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Massless, half-integer-spin fields in de Sitter space
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Gauge-invariant wave equations are obtained for massless fields in de Sitter space, with arbitrary, half-integer spin.
Massless quanta with spins s = 1/2, 3/2, ... carry a series of unitary, irreducible representations of the de Sitter
group. The special gauge fields carry another series of unitary, irreducible representations, hence ghost fields as well

as the Goldstone and the associated special gauge field are actually massive in de Sitter space. Fields (properly:
potentials) do not admit chirality for spins other than 1/2, but the field strengths associated with spin 3/2 do admit,
duality.

I. INTRODUCTION AND SUMMARY

Our motivation for investigating massless fields
in de Sitter space has been given in Ref. 1. The
case of half-integral spins, presented here, is a
necessary step in our study of the role of single-
tons as elementary constituents of massless
fields. " However, in summarizing our results
we shall emphasize those features that may be of
wider interest, especially to supergravity.

To begin with, we stress once again that no am-
biguity exists concerning the meaning of massless-
ness in de Sitter space. The main point is that
gauge invariance is associated with a unique repre-
sentation of the de Sitter group, for each spin ~1.
This was shown earlier in the case of integer
spins. ' Deser and Zumino' pointed out that the
spin--,' field of de Sitter supergravity "has the
number of degrees of freedom appropriate to the
massless case," without identifying the represen-
tation that is involved. The representations asso-
ciated with elementary particles will be denoted
D(Eo, s), where E, is the lowest energy (in some
very small. units) and s is the spin. Here is a
list of the most important cases:

D(Eo, s) with Eo&s + 1, massive fields,
D(s+1,s), massless fields (Sec. II),
D(s + 3,s), special gauge fields (Sec. II),
D(-,', 0) and D(l, —,'), singletons (Ref. 2).

In particular, D(-', , —,) is the spin--,' field of
supergravity; D(2, 2) is the associated special
gauge field. It is remarkable that the two inequi-
valent representations, namely the neutrino D(—'„
-', ) and the special gauge field D(-',

2 ), become de-
generate in the limit of vanishing curvature. In
general, in de Sitter space, the gauge parameter
field is not massless, an interesting fact that may
alleviate infrared difficulties and that may also be
of some significance for quantization. In flat
space the various ghost fields (i.e., lt fields and
Faddeev-Popov ghosts) that form a part of the
new quantization schemes for gauge fields are

themselves massless, and one wonders whether
this necessitates the introduction of second-gen-
eration ghosts. In de Sitter space that problem
does not arise. [The identification of D(3, 0) with
the spinless Goldstone field was first made by
Castell. Quantization of high-spin fields was
discussed in Refs. 5 and 6.]

Gauge-invariant field equations for half-integral
spins are obtained in Sec. , III, in a five-dixnension-
al notation that stresses both the group-theoretical
meaning and the formal similarity with the flat-
space wave equations. The propagator is calcu-
lated in the Feynman gauge in Sec. IV. Interac-
tions with fixed, external sources are studied in
Sec. V, where it is proved that only the physical
quanta associated with D(s + 1,s) propagate
("helicity theorem"). All this work was carried
out in the five-dimensional notation, which makes
comparison with the usual covariant formulation
difficult.

In Secs. VI and VII we transform our results to
intrinsic notation, in terms of covariant deriva-
tives and vierbein fields. The relationship be-
tween the five-dimensional spinor-tensors k ... of
Secs II-IV and the usual Rarita-Schwinger spinor-
tensors k, ... is given by (Sec. VI)

Here (y ) are the differential coefficients of the
embedding map of de Sitter space into pseudo-
Euclidean five-space and M(x) is a 4-by-4 ma-
trix. This matrix must be so chosen that a rec-
ognizable form of spinor calculus in curved space
is obtained. The wave equation for D(E„',), which-
in five-dimensional notation is"

(K Eo+ -)k =0- (1.2)

[tt is the Dirac operator, see Eq. (2.1)] is reduced
to

(1.3)

where p is the curvature. Comparison with the
work of Zumino' shows that the Volkov-Akulov
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field in de Sitter space is associated with D(—,,—,),
as expected. Hence we confirm the identification
of this field with the special gauge field D(—'„—,')
and with the gauge parameter of spin- —,

' massless
fields.

