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The question of whether the gravitational "constant" can vary in spacetime has been among the most vexing in

physics. The thrust of this paper is that the issue may be fully resolved if one accepts the principle (first proposed by
Weyl and lucidly discussed by Hoyle and Narlikar) that all the fundamental equations of physics should be invariant
under local (spacetime-dependent) transformations of units (principle of conformal invariance). Theoretical
arguments in favor of the principle are discussed. We then show that the presently accepted dynamics for the
fundamental particles and their electromagnetic, weak, and strong interactions indeed satisfy the principle. Their
conformal invariance is due not least to the indispensable transformation properties of rest masses. Thus in arbitrary
units each type of rest mass is a spacetime field. The principle of conformal invariance then demands conformal
invariance of the dynamics of each such "mass field. " If all rest-mass ratios are strictly constant there is only one
mass field. Its dynamics automatically induces dynamics for gravitation. In units defined by particle masses the
gravitational action is manifestly that of general relativity, a fact discovered in different guises and independently by
several workers. This would seem to forbid the construction of a conformally invariant theory of gravitation with

"varying gravitational constant" G. Such theories have been proposed by Dirac, and later by Canuto and co-
workers, who have argued that, a priori, gravitational (Einstein) units are distinct from those defined by matter
(atomic units). We find that to implement such distinction while simultaneously avoiding undetermined elements in

the theory, one must introduce conformally invariant dynamics for gravitation and for the mass field separately. We
construct this theory; it is a "varying-G theory. "We then show that it is definitely ruled out by the solar-system

gravitational experiments. We conclude that the principle of conformal invariance requires that gravitation be
described by general relativity, and that the dimensionless gravitational constant y be strictly constant. We also
consider the possibility that gravitation, or the mass field, explicitly break conformal invariance. The corresponding
theory, the theory of variable rest masses. (VMT), was developed earlier from a different viewpoint. Although it
predicts variability of y, we point out that for a vast majority of cosmological models, the temporal variability of y is

well below experimental sensitivities.

I. INTRODUCTION

Ever since Dirac' raised the possibility that the
gravitational "constant" may vary, the vexing
problem of either ruling out, or else confirming
temporal or spatial variations of the fundamental
constants; has confronted physics. Such variations
would unquestionably complicate greatly our views
of nature: they mould negate the equivalence prin-
ciple, the touchstone of gravitation theory. But
ignoring variations if they exist would unquestion-
ably lead to our inferring a biased picture of the
Universe. Hence the problem must be met face on.

The task is not as formidable as it might have
been because only variations of dimensionless con-
stants need be considered. 2' Thus the quantities
that must be scrutinized are the dimensionless
coupling constants of the electromagnetic, weak,
gravitational, and strong interactions G, P, y, and

5, respectively, and all available rest-mass ratios
m, /m2. A variety of ingenious arguments drawing on

laboratory, astronomical, geological, and geo-
chemical data have been used to set stringent

bounds on possible temporal variations of +,' ',
P,~' 6,' ' and m, /m& (Re fs. 6 and 9) (e for elec-
tron, p for proton) over the past few billion years.
The Eotvos-Dicke-Braginski experiments can be
interpreted as strongly constraining possible spat-
ial variations of n, P, 6, m, /m~, and m„/m~ (g for
neutron). '0 Nevertheless, in the absence of con-
crete theories of variability, these limits are not
sufficient to rule out present weak variability of the
constants, or even violent variations in the early
Universe. This is the more true for y; theories of y
variability abound, but the experimental bounds on
it are far from stringent. '

One consequence of variability of the fundamental
constants mould be the distinction it would draw
between different "natural" systems of units, of
which three are of special interest: atomic (or
electromagnetic) units, particle units, and Planck-
Wheeler (or Einstein or gravitational) units. The
atomic unit of the length is the Bohr radius 8'/e'm,
and the corresponding unit of mass is twice the
Rydberg mass equivalent e'm, /8'c'. In particle
units 8'/m~c and m~ ar e the units of length and
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mass. The Planck-Wheeler unit of length is
(IG/c')' ', and thatof mass (ck/G)'~', where G is
that coupling constant appearing in the gravitational
action. Units of time are the corresponding units
of length divided by c. One could also imagine hy-
brids of these systems. Now the Conversion factors
between particle and Planck-Wheeler units depend
on y. Hence, any variation of y would make
Planck-Wheeler and particle units intrinsically
different (in contrast with cgs and mks units which
are equivalent). Similarly, variation of o or of

rn, /m~ would make atomic and particle units differ-
ent.

