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Second quantization of the free scalar field is carried out in rotating coordinates and the spectrum of
vacuum fluctuations is calculated for an orbiting observer using these coordinates. Normal-mode
decomposition is identical to that in Minkowski coordinates except for the definition of positive-frequency
modes. Unlike the uniformly accelerating observer, the orbiting observer predicts that the Minkowski
vacuum will contain no particles as he would define them. The spectrum of vacuum fluctuations is
composed of the usual zero-point energy plus a contribution arising from the observer’s acceleration. The
latter is not, as with uniformly accelerated motion, thermal. The peak energy appears to be dependent only

on the torsion of the observer’s world line.

I. INTRODUCTION

For several years it has been known that the
quantization of scalar fields in flat space is not
unique.'! In particular, what one observer identi-
fies as particles in his reference frame may be
considered vacuum by an observer in another
frame. An example is found in the comparison
of a uniformly accelerated observer with an in-
ertial observer. Straightforward generalization
of the Klein-Gordon equation to the Rindler coor-
dinate system? of an observer undergoing constant
linear acceleration k leads to what appears to be
a unique quantization procedure. However, the
accelerated observer encounters a thermal spec-
trum?® of massless scalar particles with tempera-
ture 2T = k/27 in what the inertial observer de-
scribes as vacuum.

Important questions concerning the validity of
canonical quantum field theory in general co-
ordinate systems and the meaning of “particles”
arise from these results. Apart from those con-
siderations, though, is the problem of the origin
or cause of the particles. They will be found by
static observers using either Rindler coordinates
in flat space or exterior Schwarzschild coordin-
ates in the static curved space surrounding a black
hole, both of which have event horizons. This
suggests that either incomplete covering of the
manifold or some physical process®* associated
with the horizon may explain the presence of
particles. Furthermore, energy must be supplied
to keep these observers static in their coordinate
systems. Unruh® maintains that this work will be
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perceived as the source of energy necessary to
create particles in the case of uniformly acceler-
ated motion.

In order to explore these questions we study the
quantized scalar field in rotating coordinates as
an observer orbiting about a point would view it.
Two characteristics of this system make it of
interest: (i) There is no event horizon and (ii)
no work is required to maintain the observer in
this state of motion. One also finds that the exact
mode functions can be found in four dimensions and
that these solutions are well defined throughout
space.

Second quantization of the field is performed
as in Minkowski coordinates. The results are
identical with ordinary Minkowski quantization
except for one surprise. Because an orbiting ob-
server will define positive-frequency modes in a
different manner than an inertial observer, the
algebra defining creation and annihilation opera-
tors requires that these operators be defined in
an unfamiliar fashion. The number operator
constructed from them, however, is identical to
the usual Minkowski number operator. Thus, the
Minkowski vacuum contains no particles as the
oribiting observer would define them.

Finally, the spectrum of vacuum fluctuations of
the massless scalar field for an orbiting observer
is calculated. It consists of a term equal to the
spectrum of an inertial observer plus an additional
finite portion. The latter is nonthermal. The
maximum energy seems to depend only on the
torsion 7 of the observer’s world line. This cal-
culation is independent of the results of second
quantization in the orbiting frame.
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II. ROTATING COORDINATES AND THE ORBITING
OBSERVER

In cylindrical Minkowski coordinates (¢/,7’, ¢/,
z') the Killing vector

9

at' LFFY @)

g =
is tangent to the world line of an observer travel-
ing in a circle with constant angular velocity Q.
A transformation to rotating coordinates

t=t', r=vr', ¢=¢'=Qt', z=z' )

provides a system adapted to this observer in the
sense that

_3
E=ar - )

In this coordinate system the line element is
—(1 = Q%r2)dt® + 2Qr2d¢ dt
+r2dd?+dr?+dz?. 4)

This metric is stationary but not static, i.e., &

is not orthogonal to a family of spacelike hyper-
surfaces. The adaptation of the Killing vector to
an observer orbiting with radius R is completed by
replacing ¢ with
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which is normalized along that observer’s world
line. ¢ is timelike for QR <1 and therefore for any
real observer because QR is his velocity in the
Minkowski frame.