Chirality is a concept that can be defined in de-
Sitter space, but curvature makes a difference.
The chirality operator may be defined as an in-
volution that flips the parity, or equivalently as an

operator the eigenspaces of which carry irreduci-
ble representations of the conformal group SO(4,
2). We say that a field admits ehirality if the
chirality operator exists and acts locally on the
field. In Qat space massless fields are chiral only
if the spin is half-integral; then the chirality opera-
tor is the constant matrix y, . (In the present con-
text what we mean by fields should more properly
be called potentials. ) For spins 1 and 2 chirality
is usually called duality and is admitted by the
field strengths of electromagnetism (but not by
the potentials) and by the curvature tensor of gra-
vitation (but not by the metric tensor). In de Sitter
space the situation is quite the same as far as the
integer-spin case is concerned, but very different
for half-integral spins. Among the representa-
tions D(Eo,s) only one, D(—,', —,'), has the property
that the associated field admits chirality. The
chirality operator is,"in the notation of Sec. II,

p = p'"y.r,y,y.P -(P=-y. y )

Transformed to conventional notation this becomes
the matrix y, . The operator P anticommutes with
v+ 2, and y, antieommutes with P, so one sees
either from (1.2) or (1.3) that the field associated
with D(E„s) admits chirality only if E,= —,. But
D(—,', n+-,') is unitary only if n= 0; hence no fields
(properly speaking, no potentials) with spin higher
than & admit chirality. It is noteworthy that the
case of spin=2 field strengths is the first one in
which the related concepts of chirality and duality
occur together, and that in this case they coincide
for free fields: E 8

= PF ~. (A more complete
discussion of chirality and duality in supergravity
was given by Deser, Kay, and Stelle.")

At least three important problems are left for
future study: (i) indefinite -metric quantization of
massless fields, (ii) Higgs-Kibble mechanism,
(iii) certain anomalies connected with the role of
chirality projection operators" in weak-interac-
tion phenomenology.

II. THE "MASSLESS" REPRESENTATIONS

angular momentum, and the oovering group of
O(2) is the group of time translations. Any ir-
reducible representation that can be associated
with an elementary particle is characterized by
an extremal weight (E„s), where E, is the lowest
eigenvalue of the energy and s is the angular mo-
mentum of the ground state. " Here we are inter-

- ested in spins s =n+-„n =positive integer, ; the
case n= 0 has been investigated previously. "

The representation D(Eo, s) may be constructed
by reduction of the tensor product D(E„—,') SD(n),
where D(n) is a finite-dimensional representation.
Although D(n) is not unitary for no 0, D(E„s) is
unitary for Eo&s+1. The representation D(n) is
the irreducible component with highest weight con-
tained in the nth tensor power of the five-dimen-
sional vectorial representation.

The carrier for D(E„-,') is a spinor field p sat-
isfying Dirac's wave equation'"

(~ E,+,')y =0,
g=-2iZ., y a, =N gf, -N= ya- (2. 1)

- The carrier for D(Eo, s) is therefore a spinor-ten-
sor k of rank n that satisfies the above wave equa-
tion and all covariant subsidiary conditions:

(tc Eo+ ', )k-, ... —=0, (2.2)

y 'k= g 'k= 0, k'=- y 'k= 0. (2.3)

If Ep w s + 1, then the solutions of these equations
carry the irreducible representation D(E»s).
(More details are given in the Appendix. )

The limiting case Eo=s+1 is of special interest.
Because this is the lowest vaLue of E, for which
D(E„s) is unitary, the limit of D(E»s) as E,-s + 1 from above is reducible:

a= Z,ay+ Z,yn+Z, yx, (2.5)

where &f&, q, X are symmetric spinor tensors of
rank n -1. Substituting (2.5) into (2.2) and (2.3)
we find that P=q= X=O, unless E,=s+1, in
which case g and X can be expressed in terms of
P and (2. 5) can be written

lim D(E„s) = D(s + 1, s) g D (s + 2, s —1) .
(2.4)

(The limit. is, with respect to the usual topology,
in terms of matrix coefficient on K-finite vec-
tors. ) The fact that the ciitieal point is at Eo=s
+1 may be seen easily as follows.

Consider special fields of the form

The group of motions of de Sitter space is the
universal covering of the connected part of
SO(3, 2). The compact subgroup of SO(3, 2) is
SO(3) O(2); the first factor is associated with

&=z,(~,/+yes-')g,

g~=—g+y 'y(n —2 -N) .