Our purpose is to demonstrate that the issue of
variability of the constant y may be fully resolved
if one accepts as a fundamental principle that all
the basic equations of physics should be fully in-
variant under local transformations of the unit of
length. Of course, it is well known that the laws
of physics look the same in the cgs and in the mks
systems —this is a statement of the invariance of
physics under global units transformations. The
intent here is that the invariance should still hold
for all local units transformations —transforma-
tions with a spacetime-dependent conversion fac-
tor. Such transformations were first considered by
Weyl (who called them gauge transformations)"
and were later lucidly discussed by Dicke, ' Hoyle
and Narlikar, and Hoyle. " Following them we
call these conformal transformations (CT's) and
the invariance under them conformal invariance
(CI). A CT is viewed as "stretching" all lengths
(because units are changed) by factors 0 which de-
pend only on the spacetime locations of the objects
in question, and as stretching all durations by ex-
actly the same 9's. Thus c is unaffected by CT's.
If the spacetime metric g„„ is regarded as carrying
dimensions of length squared, while the coordinates
are dimensionless, the effect of a CT on length and
time intervals is represented by the transforma-
tion

2
gPv gPfj~

where 0 is an arbitrary, positive, smooth, and
dimensionless spacetime function. The coordinates
are unchanged by the CT. Since Compton lengths
of particles X are like any other lengths in physics,
Dicke and Hoyle and Narlikar require them to
transform as

'This is equivalent to requiring that rest masses
transform as

m mQ

with 5-S. In this scheme a physical field with di-
mensions L,"T~llP transforms by 0 '+~.

It is important to contrast CT's with the current-
ly popular. scale transformations. " These last are
transformations like (1) together with a rescaling
of fields by powers of Q. But Compton lengths
(masses) are assumed to remain untransformed.
Thus scale transformations are not units trans-
formations; they are active enlargements of a
system whose usefulness depends on the absence
of a, scale of length. By contrast, CT's are units
transformations whose very meaning derives from
the existence of some scale of length in the prob-
lem.

Weyl" was the first to contemplate the principle
of CI. Later Hoyle and Narlikar' presented argu-
ments that recommend it as a guiding principle for
formulating all physical theory. It is true that it
does not rest on such a firm experimental basis as,
say, the principle of Lorentz invariance. Never-
theless, the principle of CI is highly attractive,
not least because of its similarity to the gauge
principle which has so enriched contemporary
physics. Global units transformations are analog-
ous to global gauge transformations or global in-
ternal-symmetry transformations (units transform-
ations are concerned with redefining the magni-
tudes of fields, the others with redefining their
phases or identities). The extension of units trans-
formations to the local level (CT's), and the re-
quirement of CI of physical law then parallel the
promotion of gauge and internal invariances to the
local level by the introduction of gauge fields. "
The fruitfulness of this last procedure for the un-
derstanding of the elementary interactions has by
now been amply demonstrated.

As further support for the principle of CI one can
mention the CI of Maxwell's equations and the
massless Dirac equation. ~ " Less well known is
the existence of a CI version of the massless scalar
field equations. " That rest-mass terms do not
break CI is a ppint made frpm time tp time, "' *'

but largely ignored. In Sec. II we review all these
issues, and also show that the electromagnetic,
weak, and strong interactions between elementary
particle fields, as presently understood, are CI.
Thus microscopic physics is CI in its entirety. A

consequence of this is that in arbitrary units each
type of rest mass can be a spacetime field. The
principle of CI would then require that each such
mass field have CI dynamics.

This point is taken up in Sec. III where we pro-
visionally assume that all mass ratios are strictly
constant. 'The principle of CI and standard physic-
al restrictions then fix the dynamics of the one re-
maining mass field to a form which has been used
in related contexts by Hoyle and Narlikar, '
Deser, Bramspn, Dirac, and Canutp g$ al.
The action for the mass field can then be reinter-
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preted as that for gravity: It is just the general-
relativistic one. There is also a strong suggestion
that the cosmological constant must vanish. Hence
the simplest implementation of the principle of CI
to all physics requires y to be strictly constant,
and gravitation to be described by general relativ-
ity (GR).

