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Covariant kinematics for the production of spacelike particles
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The kinematic problem connected with the production of particles with spacelike four-momentum is analyzed in

its simplest form: the decay of an ordinary particle into b ordinary particles, luxons, and t spacelike particles. What,

apart from four-momentum conservation, are the kinematic constraints that guarantee stable finite kinematic limits

and a finite number b + t p

The problem of how particles with spacelike
four-momentum might be produced is one of the
deepest problems in tachyon physics. There is no
theory for possible production mechanisms. How-
ever, before looking for such a theory the kinemat-
ic limits for the produced spacelike momenta must
be known, since these should follow directly from
the general kinematic structure and symmetry
that is taken as the basis for any theory. We shall
examine this problem in its simplest form: the
decay of an ordinary particle into b ordinary par-
ticles, luxons, and t spacelike particles.

I et us begin by describing the various aspects
of this problem. For t=1 the law of the conserva-
tion of the total four-momentum reads P =q+ p,
where P denotes the four-momentum of the decay-
ing bradyon, q the total momentum of all final
bradyons and luxons, and P the tachyon momentum.

' There is also the important constraint Pq ~ Mm,
which is due to causality (M = mass of the decaying
bradyon, m = invariant mass of all final bradyons
and luxons). These four equations and this con-
straint yield

q, =(M'+ m'+ m,.')/2M,

e „=(M —m -m„)/2M

for q, and the tachyon energy relative to the rest
frame of the initial bradyon. The equations show
that the unphysical limit m -~, as well as the un-

physical limit m„-~, are kinematically permis-
sible. In each limit qo tends towards plus infinity
and the tachyon energy towards minus infinity.

It is important to remember that kinematic sin-
gularities also arise if the tachyon energies are
non-negative. For example, if there are no lux-
ons, b = 0, and t =2, the two tachyon energies
read

e( ——(M —m( +m2 )/2M,

e, =(M'+m, ' -m, ')/2M

relative to the rest frame of P. Although both en-
ergies are positive for ~m, —m2'~ &M, infinite
momenta (p& ~

and )p2~ are kinematically permis-

sible in the limit of simultaneous rn& -~ and m2

The problem becomes yet more serious once
one realizes that infinite momenta can arise
even when all the masses are bounded, which
is possible when more than two particles are pro-
duced. The spacelike momentum hyperboloid
shows that for every spacelike momentum P, there
is another spacelike momentum P, , so that P„+P,
=0. That P„=-P, tends to infinity in no way
contradicts four-momentum conservation.

An infinite number of tachyons can clearly be
produced. All of these can have zero energy,
which looks like a great kinematic instability even
if all tachyons only had positive energies (for in-
stance in the frame P =0). Although the sum of
the infinitely many momenta is finite, an infinite
number of particles with mass is unphysical sim-
ply because there would be two groups of infinitely
many particles, each of which represents an in-
finite momentum, and infinite momenta cannot
exist in nature.

The reason for these elementary kinematic sin-
gularities is easy to see. Whereas ordinarily the
causality constraint Pq, & Mm, (and q„q, &m„m, )
makes the kinematics finite, we have not used any
constraint for the tachyon momenta.

The singularity related to Eqs. (l) will only dis-
appear where e„has a lower bound. To introduce
such a bound covariantly, the scalar PP or qP has
to be bounded. As P is the momentum of the tach-
yon's source, we need only limit the first scalar.
The natural choice is

PpI, & 0, k= I, . . . , t (3)

since then and only then is the spacelike momentum
hyperboloid symmetrically divided (by a spacelike
cut through the origin) into a physical upper and
an unphysical lower half. With this bound (3) all
tachyon energies are positive definite in the P =0
frame.

Because of bound (3) an electron or proton can-
not spontaneously gain energy through interaction
with tachyons. This was discussed by Antippa and
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Everett' in connection with the severe experimen-
tal limits' for elastic decays of the electron and
proton. One can thus say that bound (3) is exper
imentally confirmed with high precision.

The singularities related to Eqs. (2) show that
bound (3) is insufficient. Here it should be pointed
out that in considering electromagnetic tachyon-
bradyon scattering quantum mechanically in Ref.
3, the restriction pp'& 0 was introduced for the
final tachyon momentum p', which yielded finite
kinematic limits, and also made it possible to in-
terpret the free tachyon propagator as propagating
the tachyon waves into the kinematically permis-
sible half-space pp'& 0 of the spacelike momentum
hyperboloid (in the frame po=0 this is the half-
space p' ~ p ~ 0 or p„'& 0), and propagating the anti-
tachyon waves into the negative half-space pp' & 0
which is kinematically impossible. Locally, this
gave a propagator of the tachyon-antitachyon field,
analogous to the propagator of the cc rresponding
bradyon-antibradyon field with the role of the
time axis transferred to the x axis. Two tachyon
momenta macroscopically (globally) separated in

spacetime cannot, of course, be related by the re-
striction pp'& 0; this can only refer to coherent
tachyon momenta.