The field $ is of rank n —1 and must satisfy

(2.6)

(2.7)
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as well as

8 ~ ~=0, (~-n+1)g=o.

(2 ~ 8)

(2.9)

Such solutions, of the form (2.6), form an invar-
iant subspace 'U, of a space 'U of solutions of (2.2)
and (2. 3), and (2.8) and (2.9) show that 'Uo carries
the representation D(s + a, s -1). The representa-
tion by (2.2) and (2.3) is nondecomposable and
D(s + 1,s) is carried by the quotient space 'U/w, .

The quotient space w/Z, is the space of physical
states. Fields of the form (2.6) with g satisfying
(2.8) and (2.9) will be called "special gauge
fields. " The analogy with massless fields in
Minkowski space is very close, and justifies re-
ferring to D(s + l, s) as a "massless representa-
tion' and to the associated field k as a "massless
field. ' [Additional justification comes from the
fact that these representations may be extended to
unitary representations of the conformal group
so(4, 2)."]

(Notation: (r )=(i,r, r, r, r'), r'=(-i, r, r,
r, r~}, and p z

—(i/4)(y rz —

year

). The anticom-
mutation relations take the form y y~ + y~y
=2g ~. The diagonal metric is 5"=555=1, 5"
= 523 = 5"= -1. The tilde on g and g means that,
e.g. , g= r y; however, it will usually be omitted
since the presence of a tilde on y can be inferred
from its position in the formula. The operator g~
defined in (2. 7) is convenient. Useful formulas
are

dy 5 y —p
' k ~k+nk' ~k'-4'n n —1 k" ~k"

-n(k'8 k-8 kk')

+-',n(n -1}(k"8~ k'-8 k'k")].

Vf(, +8, /= an, [s„y']=0,

[8„11= [A, yl = rr = r-~/&. -

The weight diagram of D(s + 1,s) is given in the
Appendix. )

III. GAUGE-INVARIANT WAVE EQUATIONS

Lk=0, L=BLO, (3.1)

Lok -=frk —Z~srk', (3.2)

Bk =—k —2Zxy~k' —2Z25~k", (3.3)

r, = r-~/f, 6r-=6-~yh'- (3.4)

The operator L is symmetric with respect to the
indefinite inner product fdy 5(y' —p ') kk, k
=- ktrog, and (3.1) can be derived from the follow-
ing Lagrangian:

The analogy with Minkowski space' suggests the
following ansatz for gauge-invariant wave equations
in de Sitter space:

The field k is symmetric and satisfies

y 'k=0, k~'=0'

(3.6)

(3.6)

and of course the variation of is made with due
regard to these restrictions.

Equation (3.1) is satisfied identically by every
field k of the type (2. 6), provided only that the
"gauge parameter" $ satisfies (2. 8). We call such
fields "general gauge fields" (or simply "gauge
fields" ) in contrast with the special gauge fields
that are subject to (2.9) as well. Note that the
general gauge fields satisfy (3.6); hence the La-
grangian and the field equations are gauge invar-
iant. '

When n= 1 the field strengths

F ~
= g~ kg —gz~k (3.7)

are transverse, y E ~
= 0, and gauge invariant.

We have

(Lok)q ——r F 8,
(Lkf = r F --,'r rr"r F~„

'. (r 6'"-r"6"-+r', r r"-r', & "}F

(z/2) &I
~

a815
y PF

(3.s)

(3.9)

As pointed out in Sec. I, the field k cannot be
chiral. E is apparently possible, however, for E
to be self-dual. .Equation (3.9) shows that

F '~ -=(ip'~'/2)e"""y „F„ (3.11)

satisfies the same field equation as E; hence the
self-dual and anti-self-dual combinations E,+ E ~

also solve the field equations. One may show that
F 8 = PF 8 for free fields. (An analogous relation
for s &-', is not known. }

(All the operators defined above: L, L„Bhave
the property that they preserve transversality;
e.g., y k=0 implies that y (Lk)=0. Also [B,g]k
vanishes if k is transverse. Again, for transverse
fields,

8, k=8 k, (g,k)'=aa k-g, k',

(L,k)'=28 k-28,k'-z, g,k".)

