(r)—
2m I(l + 1)

(1b)

Q,~ (I; r) =Q (I; r)—

2m (I + —,')'=k —
2 V(r}—I2

For the phase-integral approximation of the order
2N+1, we have

N

q(l;r)=Q „(l;r)QF,„,
n=p

where the first few functions Y2„are

Yp ——1,
Y2 = pEp,

Y4 — 86p +a term which contributes to

(5a)

(5b)

where the potential V(r) may be complex. If cer-
tain conditions are fulfilled (see, e.g. , Chap. 11 in
Ref. 14), the boundary condition u(0) =0 selects a
solution u, (r) of the differential equation (1a) and
(Ib), which is unique except for an arbitra, ry con-
stant factor. We shall here include the case of a-
potential with a Coulombic behavior when ~ -~.
If the Coulomb term in the right-hand member of
(1b} is -2k'/r, the solution u, (r) is (except for a
constant factor) represented by the asymptotic for-
mula (see, e.g. , Chap. III, subsec. 6 in Ref. 20)

u, (r) -sinIkr —q ln(2kr) ——,'iv+6, ],
where 6, is the phase shift. For the case of a po-
tential, which tends to zero faster than 1/r when
r -~, the term -q ln(2kr) in (2) should merely be
omitted.

We shall choose the function Q,d, introduced
in Ref. 17 and on pp. 126-131 in Ref. 18, such that
the phase-integral approximations are valid also
when ~ tends to zero, which is achieved if we set

126-131 in Ref. 18, the formula for the phase shift
pertaining to a real potential a'nd a one-turning-
point scattering problem is readily obtained in any
order of approximation. It is a straightforward
procedure to generalize the derivation of the con-
nection formula in question to apply to that case
in which one is dealing with a complex transition
point and is making a connection from a certain
Stokes's line emerging from that transition point
to the anti-Stokes's line which continues the
Stokes's line on the other side of the transition
point [see Eq. (5.16) and Sec. 10 in Ref. 23]„With
the aid of this connection formula, the general
arbitrary-order phase-shift formula applying to a
complex potential and to the case in which only one
complex turning point xp is to be taken into account
can be obtained as follows. The behavior of the
wave function u, (r) in the vicinity of r =0 deter-
mines (except for a, constant factor) the pha, se-in-
tegral expression for u, (r} on a Stokes's line
emerging from xp and passing close to the origin.
Hence, according to the above-mentioned general-
ized connection formula, i.e. , Eq. (5.16) in Ref.
23, the phase-integral expression for u, (r) on the
anti-Stokes's line that continues the Stokes's line
on the other side of the transition point s~p becomes

I

s,(r)=q~~sq ~~s();q)sis —' f q(); r)s)r+-,'s
r

(7)

apart from a constant factor. ' In the limit r =~',
the contour I' is an infinite, nonclosed loop starting
at +~ -i0, encircling in the negative Sense the
complex zero ro of Q,~2(l; r), and ending at
+~+ i0, ah shown schematically in Fig. 1.

Comparing (7) and (2), we obtain the following
approximate formula for the phase shrift:

5, = lim —,
' q(l; r )dr —kr

r~~ Z'

with

u, (r) for finite values of r but does not

contribute to the complex phase shift,

(5c)

+ q ln(2kr) + —,'(l + —,')v

Cornptex r plane

(8)

Q'-Q .'
6p= 2

Q ~
1 5~/dQmss( 4Q 2 d Q mod

16Q m~6 ( dx ' dx2

(6)

Explicit expressions for Y2„up to Y8 are given in
Ref. 21 and up to Y2p in Ref. 22.

With the aid of the connection formula given by
Eq. (21) in Ref. 16, and with due regard to the
generalization described in Ref. 17 and on pp.

FIG. 1. Schematic drawing of the pnth of integration
I' encircling the complex zero t'p of Q~~d (l; x). The point
~p lies in the fourth quadrant since Vt(r) contains a nega-
tive imaginary part, The heavy line emerging from wp

indicates a cut. The phase of q is chosen such that q
k(&0) when x +~+i 0.