Since the final tachyon states of an elementary
particle decay are coherent,

(4)

should hold for all pairs (k, I) with k = I, . . . , t and
l =1, . . . , t. Writing this constraint in the form

Poy&& ~p& I Ip&
~

cose» and applying (3},we find
that all tachyon three-momenta include angles 8»
~ 90'. That is, all tachyon three-momenta point
into a cone with an opening angle of 90' in the P =0
frame.

Before pointing out a possible uniform explana-
tion of constraints (3) and (4), we will prove five
theorems about the kinematics that consist of (3),
(4), Pq, & Mm, , and four-momentum conservation.
All the four-momentum components will relate to
the rest frame of the decaying bradyon.

(1) Without constraints (3) or (4) the kinematics
cannot be finite. This has been virtually proved
above —there is no bound for Eqs. (I) without (3)
and no bound for Eqs. (2) without (4). In consider-
ing decays into more than two particles, this the-
orem follows at once.

(2) The total momentum of alt sPacelike Products
is sPacelike; every grouP of spacelike products
has also a sPacelike momentum. This follows
from expanding the square (P& + ' ' '+P„) with n ~ t.
All terms of the result are negative because of
P = -m, and (4). Consequently, decays into
tachyons only are impossible and, in particular,
the case to which Eqs. (2) apply cannot be realized.

(3) XII bradyon and Iuxon momenta are bounded,
as is their sum. Because the total energy of the
tachyons has a lower bound, the bradyon and luxon
energies have an upper bound (M). This means
that the bradyon masses are also bounded by M.
The three-momenta of the bradyons and luxons,
too, are then limited by M. Moreover, the sum of
all bradyon and luxon four-momenta has a bounded
energy (bounded by M) with the result that the num-
ber of produced bradyons cannot exceed b,„
=M/(m&+' ''+m, ). Since this sum is a timelike
vector, the spatial components of this sum are
also bounded.

Subtracting the upper limit of the sum of all
bradyon and luxon momenta from P =(M, O, 0, .0),
Theorem 2 gives us this upper bound for the nega-
tive length squared of the sum of all spacelike
fnur-momenta:

-(P, + +P,)'- M'. (5)

It also follows that the energy of a tachyon cannot
be greater than M/2: e„&M/2.

(4) The total number of tachyons Produced is
limited. Bound (5) and the constraint (4) give us

(6)

If the smallest tachyon mass has the value of m
then the tachyon number has the bound t,„
& M /m~„.

Alternately, this can be proved as follows. If
there were infinitely many tachyons the total
spacelike momentum would be infinite because all
individual three-momenta include angles not great-
er than 90 and given theorem 3, then four-mo-
mentum cannot be conserved.

(5) All the momenta of the spacelike Particles
are finite. According to constraint (4), we also
have

to, ~to~-l»l Ztvk
All k4l

where the p„are three-momentum projections on

p, . The energy term is positive-definite. Let the
momentum

~
p,

~

tend towards infinity. According
to theorem 3, the bradyons and luxons cannot com-
pensate for this momentum. Hence, momentum
conservation requires that Z'P„, becomes nega-
tive, which violates (7). Now, if the tachyon
three-momenta cannot become infinite, then nei, -
ther can the tachyon energies and masses.

Thus, the constraints (3) and (4) lead to finite
kinematic limits.

Recently, I have argued in favor of constraint '

(3) within causality considerations. According to
Ref. 4, one would say that the decay products do
not move backward in time for their source. Let
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us now turn to the problem connected with Egs. (2).
Using the notion of a superluminal reference
frame, we assume that tachyon 1 cannot move back-
ward in. time for tachyon 2, and vice versa. The two
tachyon four-momenta have opposite directions.
Each direction defines (in the f xpla-ne) the direction
of time in the superluminal rest frame of the respec-
tive tachyon. Let us denote the rest frame of tachyon
1 by S' and the P=0 frame by S, relative to which
S' should move in the positive x direction. The
planes of constant time f.

' are given by the equation
f =const+(P&/e&)x. Tachyon 2 moves towards neg-
ative x, that is, it intersects these planes in the
negative direction. This means that it moves back-
ward in time I,". To avoid this, the four-momen-
tum of tachyon 2 must at least lie parallel to these
planes, that is, e2/p2„~ (P&/e, ) must be valid,
which is constraint (4). Thus, we arrive at a uni-

form explanation of (3) and (4).'
Finally, I cannot but remark that neither con-

straint (3) nor (4) can be regarded as theoretically
well founded. . Moreover, the kinematics do not
give stability of the electron or proton against
tachyonic decays; a process such as e,„-e„+y
could happen on (and only on) the kinematic bound
introduced by (3).

It is, however, pleasing to see that the electron
and proton become stable if processes happening
only ou the kinematic bound are regarded as im-
possible. Lepton or baryon number conservation
requires either q, & M or -P; & M .' In the for-
mer case not all the tachyons can have a positive
energy; in the latter case one sees from (6) that
only one tachyon with mass M can be emitted and
its energy also cannot be positive. Both situations
could not occur if Pp, &0 were satisfied.
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On the basis of the so-called extended principle of rel-
ativity, we can assume that an e1ectron-tachyon has the
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