The last step is an identity (see the Appendix).
The spin=', chirality operator is"s"

(3.10)
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IV. THE PROPAGATOR G =A/P' (4.9)

Adding an interaction term -kt -tk, where t is a
fixed external source subject to

y 't=0 t"=0, (4. 1)

4g t=0, (4.3)

where 0 is the traceless projection operator for
spinor-tensors of rank n —1. This condition en-
sures that the expanded Lagrangian is gauge in-
variant,

&e look for a solution of (4.2) of the form

to the Lagrangian density, leads to the field equa-
tion

(4.2)

Because I. annihilates the gauge fields, and L is
symmetric, the traceless part of d (Lk) vanishes
identically. Self -consistency therefore requires
the conservation law

is the propagator of the k field in what may be
called "the Feynman gauge, " since A is a first-
order differential operator.

(The operators L ~ have the form

L qk. ..=i(y Bq y()d-)k...+Z Bk...
(4. 10)+ fZ, (5.k,...—5,k....),

where 6 is the "vector" with components (5 }~
= 5 ~. An explicit expression for Q is given by

(( Q) —Q)k= [(n —2 -N)(n+ 2+N) +y'(I'+gg]k

+ 2Z~ y 8 ' k+ Z~yk'+ 2Z, 5k».)

V. HELICITY THEOREM
(4. 11)

t (h, )=f d) )())'- p )('t h+ , t)), (5.1)

Let t=t, +t„where suppt, and suppt, are dis-
joint. The one-particle exchange amplitude is

h=A(P )t, P = p'((Q) -Q-),

The operator Q is the Casimir operator

(4.4) where h, is the field produced by t, :
h, = (A/P')t, + (gauge field) . (5.2)

Q=21 (4.5)

where (L~), c(, P=0, 1,2, 3, 5 are the generators
of SO(3, 2} and ( Q) is the eigenvalue of Q asso-
ciated with the representation D(s + l, s), namely
( Q) = 2s' —2. Hence P' is an analog of the Klein-
Gordon operator on Minkowski space. It is also
related to the covariant Klein-Gordon operator
introduced by Lichnerowicz" (here specialized to a
space of constant curvature but generalized to
spinor-tensors of arbitrary rank). The operator
A/P' is related to the I ichnerowicz propagator.
In our case the existence of a causal inverse of I"
follows from the fact that Q is the Casimir opera-
tor with eigenvalue ( Q) in a unitary representa-
tion. ' %e find, as in the flat case, '~ that P' can be
factored in the sense that

Let )I) be any field satisfying y ' g= p
'"= 0; having

the same support as t,. Then t, (h, ) is unaffected
when we replace t, by

t, =t~+Lg, (5.3)

for the new contribution to h, is

(A/P')L(t = (AL/P')(I)

= ())+ (I/P')(gauge field), by (4.6) .
(5.4)

The first term vanishes on supp t, and the second
term is a gauge field; hence neither contributes to
t, (h,).

Next, we show that g can be so chosen that tf = 0.
The condition is

P k=1. k+k, (4. 5) 28 ~ ()') -2' $' —Z, gr (» —(I/n)t,' = 0, (5 ~ 5)
where k is a gauge field. Therefore, if we define
the Dirac operator A by

A= J,a'', (4. 7)

then (AL P')k is a gauge -field. Since I, =&LO is
symmetric, so is A, and thus we conclude that

(LA —P')t = 0 (4.S)

holds for every source t that satisfies (4.3). That
is, (4.4) satisfies (4.2). Equation (4.4) is the
generalization, to de Sitter space and to arbitrary
spin, of the equation h=P(p ) 't for a flat-space
neutrino field produced by an externaL spinor
source. The operator

which can be satisfied by taking, first, (t)» arbi-
trary (subject to g»'= 0, y )I)» = 0), then P' such
that

a q'= ', )){,q" -(I/-2n)f,",
and finally g such that

g ~ q= g, y'+-,' Z, p, q" + (I/2n)t,'.
Thus t,'=0, and consequently 8 t,'=0. Since the
traceless parts of a (Lq) and of a t~ both vanish,
it follows that also 8 t, =0; hence the field h~
—= (A/P')t, satisfies all the subsidiary conditions.
[If we choose the gauge field in (5.2) equal to the
second term in (5.4), then h, =h, + g; hence h,
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satisfies all subsidiary conditions outside supp f
= supp t,.] Since the functional f, defined by (5.1)
is gauge invariant, it follows that t, reduces to a
linear functional on the quotient space 'U/u0 of
physical states. Therefore, only the physical
quanta that carry the irreducible representation
D(s + 1,s) propagate effectively between conserved
sources.