This would seem to rule out the construction of
a GI gravitational theory with varying gravitational
constant Q. Such theories have been proposed by
Dirac and by Canuto eg al. ' who have argued
that, a Priori, Planck-Wheeler units are different
from atomic units. In Sec. IV we point out that
whereas Dirac's theory does not actually succeed
in embodying the required difference between units,
that of Canuto eI; al. does so only at the expense of
introducing an undetermined element and making
the theory incomplete. Only one way suggests it-
self for correcting such incompleteness: to intro-
duce CI dynamics for the mass field and for gravi-
tation separately. We construct the most general
such theory and show that it contradicts solar-
system experiments and can definitely be ruled
out. Hence the principle of CI and experience leave
no room for y variability; they require Planck-
Wheeler and particle units to be identical.

Finally, in Sec. V we consider the possibility that '

CI may be explicitly broken by the mass field dy-
namics, or those of gravitation. The most general
theory which does this, the theory of variable rest
masses (VMT), has been studied earlier from
another viewpoint. " It does allow y variability but
we point out that realistic cosmological models
within the theory generally predict temporal vari-
ations of y due to the expansion of the Universe
which are well below foreseeable experimental
sensitivities. Section VI summarizes our conclu-
sions.

We employ the following conventions: metric
signature +2, Greek indices are spacetime indices,
Latin ones are internal indices:

a 0.'V„.g.y
—V~.y. g =-B„g8yV, Rg~ =Ra~, 8 =R~

II. CONFORMAL INVARIANCE OF MICROSCOPIC
PHYSICS

One often hears the statement that rest masses
of fields break the CI of their dynamics. If by CI
one means invariance under local units transform-
ations (CT's), nothing could be further from the
truth. The mass terms in the Lagrangian density
of any field is the product of p ' or p with the
square of the field. 'This term must have dimen-
sions ML, 'T ' in order that its integral over four-
dimensional volume have the dimensions of rela-
tivistic action —those of lc. 'Thus under a CT the
mass term is multiplied by Q 4. The four-dimen-

5S= 5S 5E 5E+ 5S 5m 5m

+(6S/6g"")6g~" ](-g)'"d'~, (4)

where we allow for the fact that under C'T's m be-
comes a spacetime function, so S can also be var-
ied by functionally varying m. The field equations
for E give 6S/6F =0. Now suppose the variation
envisaged is one generated by a CT like (1)-(3)
with 0 = 1+5 Q, where 6 Q is an arbitrary infini-
tesimal function. Thus 5g"' =-2g""6Q, while 6m
=-m50. Since 68/5g"" =-2 T„„, it follows from the
CI of S (6S=O), and the arbitrariness of 60, that

r = m(6S/em). (~)

Thus even though the field F has CI dynamics, its
T„, is not traceless. Therefore, the common wis-
dom must be rephrased to state that a field with CI
dynamics is one whose T contains only mass
terms, if any.

Having established that massive fields can have
GI dynamics, we now review the CI invariance of
the most commonly encountered fields in physics.
The field equations must be formulated in curved
spacetime because, even if we start in Minkowski
spacetime, a general G'T will make the spacetime
nonflat. From this angle it is clear that the issue
of CI is inseparable from that of gravitation.

A. Vector field

The action is

S == jf (F" F 8+2%, A A")(-g) d x, (6)

sional volume element is multiplied by ~4. Thus
the contribution of the mass term to the total action
is CI—the mass term does not break GI.

The key to this result is the transformation law
(2) for A, . To those adept in scale transformations
this law may seen strange. Yet, Compton lengths
of particles are fundamental "metersticks" in
physics. When discussing a transformation of all
lengths, one has no logical choice but to demand
(2). Misunderstanding on this point has led to the
myth of the breaking of CI by masses.

Another reason for this myth is the belief that a
traceless stress-energy tensor T 8 is the hallmark
of a field with CI dynamics. 'This is supported by
the examples of the electromagnetic and neutrino
fields, both CI and having T =—T =0, and by that of
the massless Klein-Gordon field which is not CI,
and has T g0. Since mass terms contribute to T,
it is usually inferred that a massive field cannot
be CI.