The world line of this observer is contained
within a hypersurface of constant z.. Any non-
null curve in a flat three-dimensional space may
be characterized by two parameters: curvature
and torsion.® These can be defined in terms of an
orthonormal triad composed of the tangent vector,
the normal, and the binormal. In rectangular
Minkowski coordinates the world line, para-
metrized by arc length s, is

x*=(ys,RcosQys,RsinQy s, z,), (6)

with y= (1 —2%)"/2 and v=QR. The tangent , nor-
mal, and binormal are, respectively,

=y(1, —v sinQys, v cosQys,0), (7)
N*=(0,~-cosQys, —sinQys, 0), (8)
=y(~v, sinQys, ~cosfys,0) . 9)

The curvature and torsion may then be defined by

d “'
K= N—S—va, (10)

dB*
ds

T==N, =092, (11)

Physically, the curvature is identified with the
observer’s acceleration and the torsion with his
angular velocity.”

III. QUANTIZATION OF THE SCALAR FIELD

In rotating coordinates the Klein-Gordon equa-
tion is

) 9V, ¥ 1% 192 32 2
[_(517_9—56> MY 25¢2 ]d) M.
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Mode functions satisfying this equation are
__1__.__. ike,imo ,-i(w-mOt
b= 21r|2w|1’26 eimoe I .(q7) , (13)
with the restriction
W=kt g?+ M, (14)

Here m is an integer, |w|>M, and ¢>0. These
mode functions are identical in appearance to the
ordinary Minkowski mode functions transformed
to rotating coordinates. The distinction between
the two arises when defining energy for these
modes (i.e., defining positive-frequency modes).
In general, energy may be defined by

E(ifﬁ¢’*f’“¢d>:u)=—%fc<£,{w' Yfypdz,, (15)

where £, is the Lie derivative with respect to some
timelike Killing vector K (which must be present),
f* is the Wronskian operator

.g

b= 1/2
Fr=ggtr s

3
-8 8", (16)

% is some spacelike hypersurface, and the coef-
ficient of E is a normalization factor. Both an
orbiting observer and an observer at rest in the
Minkowski frame will naturally prefer a ¢ =con-
stant surface for ©. For K, the inertial observer
will employ the Killing vector 8/8¢’, which is tan-
gent to his world line and orthogonal to £, while
the orbiting observer will employ ¢ of Eq. (5).
Evaluation of Eq. (15) leads the inertial observer
to positive-energy modes for w > 0, as usual,
while the orbiting observer finds that positive-
energy modes are defined by w - m >0, Thus,

in the rotating frame w<0 modes are perfectly
permissible positive-frequency modes. For such
modes the normalization factor in Eq. (15) is un-
avoidably negative (actually, the negative of a col-
lection of 5 functions). Furthermore, since k and
q only specify |w| in Eq. (14), we must also speci-
fy the sign of w in addition to 2, ¢, and m in or-
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der to uniquely specify a mode. We will therefore
specify a positive-frequency mode explicitly, when
necessary, by subscripts (k, ¢, m; w). (The
same notation will be used for Minkowski modes,
even though the label w is superfluous.) Figure

1 describes the domains of definition for each
observer’s positive-frequency modes.

The field is quantized in the customary fashion
by defining the field operator & and its conjugate
momentum II, which is the projection of the vector
density
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onto the normal to £, and invoking the commuta-
tion relations

[®(x,8), T(x’,1)]=i6%(x - x'), (18a)
[®(x,t), ®(x’,¢)]=0, (18b)
(M(x, £), (x’,1)]=0. (18¢)

If the field operator is expanded in terms of ro-
tating positive-frequency modes,

o= Z Z (akqm;wd)kqm; w+a;qm;w¢:qm;w)q dq dk

"-ljn};o ki @
@ (19)

(2, means the sum over all values of w allowed
by the pair %, ¢), then the commutation relations
for the operators a and a' which follow from Eq.
(18) are
w 1

w 0w 6mm'5(k_k)a 5(4—61') .

(20)

This mandates that the rotating vacuum state be
defined by

[akqm;w’ ag'q’m’ ;w']
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FIG. 1. w-m plane. Regions I and II are the domain
for positive-frequency mode functions defined by an or-
biting observer. Regions I and IV are the domain for the
usual Minkowski positive-frequency modes.

al0),=0, w>0 (21a)
at|0),=0, w<0. (21b)

In light of this result, we regard a as a creation
operator for modes with w <0, while for w >0 it
is an annihilation operator as usual. The opera-
tors a and a' may be expressed in terms of the
field by

w
Ohamio =57 [ Vimial * B0, (222)
L

w =
agam;w=_ ‘w\ t f¢kqm;wf u.@dzu . (22b)
T .