VI. TRANSFORMATION TO INTRINSIC
COORDINATES

Let Vbe the space R', endowed with coordi-
nates (y ) and pseudo-Euclidean metric (5 ~).
Let 0'be a domain in V, such that the intersection
U, between U and the hyperboloid y'= 1/p is simply
connected. Let (x ), P=0, 1,2, 3 be coordinates
for U, and y-x(y) adifferentiable mapping of Uinto
R such that its restriction to U, is the coordinate
map. Let x-y(x) denote the imbedding map, and
set

x"-=ax"/ay, y„'=ay /sx".
Then

x"y„=e„", x"„y„=5~ -py y8,
0t ft

&p, &v~ee =gf v ~

where (g„„), p, , v=0, 1,2, 3 are the components of
the de Sitter metric in these coordinates.

Let a field k be defined on U, by

M-'(a/ax'}M = a/ax" + i~,"Z.,= a. . (6.5)

~.h,... ( )=M-'y „"a„h.... (y)

= (a/ax" + i~,"Z.,)h„...—Z, r„„'h,... .
(6.6)

The connection coefficients w„~ and I"„„are
given in the Appendix. Although this definition
seems quite natural here, it does not quite agree
with the syinor-covariant derivative commonly
used in the literature. This wiQ be remedied
below; for the present it should be noted that the

A

covariant derivative of y„ is not zero:

&,i„=(ip"'/2)5„, ~„]. (6.7)

Also, it follows immediately from the definition
(6.5) that

[&., n. ]h~ "=pz. (a..h: - -a.h.'").
If h is a gauge field [of the form (2 ~ 6)], then h has
the form

h= Z~&$, $'=0.
Here and below the prime is defined as in

Vp
goya y Qvgyy ~ ~

(6 ~ 9)

More generally we define covariant differentiation
of spinor-tensors tentatively by [compare (6.1)]

h„... (x)=M '(x)y „"h....(y), (6 ~ 1)
Finally, let us introduce the usual syinor covar-

iant derivative

where M'(x) is a 4-by-4 matrix. This is a con-
ventional syinor-tensor on de Sitter space, and
the function x-M(x) must be so chosen that the
field equations for k take a recognizable form
when expressed in terms of h.

Let

y„(x)=M-'(i p"'gy. y, )M,
then the anticommutator is

(y'(x), P(x)]= 2 g""(x).

(6.2)

The choice of the function x-M(x) is restricted
by requiring (i), that

My M=y (6.3)

and (ii) that y" (x) be a linear combination of the
constant matrices (y'), a=0, 1,2, 3:

y" (x)=e",(x)y' (sum a=0, 1,2, 3). (6.4)

Such a choice actually exists and may be found in
the Appendix. Of course, the coefficients e', sat-
isfy

gf v
e a

and may be interpreted as vierbien coefficients.

D. = ~.+ (p"/»b. . (6.10)

This commutes with y„, note, however, that the
gauge fields (6.9}are not symmetrized covariant
gradients; instead

h = Z~D) —( p ~'/2i) Z,yg .
Equations (6.7) and (6.8) give

[D„,Du]K "= Pzi(tgxhvx ~ ~ Rvx8gx" }''~
—ipz~vh), (-i'S~„„h}„

(6. 11)

(6. 12)

This is a reflection of the structure relations of
the conformal group SO(4, 2); for

('/p )(D„hg..'. =M 'y ."(y„'&, h)„..., (6.13)

where

I-,~= p'~'[y I.~ -i(s+1—)y~], p=0, 1, 2, 3, 5,

(6. 14)

are the generators of conformal transformations
of the field strengths. "
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VII. INTRINSIC FORMULATION OF THE FIELD
THEORY

From now on we leave out the caret on y„', we
also give new meanings to the symbols L Lp A,
and B.