The fallacy in this reasoning can be seen by con-
sidering a massive field E with CI action S (ex-
amples below). A general functional variation of S
is
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where

+Of/ +g n +n

From [S]= [Rcj and [g"sj =L ' it follows that

[A„]=M' 'L' 'T ' Thus under CT's

(7)

a
u ~u ya (14)

From the ordinary Dirac matrices y, (a =0, 1, 2, 3)
one constructs 4~4 matrix fields y& transforming
collectively like a vector under coordinate trans-
formations:

(8)A~ -A~, I ~g-E~g.

Since g 8-0 'g 8 while (-g)' '- &'(-g)'~', S is
seen to be CI almost trivially [recall (2)]. With

Xv
' =0, (6) gives the dynamics of the (Maxwell)

electromagnetic field. In that case (6) is invariant
under a combined CT and a gauge transformation
with

Here A, 'u are four orthogonal covariant vector
fields chosen so that

yuy, + y, yu =2gu, I, (15)

where I is the unit matrix.
'The spinor covariant derivative acting on 0 is

4 „-I',4 where the matrices I'„may be chosen as
&a -&a+ X,a (9) u aI II + yg y Auefj ~ . (16)

where g is an arbitrary function. If A»
' NO (Proca

field) (6) describes the free dynamics of a vector-
meson field like that of the p.

With a suitable modification of (7) one can de-
scribe the CI dynamics of a non-Abelian gauge
field." In this case one deals with a collection of
n fields A„' (i = 1, 2, . .. , n) The. n

F„'g =Ag' -A'
8 +fc„I,A~ (10)

defines the ith antisymmetric tensor field. Here
c;,.~ are the (dimensionless) structure constants of
the group associated with the field, and f is a
coupling constant. The action is

B. Dirac field25

his is represented by a four-spinor field 4.

(11)

Evidently the dimensions of A. ' and I'& are those
of A and F«, thus [f]=M '~'L '~2T and under
CT's f-f. Therefore, (8) applies; the CI of S~ is
then evident. $0 can represent the dynamics of the
gluon fields responsible for the strong interactions
which bind quarks into hadrons according to quan-
tum chromodynamics, ' or the dynamics of Yang-
Mills fields associated with the isotopic symmetry
of hadrons. "

To deal with the electromagnetic interaction of
a Proca field 8„, one must regard it as complex
and form its field tensor H„& by the minimal-cou-
pling prescription

P„s=Bs —B q
—ie(A Bs AsB„), —(12)

where c is the field's charge divided by Sp, and
the electromagnetic potential. One finds

[Q] = M '~'L '~'T so e- e under CT's. The action is
similar to (6) but formed by multiplying B„and
H

& by their complex conjugates. Its CI is evident.
It is also invariant under the gauge transformation

B -B„exp(ie ))t (13)

together with (9).

The Dirac action is written as

S,= +'y y' +.-r.~ +X~ '~ -g'"d'&,

(17)

where y is a dimensionless 4&4 matrix field satis-
fying

yyu+ yuy=o

y, + yr„+I'
Comparing (14) and (15) with (1) we see that

au-Apn, yu-yuQ

under CT's. It then follows from (16) that

(18)

(19)

(20)

(21)

where we have used y„y' =4I which follows from
(15). Although I'„ is dimensionless it does not go
into itself under CT's; this need not occasion
alarm since I'„(like I"z ) is not a tensorial quan-
tity, and is thus not measurable. It is evident
from (18), (19), and (21) that we may assume

y y ~ (22)

Finally, from dimensional analysis of (17) it is
clear that [4'] =M' 'T ', so under CT's

e -en '~'. (23)

The CI of SD now follows from (20)-(23) if (15) is
employed to commute the y„ in the expression for
the conformal change in y'I", .

The Dirac field is coupled to the electromagnetic
field by the prescription

4, -4, —jeA. „+ (24)

applied to (17) (again e is the charge divided by kc).
Then S~ is evidently invariant under combined CT's
and gauge transformations analogous to (9) and

(13). The S~ then represents the dynamics of the
charged leptons.