Quantization of the field in Minkowski coordin-
ates proceeds uneventfully with i, defined for
w >0 to yield

o= E (akqm;wg)kqm;w+akqm;w7j);qm;u)q dq dk ’ (23)

'";;;’ ke
a=if{bf“q>dzu , (24a)
L
&-*=—iﬁ*f'“<l>dz:u , (24D)
L

with the Minkowski vacuum defined for all w >0
by

al0),=0. (25)
If & is expanded in Egs. (24) in terms of the posi-

tive-frequency modes of the orbiting observer
[Eq. (19)], the result is

i Cpams > @M ' (26a)
S LS S
i Bomiws @MY (26¢)
Dgm; w = { (~D"a iy W<MK (264)

These may be readily inverted to yield

{ ahqm;w y W >0 (273)
a P -

ST (1) g s @< O (27b)
. . Zi;qm;w, w>0 (27c)
BT V(=18 pgms oy @< O (274d)

Thus, creation and annihilation of particles as de-
fined by each observer are identical in region I of
Fig. 1. However, creation in the rotating frame
of a particle with momentum (&,q,m) and w<0
(region II of Fig. 1) corresponds to creation of a
particle in the inertial observer’s frame of a par-
ticle in region IV with momentum (-k,q, —-m). We
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might say that the effect of the observer’s rotation
is to replace the modes in region IV with the time-
reversed solutions of region IL

Quantized scalar fields in rotating and Minkowski
coordinates are very similar; however, there is
an important difference. Equation (12), and hence
the field, is not invariant under time reversal.
The violation is easily seen in the mode expansion
[Eq. (19)]. Under time reversal, the explicitly
time-dependent part of the mode function

eti (w-mQ)t

is not transformed into its complex conjugate be-
cause the sign of m, in addition to {, changes.
The time-reversed field differs from the original
by this sign. Physically it corresponds to the field
of an observer with the opposite sense of rotation.
The number operator as defined by the orbiting
observer is
-/
™ o

Z [6(w)ata + 6(~w)aalg dg dk. (28)

If Egs. (27) are used to reexpress this operator

in terms of the Minkowski creation and annihila-
tion operators, one finds with a little relabeling
that

N= ), fa*a q dq dr, (29)

m=-2 R, q
w<0

which is the same as the inertial observer’s num-
ber operator, so

N|0),=0 (30)

and there are no particles present as the orbiting
observer would define them in the Minkowski vac-
uum. This differs fundamentally from the corres-
ponding result for uniformly accelerated motion,
where a continuous spectrum of particles as de-
fined in the accelerating frame is present in the
Minkowski vacuum. Also, because creation (an-
nihilation) operators in the rotating frame are
identified with creation (annihilation) operators

in the Minkowski frame, and since the two sets

of mode functions are identical in appearance and
in one-to-one correspondence, it follows that the
vacuum expectation value of the stress tensor
(L,,> must be the same in each frame.

Finally, we emphasize that in this procedure it
has not been possible to satisfy the following three
criteria, which are normally desired: (i) define
positive- and negative-frequency modes relative
to the Killing vector ¢; (ii) employ a canonical
quantization procedure; and (iii) regard a and a'
as strictly annihilation and creation operators,
respectively (i.e., satisfy the commutation rela-
tion [a,a']=1).

IV. SPECTRUM OF VACUUM FLUCTUATIONS

If the metric is static and flat, the spectrum of
vacuum fluctuations is the Fourier transform of
the autocorrelation function® multiplied by the ap-
propriate density of states,

Ssta_tic(w) = —ﬂz(::—) [ e-iwsA(x(s) - x(O),M)ds 2

(31)

where s is the proper-time interval for the obser-
ver between space-time points x and x,. For a
massless scalar field the autocorrelation function
is related to the geodetic interval between the
points

A(x - %5,0)= |x - x| (32)

The spectrum has a minimum value at all frequen-
cies for an inertial observer

Sinerual(w): ('-’3/27T . (33)

When the metric is stationary the energy, and
hence the generator of time translations, is no
longer proportional to w. Equation (31) is general-
ized to stationary metrics by expressing the spec--
trum as a function of energy:

S

stauonarv(

E) r e8| x(s) ~ x(0) | 2ds .

~eo

R
(34)

The spectrum of fluctuations for an orbiting ob-
server is

Scrbiting(E) = Sinertial (E)
E2

+ 5
47

° ams[1 1 1
x f ert® [s_z— (ys)? - 4R%sin?(Qys /2)]"

(35)
In order to eliminate the singularity in the inte-
grand, the spectrum of the inertial observer has
been factored out. The remainder yields an addi-
tional contribution due to the acceleration of the
observer.