The wave equations (3.1), etc., become

I h=0, L=BLp, (7.1)

LP =iPh —iZ,Dh' —(p'~'/2)(2nh+Z, yh'), (V. 2)

where 1' is (a generalization of) the Cristoffel
symbol introduced by de Wait and Freedman.
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Bh = h ——,'Z,yh' ——'Z, gh" . (7.3)
APPENDIX

Ah= JPI3-9, (v. s)

where I,' is given by (7.2) after reversing the sign
of the last term. We still have

(AL —P')h = gauge field .
The conservation law for t is

(7.6)

Ch t=0, (7.7)

where 4 is the traceless projection operator and

b„ is defined by (6.10). The solution of

(v. 6)

in the Feynman gauge is thus, as before,

Using (6.12) one easily cheeks that I,, anmhilates
gauge fields of the form (6.11) with f'=0. Taking
n= 1 one recovers the wave equations and the gauge
transformations of supergravity in de Sitter space.
The "Klein-Gordon operator" P takes the form

P'h= f g""D~D„-(p/2)S „S""+2p(s'—1)]h,

(7.4)

where S„was defined in Eq. (6 ~ 12). The Dirac
operator A becomes

The identity (Bjorken-Drell conventions)

—y'Ave" —y'&".e ~ (Al)

where all indices run over 0, 1,2, 3 and the coef-
ficients (A, ) are arbitrary, has an extension to
five-tensors, namely (in our conventions)

ipxi2~ agtesy y ~ y ay Bye~ ~ yn~ B

-y'A~ ~ -y Aa~ . (A2)

Here all indices run over 0, 1,2, 3, 5 and the coef-
ficients (A &) are arbitrary except that y A ~
=y A~ „=y"A~„,=0. This identity was used to
derive (3.9). To prove (A2) it is enough to notice
that both sides are invariant if A transforms like a
tensor and that (A2) reduces to (A1) in the case of
y, = p

' ' and the other components of y vanish.
The matrix M introduced in (6. 1) was calculated

in a special, global coordinate system (x")= (t, x'):
x' =y', sin( p'~'t) =y,/1', eos( p'~'t) =y,/r,
&=(y,"+y,')'~', i,j,...=1,2, 3.

In these coordinates a choice of vierbein coeffi-
cients is

h= (XP ')t. (v. 9)

When n= 1 one can use the formula (3.9) to ob-
tain the simple form for the Lagrangian,

g d xe""" yy F (7.10)

in agreement with de Sitter supergravity [Ref. 3,
Eq. (11)]. Here

E„„=d,h„—b„h, . (v. 11)

The relation E 8 = PE 8 for free fields, noted be-
low Eq. (3.11), becomes E„„=y,E„„;this formula
was noted by Freedman and van Nieuwenhuizen
and generalized by Deser and Zumino. '

Returning to the general case, we note that the
wave operator L» Eq. (7.2), may be defined more
elegantly by

e'p ——p
' '~), e', = e'(, —0.t -a/ 2

We require (6.3) in order to obtain the convention-
al metric and impose (6.4) on the matrices (6.2);
this leads to

M=2 ' '(a+ix'y, 'p~'/ )a exp(iy'p' 't/2)

with a=(1+p' 'F)' '. With this M we obtain the
following expression for the spinor connection in
(6.6):

'l(t)g Z g
= co~ 0'

~ + (ip /2)y

The first part is conventional; the second part is
just the difference between the operator 4, and
the usual spinor covariant derivative D„. The
other connection coefficients are defined in the
obvious way:

I.,h=zy r. , r.=-~.h-r„~h. , (V. 12)
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In the text, references to spaces of solutions of
wave equations as "carriers" of representations
of SO(2, 2) needs clarification. Of course, what
is implied is that there exists a-basis of K-finite
vectors consisting of normalizable solutions. In
the limit Ep s + 1 the basis vectors associated
with the gauge field solutions become nonnormaliz-
able (zero norm), and the representation defined
on the solution space becomes nondecomposable.
Such a basis of K-finite vectors can be constructed
explicitly from the known basis for D(E» —,') and
the identification of D(E„n+ ~) with a subrepresen-
tation of D(E»-,') D(n). The weight diagram of

D(s + l, s) is easily calculated from the weight
diagrams of D(EO, -', ) and D(n). All the weights are
simple and the coordinates are given by

f(E,q); E -q=1, 2, ... ;q -s =0,1,...),
for integer as well as half-integer spins. This
allows one to write the simple closed formula for
the character of D(s + 1,s) that was used in Ref.
2.

The form (2.6) for the gauge field is, strictly,
not the only possibility. The equivalence trans-
formation k- P k gives another alternative, but
(1.2) must then be replaced by (z+E, +-', )k= 0.
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