The dynamics of neutrinos is given by (17) with
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yn
' =0 together with the (left-handedness) condi-

-tion 5

(26)

that under CT's

One also knows that

(29)

where
r' (i-=f4) )e"'"'y.rar, ra, (26)

and the e" & is the Levi-Civita tensor. . Since P &

includes a factor (-g) '~', y'-y' under CT's, so
the condition (26) is CI, and so is the whole dyna-
mics of the neutrino.

The formalism with suitable modification can de-
scribe the dynamics of quarks in interaction with
gluons (quantum chromodynamics) —the scheme for
understanding hadron structure. " In this case 4
is a column vector of three quark four-spinors
representing the three colors. Let T' be the eight
generators of the SU, group which describes the
symmetry under color relabeling. The T' can be
represented as dimensionless 3&3 matrices acting
in "color space. " Their commutation relations
contain the structure constants c,.» mentioned earl-
ier. The action for the quarks is then (17) with the
replacement

0 „-4„—ifT'At%', (27)

where A', are the gluon fields mentioned earlier,
and f the coupling constant defined above. The CI
of the quark action is then evident. If various
quark flavors are to be considered, there is a sum
of actions, one for each flavor, with X~

' different
for each.23

An analogous treatment can be given for baryons
of an isospin doublet (i.e., proton and neutron) in-
teracting via Yang-Mills fields associated with the
SU, isospin symmetry. "' Another example of
spinor fields coupled to gauge fields is found in the
Weinberg-Salam unified theory of the weak and

electromagnetic interactions"'" in which the lepton
fields are coupled to four gauge fields (transform
ing according to SU, gU, } in the manner of (27). In
both examples the CI of the spinor action is estab-
lished as above.

R -0 R —6II '( g-)
' '[(-g)' 'g~an ] (30)

A short calculation involving an integration by parts
shows that the last term in (30) serves to cancel
the terms involving Q „which arise from the y
in (28). Thus the curvature scalar acts very much
like a gauge field to bring about CI.

The field is coupled to electromagnetism by mak-
ing it complex and applying a prescription parallel
to (24). This does not affect the CI. The scalar
field can also be coupled to spinor fields; an ex-
ample is the Yukawa coupling

+pt yq, +„(-g)'~'d'x (31)

between proton, . rieutron, and pion fields. From
(22}, (23), and (29) it follows that this coupling
action is CI. The same cannot be said about the
once popular derivative coupling. " It is interest-
ing that the principle of CI rules out this coupling
which is known to be unphysical on grounds of lack
of renormalizability. Another example of this sel-
ectivity. of CI for good physics is the fact that the
stress-energy tensor corresponding to the CI
action (28) has softer divergences than those for
the non-CI Klein-Gordon field.

Of fundamental importance in the Weinberg-
Salam theory are the Higgs scalar fields responsi-
ble for generating rest masses for those three
gauge fields which represent the W (intermediate)
vector bosons. " The Higgs fields may be repre-
sented by a two-component complex column vector
4. Define

Dp@ =4 „-2if 'B„4 gif7'A~4, — (32)

where B„and A„' (i =1,2, 3) ar ethe gauge 'fields,
7' are the 2 & 2 matrix generators of SU„and f and
f' are coupling constants with dimensions
M I. T. The GI action can be expressed as

C. Scalar field

The pseudoscalar mesons are nowadays regarded
as bound states of quark pairs. Nevertheless, it is
still useful to consider the dynamics of a scalar
field y as representing that of a meson in some ef-
fective way. Now, the Klein-Gordon action, when
generalized naively to curved spacetime, is not GI.
However, as Penrose showed long ago,"inclusion
of the scalar curvature 8 in the action

1
~ @,Of+1 g 2 +~ 2 2 g 1/2d4~

assures its CI. We see that [y] =M' 'L'~'T ', so

S~=-2 Dp4 Dp@ + 684 4 —X~ 4' C'

+k(C ~4)']( g)'i'd'x (33)

D. Other fields

There are mell-known problems with the naive

where the mass term appears with a sign opposite
the conventional one, "and a self-interaction term
with coupling constant k is included. Clearly, [4]
=M' 'L' 'T ' while [k] =M 'L 'T' Thus under
CT's 4 transforms as y in (29) while k-k. It takes
but one moment to verify the GI of S~.
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curved-spacetime formulations of spin- —,
' and spin-