Two parameters such as angular velocity & and
radius R are needed to specify the motion of an
orbiting observer. There will therefore be a two-
parameter set of spectra. This is reduced to one
by rescaling the energy variable. We have numer-
ically calculated two sets of spectra. The first is
parametrized by velocity at constant acceleration,
the second by velocity at constant torsion.

Case I: constant acceleration. The first set of
spectra (Fig. 2) is plotted with constant accelera-
tion and variable velocity (0.05¢ < v <0.95¢). Fix-
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FIG. 2. Vacuum fluctuation spectra at constant acceleration. The solid line represents a uniformly accelerated ob-
server. The dashed lines represent orbiting observers with velocities ranging from 0.05¢ to 0.95¢ in steps of 0.1c.

ing the acceleration allows comparison with the
thermal spectrum of fluctuations predicted for a
uniformly accelerated motion. The acceleration of
a rotating observer is

K=Quv?. (36)
We define a dimensionless energy by
€=2E/k. 37)

Using Eqgs. (36) and (37) the spectrum at constant
acceleration may be expressed as

Sorblting(ex) = Sinert ial (Ex)

k*ve,?
32y
w %2 — sin’x
X
jo- cos(v‘ye,,x)[m]dx s
(38)

with velocity v being the only free parameter.
Figure 2 is plotted disregarding the inertial con-
tribution and overall constants. In comparison,
the spectrum found by a uniformly accelerated
observer is

ke,
Sunil. accel, (Ex) = Slnartial (ex) + EW:_K:T)- (39)

Several characteristics of these spectra are of
interest. At constant acceleration the figure shows
that higher-energy fluctuations are attributed to the
lower-velocity observer. This occurs because the

- angular velocity is inversely proportional to the

velocity. As v approaches one, the spectrum does
not become thermal. This might be expected be-
cause the torsion in the observer’s world line is
always nonvanishing; in other words, there is no
limit in which a rotating observer’s world line ap-
proaches that of a uniformly accelerated observer.
Finally, the spectra always have a region with low-
er energy than the thermal spectrum.

Case II: constant torsion. The spectra of Fig, 3
are at fixed torsion with varying velocity. The tor-
sion of the orbiting observer is

T=Qy2. (40)

A dimensionless energy is defined in this case by
€=2E/T. (41)

The spectrum at constant torsion may be written

Sorblting(i'r) = Sinertlal(ef)

Tiy2¢ 2 J“"
ool cos(ye,x)
32y 4
x% — sin®x

x [m]dx. (42)

An important observation which we cannot
explain is that the maxima of these spectra appear
to be determined solely by the torsion of the ob-

server’s world line. Thus
Epax= 047, (43)

The total energy density in the spectrum is pro-
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FIG. 3. Vacuum fluctuation spectra at constant torsion.

portional to 7¢ for any fixed velocity. Note that if
the velocity is fixed, the acceleration is fixed and
we expect the result to depend only on the other
curvature invariant, the torsion.

V. CONCLUSIONS

We have calculated the occupation number of the
vacuum in Sec. III -and the spectrum of vacuum
fluctuations in Sec. IV by independent methods.
Our results differ significantly from the same cal-
culations done for a linearly accelerating observer
using Rindler coordinates. In that case, the occu-
pation number and vacuum fluctuations show iden-
tical thermal spectra in the vacuum state. One is
therefore led to identify the two, that is, a detec-
tor linearly accelerating through the vacuum will
receive quanta of energy from the field which are
assumed to be just those quanta which the number
operator predicts. This interpretation is false as
our results on the orbiting observer illustrate.

' The orbiting detector will receive quanta from the
field yet the number operator predicts no quanta
in the vacuum of rotating coordinates. We must at
least conclude that the occupation number and the
spectrum of vacuum fluctuations refer to different
aspects of the field and cannot be identified.

The origin of scalar particles in the vacuums of

non-Minkowski coordinate systems in flat space
may be explained in a way which is consistent with
these results. A spectrum of vacuum fluctuations
different from that of the inertial observer will be
found by any detector not moving along a geodesic.®
This may be calculated by standard methods.® The
energy measured by the detector will be derived
from this motion® and will therefore impede this
motion. We must conclude that the motion is im-
peded since no energy would be required to main-
tain the orbiting detector’s motion otherwise, and
the energy causing the detector’s response would
be unaccounted for. Real particles—defined as
those mode excitations counted by the number
operator—occur only if there is an event horizon.
This is strongly suggested by the available results
of quantum field theory in static and stationary
systems. They exist because virtual pairs can be
separated at an’event horizon* while the number
operator counts particles only in a restricted por-
tion of the manifold. Whether these “real” parti-
cles are perceived as particles is unknown.
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