ON THE CALCULATION OF PHASE SHIFTS PRODUCED BY.. .

For N =0 [and with the term q ln(2kr) omitted], we
recognize (8) as the usual first-order JWKB ex-
pression for the phase shift [see, e.g. , Eq. (11.45}
in Ref. 14], the extension of which, to the case of
complex potentials, usually is taken for granted
without justification in the literature.

IH. APPLICATION OF THE FORMULA FOR THE
PHASE SHIFT TO A PARTICULAR POTENTIAL

To illustrate the role of an absorptive potential,
Broglia. et al.' considered the special case of a
particle moving in a purely imagi. nary potential
corresponding to V(r) = —ib82/(2mr ) in (1b}. The
Schrodinger equation for this case can be solved
analytically in terms of Bessel. functions of com-
plex order, and the complex phase shift can be ob-
tained from the asymptotic form of the solution.
Just as in the case of a real potential proportional
to 1/r2, already the first-order JWKB formula
yields the complex phase shift exactly, and hence
the potential in question is not useful for our pres-
ent purpose of studying the accuracy, in succes-

sive orders of approximation, of the phase-inte-
gral expression for the complex phase shift.

For the purpose of studying the effect of the
higher-order corrections to the phase shift, we
shall consider a real, repulsive Coulomb poten-
tial, supplemented by the above-mentioned imag-
inary potential. For this model. , the radia1.
Schrodinger equation (la) and (1b) becomes

d2u
2 2k' l(l + 1) —ib

, + k'--
dy' ' y r u=o,

and it is a straightforward procedure to calculate
the function q(l; r} in (8) with the aid of Eqs. (4)-
(6). The evaluation of the integral over I' in (8) is
also straightforward but tedious. Therefore,
without entering into any details, we give only the
resulting phase-integral expression for the com-
plex phase shift in the (2N + 1)th-order approxima-
tion, which can be written as

g (fn+$) (10)
n=P

where

TABLE I. Phase shifts for states with l=1 in the complex potential V{r)=S (2k'/r- ib/r2)/(2m), where q and b are
dimensionless parameters. The phase-integral values are obtained from formula (10) with (10a) and {10b), and the ex-
act values are obtained from formula (12). For b=0.25, a few values obtained in very high orders of approximation
(23, 25, 27, 61) are given to illustrate the approach to optimal order, subsequent deterioration, and final breakdown of
the phase-integral approximations.

Order of
b approximation

q=0.5
Real part Imag. part

1
Real part Imag. part Imag. part

0.25 1
3
5
7
9

11
13
23
25
27
61

exact
1
3
5
7
9

11
13

exact
1
3
5
7
9

11
13

exact

0.210
0.217 8
0.217 27
0.217 34
0.217 822
0.217 325 95
0.217 329
0.217 34
0.216 4
0.225

~ ~ ~

0.217 325 90
0.178
0.185 1
0.184 76
0.184 795
0.184 787
0.184 791
0.184 785
0.184 788 99

-0.165
-0.16305
-0.162 99
-0.163 003
-0.163 000 4
-0.163 000 77
-0.163 0010
-0.163 000 79

0.104 0
0.104 81
0.104 72
0.104 741
0.104 736 0
0.104 735 7
0.104 740
0.105 2
0.101
0.12

~ ~ ~

0.104 736 76
0.410
0.413 2
0.412 96
0.413 01
0.412 996
0.413 001
0.413 000 30
0.413 000 23
1.438
1.441 9
1.441 745
1.441 749 9
1.441 751 6
1.441 750 5
1.441 751 1
1.441 750 87

0.47
0.482 9
0.48247
0.482 476
0.482 483
0.482479 7
0.482 479 6
0.482 46
0.482 40
0.483 1

~ ~ ~

0.482 480 4
0.45
0.4642
0.463 79
0.463 808 9
0.468 809 0
0.463 807
0.463 810
0.463 808 1
0 .232
0.237 19
0.287 184
0.237 178
0.237 1794
0.237 178 8
0.237 179 3
0.237 179 0