2 fields: inconsistency with supplementary condi-
tions and noncausal propagation. For the massless
spin- —,

' field a consistent formulation has been
achieved only within the framework of supergravity
theory. " This scheme, however, views the spin- —,

'
fermion field as a component of gravitation. Our
view of the nature of gravitation (Secs. III-VI) is so
remote from that of supergravity that we shall have
no occasion to consider the spin- —,

' field. Among
the known particles, only the 0 hyperon and some
ephemeral resonances, i.e. , &', have spin &. These
are surely best viewed as bound states of three
quarks. There thus seems to be no need to con-
sider an elementary spin- —,

' field. Therefore, the
lack of a consistent CI curved-spacetime dynamics
for it is not a fundamental difficulty.

Similar remarks apply to the spin-2 field. The
only consistent dynamics for a spin-2 field in
curved spacetime proposed thus far" is invariant
only under very restricted CT's [i.e. , Eq. (16) of
Ref. 32]. However, the current view is that a
spin-2 particle like the A3 meson is a bound state
of four quarks, and does not require an elementary
field for its description. No p&oblem for the prin-
ciple of CI is thus apparent.

The upshot of our discussion is that the dynamics
of the fundamental particles (leptons, quarks) and

of the fields by which they interact (Maxwell,
gluon, tV, and Higgs) according to contemporary
theories of the strong, weak, and electromagnetic
interactions, can be expressed in manifestly CI
form. Thus microscopic physics respects the
principle of CI.

III. THE MASS FIELD AND GRAVITATION

GI of microscopic physics depends on the trans-
formation laws (2) and (3) for Compton lengths and
rest masses of particles. It is evident that in a
general system of units or conformal frame (CF)
both A, and m for each type of field will vary in
spacetime. This consequence of CI was recognized
early. '~ If mass ratios are not constant (see Sec.
I) this means that each type of &

' becomes a dis-
tinct spacetime field —a "mass field. " Each such
mass field must be a dynamical field if the theory
is to be complete. One cannot hold that A,

' is pre-
scribed in one CF and is determined in others by
means of (2). That "original" CF simply cannot be
singled out from within the theory: all CF's are
equally good before the laws. Thus the theory must
provide dynamics for each ~ '.

Another way to the same conclusion starts with
the analogy drawn in Sec. I between CI and gauge
invariance. The role of a ~ ' in becoming a space-
time field in order to promote global units invari-

ance to CI is much like the role of a gauge field in
promoting global gauge invariance to local gauge
invariance. Thus, just as a gauge field has dyna-
mics of its own, so should each ~ ' be endowed
with dynamics.

In what follows we assume all rest-mass ratios
m, /m are strictly constant (the more general case
will be considered in a future report). As men-
tioned in Sec. I, there is substantial support for such
an assumption from astronomical observations
and from the terrestrial Eotvos-Dicke-Braginski
experiments. ' Our assumption allows us to ex-
press all inverse Compton lengths ~ ' as multiples
(not necessarily integral) of a universal mass field

g with [p] =L ' which transforms according to

(34)

%hat are the dynamics of this mass field? An
early discussion of rest-mass dynamics was given
by Dicke' in his reformulation of Brans-Dicke
gravitational theory. " In the context of CI, rest-
mass dynamics was first discussed by Hoyle and
Narlikar" and by Bramson" (see also Bicknell'4).
Our discussion has much in common with theirs,
except we shall undertake an axiomatic approach
in the search for the dynamics of P.

We assume (a) the dynamics of g is given by an
action S&, (b) S& is coordinate invariant, (c) S& is built
from P, its derivatives, g„8 and its derivatives
only, (d) the equation for g is of order no higher
than second; the stress tensor for g does not in-
volve third or higher derivatives of g, and (e) S&

is CI. Postulates (a) and (b) require little com-
ment. Postulate (c) is meant to exclude from S&

extraneous objects, in particular, a scale of
length Which in our approach would be represented
by a field. In Sec. VI we shall weaken this re-
quirement. Postulate (d) is a guard against the
introduction of causal anomalies (i.e. , runaway
solutions) into the dynamics of g or g„8. Postulate
(e) is introduced in compliance with the principle
of CI; if S& is not CI, the dynamics of p will in-
directly break the CI of microphysics at some lev-
el. The analogy with gauge fields leads to the same
conclusion. Just as a gauge field has gauge-invari-
ant dynamics, so the mass field should have CI dy-
namics.

The most general action satisfying (b)-(e) is

S~=2@c ~
' +6R +l -g d x.

'The factor —,
' is conventional, the Sc ensures that

8& has dimensions of action, and l is an arbitrary
dimensionless parameter. The sign of the action
has been chosen with the benefit of hindsight. The
action (35) (with or without I) also appears in earl-
ier works. ' ' It is also closely related to the
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dynamics of the propagator of Hoyle and Narlikar. '
The scheme described here appears to be the field-
theoretic equivalent of Hoyle and Narlikar's action-
at-a-distance theory of masses and gravitation. It
is also closely related to theories described by
Bramson' and Bicknell' in which particles acquire
their rest masses by interacting with rp I.ts rela-
tion with the other theories is more tenuous since
rest masses play no central role in them. Deser"
describes a scale-invariant theory, involving a
scalar fieM, which reduces to GR in a particular
frame. Callan, Coleman, and Jackiw3O are motiv-
ated by the requirement that a scalar field have a
trace-free stress-energy tensor, in modifying GR.
Dirac'0 and Canuto et al."use the action as the ba,-
sis for theories of gravitation involving a variable
gravitational constant (see Sec. IV).

At this point one would inquire into the form of
the gravitational action of the theory. As various
workers have discovered independently, one can
reinterpret S& as the gravitational action. This ap-
proach gives the simplest CI scheme for all phys-
ics: the total action is S& +S&, where S„ is the
sum of material fieM actions discussed in Sec. II.
The content of the theory is most clearly seen by
expressing it in particle units; since we may write
m~=g~p, where g~ is a dimensionless constant, our
choice of CF amounts to having m~ constant and P
=)0 =const. S„has then its standard "form"—with
constant rest masses, while 5& becomes the Hil-
bert action for general relativity (GR) with 3c'/
4vhgo' playing the role of G and -3)go' playing the
role of cosmological constant. This "simplifica-
tion" was first noticed by Deser" and Bramson"
(and by Hoyle and Narlikar in the context of action-
at-a-distance theory) who concluded that the theory
reduces to GR in a particular CF.

This conclusion is, however, an understatement.
The physical content of the theory is the same in
any units; it is GR in any CF. For this theory in

particle units we get

y = Gm, '/Kc =3g, '/4v.

Thus, the simplest implementation of the principle
of CI requires that gravitation be described by GB
and that y be strictly a constant. We note that nu-

merically y —-10 "so go=10 ", and similar val-
ues apply to other particles; the coupling between
massive fields and the mass field is very weak.

Another point concerns the cosmological con-
stant. In (35) I't'g plays the role of inverse Comp-
ton length for the mass field. That the field which
determines particle rest masses should itself have
rest mass seems incongruous. What is this "rest
mass"'? Its inverse Compton length squared is of
order of the absolute value of the cosmological
constant which is, observationally, less than 10 "

cm '." Hence the rest mass of the mass field is
at least 10" times smaller than that of the elec-
tron. This strongly suggests that / vanishes exact-
ly.

Our conclusions are based on the classical the-
ory; they may well require modification in the
quantum theory N. otice that the action (35) is that
of a scalar field whose energy density is nominally
negative. This might cause difficulties in quantiz-
ation. Actually, one prescription for quantization
of P and g„, leads to a quantum theory based on
(35) with I =0 which is entirely equivalent to that
based on the Hilbert action. ' This is in harmony
with our conclusions. But no complete study of the
quantum p~ field interacting with massive particles
via their rest masses has been carried out. Such
study may reveal an instability of the p vacuum
which would then require us to reject the present
theory and recognize that some more complicated
scheme describes rest masses and gravitation.