0.081 9
0.082 84
0.082 799
0.082 796
0.082 799
0.082 798 4
0.082 797 5
0.082 82
0.082 6
0.088 2

~ ~ ~

0.082 798 3
0.325
0.328 7
0.328 585
0.328 581
0.828 589
0.828 585-
0.328 585 7
0.328 586 3
1.199
1.205 6
1.205 83
1.205 347
1.205 343 1
1.205 344 6
1.205 843 7
'1.205 344 1

3.626
3.63543
3.685 444 6
3.635 444 51
3.635444 489
3.635444487 2
3.635 444 487 096
3.635444487 106 8
3.635444487 106 6
3.635444487 106 21
3.685 443 9
3.635444487 106 17
3.625
3.63436
3.634 877 0
3.684 376 78
8.634 876 757
3.634 376 755 8
3.634 87.6 755 14
3.634 376 755 18
3.609
3.617484 1
3.617484 3
3.617483 58
3.617483 497
3.617483498 7
3.617483499 84
3.617483 499 88

0.029 9
0.030 022
0.030 024 06
0.030 024 100 4
0.030 024 1012
0.030 024 10105
0.030 024 101006
0.080 024 100 995 74
0.030 024 100 995 90
0.080 024 100 99591
0.030 024 4
0.030 024 100 995 71
0.1196
0.120 06
0.120 071 7
0.120 071 903
0.120 071 905
0.120 071 904 2
0.120 071 904 04
0.120 071 904 00
0.477
0.478 72
0.478 747 5
0.478 747 71
0.478 747 669
0.478 747 662 9
0.478 747 662 9
0.478 747 663 19
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bI ' =sr(l + —,
' -[(l + i) —ib]' ] —tl+-,'if[(l + a} -ib] —it)}ln/[(l +-,')' -ib]' ' -ir[].

--,'if [(l +-,')' —ib]' "+ iq] in[[(f + -,')' —ib]' "+iq], (10a)

(10b)

and B2„are the Bernouilli numbers. '
Since Eq. (9) has the form of a Coulomb wave

equation with a complex angular momentum quan-
tum number (see, e.g. , Eq. (14.1.1) in Ref. 24
with p=kr and L = ——,'+[(l+ —,')i —ib]'~ ), we can
easily obtain a formula for the exact wave function
and hence for the exact phase shift. Using Eqs.
(14.1.3) and (13.5.1) in Ref. 24, we thus obtain, for
large values of r, the asymptotic formula for the
regular solution ut(r),

u, (r)-sin(kr —i)ln(tkv)+m ——,'w[(l+-') -ib]'i
r (-,'+[(1+-,')' -ib]'" -ir])" "r(-,'+[(l +-,')' -ib]'"+it})

apart from a constant factor. Compa, ring (11)and

(2}, we obtain the exact value of the complex phase
shift

(5)}.. t 2vff + 2 [(f + 2)' -ib]' ")
, &(-.'+[(f+-.')'-ib]'"-iq)

1'(-, y[(f + —,)i —ib]'~i y ii])
(12)

It is immediately seen that for g =0 the phase-
integral expression (10) with (10a) and (10b) for

the phase shift becomes identical with the exact
expression (12).

For given values of g and b a numerical compar-
ison between the exact formula (12) and the phase-
integral formula (10) with (10a) and (10b) shows
that the accuracy of the phase-integral values of
6, increases as l increases. In Table I it is illus-
trated that already for l =1 a very high accuracy
is obtainable, when higher-order phase-integral
approximations are used. However, if we go be-
yond an optimal order, the approximation deteri-
orates and eventually breaks down for sufficiently
high orders of approximation. The optimal order
of approximation becomes higher with increasing
values of q and /. In practice one hardly ever goes
to such high orders, and for romany practical pur-
poses it is sufficient to use the formula for 5, in
the first-order approximation, but even then the
first few higher-order approximations are useful,
since they give information about the error in-
volved.
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