IV. IS CONFORMAL INVARIANCE COMPATIBLE
WITH VARIABLE y?

Our conclusion that GI requires y to be constant
was based on the venerable idea that no separate
action need be introduced for gravitation; that of
the mass field suffices x2, ~s,x9 This conclusion is
out of line with a recent trend to formulate theories
of variability of y as theories with local units in-
variance. The first of these was Dirac's' revival
of Weyl's old GI electromagnetic-gravitational the-
ory xi this time as a, two-metrics theory to embody
the difference between atomic and gravitational un-
its which he has always felt to be indicated by the
large cosmological numbers. ' There followed the
Canuto et al."modification of Dirac's scheme, and
the recent reinterpretation" of Hoyle and Narlikar's
CI action-at-a-distance theory" as a theory of var-
iable y. In enquiring whether some more general
scheme based on the mass field could give a vari-
able y, it will evidently be useful to understand how
the mentioned theories try to achieve this.

Dirac's theory is based on the CI action (our con-
ventions)

SH= 8+6 ' v'-gd x (37)

for a scalar field P which transforms as

P PII '-
under an arbitrary transformation of the standard
of length [see (I)]. In (37) we have not included
the cosmological term or the electromagnetic ac-
tion. ' Dirac's paper is ambiguous as to the di-
mensions of P, but the law (38) together with the
requirement that S& have units of action leave little
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option: [P] =L ' [or alternatively [p] =M; one
must supply factors of 8 or c to (37)]. In particu-
lar, P may not be dimensionless as Dirac seems to
suggest at several points. As the interaction be-
tween P and matter, Dirac proposes one which, for
one particle, is represented by the CI action (again
we suppress electromagnetism)

S~ =-mo ds, (39)

where mo is a constant, and ds is the line element
along the particle's world line.

In Dirac's theory Einstein (or gravitational) units
are those in which P is constant; in these Sz be-
comes the Hilbert action. Dirac regards these
units as distinct from atomic units. Yet the par-
ticular theory at hand hardly incorporates that dis-
tinction. In (39) it is m, P which plays the role of
rest mass ~e'=the factor multiplying the line ele-
ment in the action of a point particle. " In view of
(38) and the obvious consequence of (I), .ds-Qds,
it follows from CI that mo is a constant in any CF,
not just in a particular one (its dimensions are
those of ch). Therefore, in the Einstein CF rest
masses are also constant: gravitational units are
particle units . Since Dirac regards e or mass
ratios as constant, he identifies particle and
atomic units. Thus, despite his avowed intention
to write a theory which distinguishes between
atomic and Einstein units, the theory at hand does
not do this —it has constant y and is evidently GR
in a CI garb, essentially the theory of Deser and
Bramson (see Sec. III). The failure to incorporate
a distinction between the units can be traced to the
use of a single field P to describe the characteris-
tic length associated with gravitation, and that as-
sociated with rest masses.

The theory of Canuto et al. is also based on the
action (37), which is viewed as an action for grav-
itation, and on the law (38). But now p is not re-
garded as a field, but as the dimensionless conver-
sion factor between the units being used and E in
stein units: P is the 9 that converts from the CF
under consideration to the Einstein CF. The as-
sumption is that the p from the atomic to the Ein-
stein CF's, P„ is not constant, which is equivalent
to saying that y varies (Canuto et al. do not ques-
tion the constancy of n or m, /m~ —they implicitly
identify the particle and atomic CF's). A feature
of the theory is that the spacetime dependence of
p, is extrinsic; it is not determined by the equa-
tions, but must be put in by hand, presumably
from observations.

The law (38) can be squared with the dimension-
less character of P only when it is realized that P
is not a field; its numerical value depends on Aeo
CF's, one of which is the Einstein CF. For some

purposes one can think of P as an ordinary field
which transforms according to (38) when one
changes units of length provided one realizes that
all such transformations are with reference to the
Einstein CF which is the privileged CF in the the-
ory. The presence of a privileged CF is also seen
by realizing that since P is dimensionless, the in-
tegral in (37) does not have dimensions of action
[hc] even if one supplies factors of 5 and c. One
must of necessity divide it by the square of a
length. This may not be a variable quantity in any
CF, for inserting it under the integral would spoil
the latter's invariance under (I) and (38). So there
is a constant length in the theory in any CF. What-
ever ones views as to the compatibility between
such a thing and conformal or scale invariance, it
is clear that this constant length defines a privil-
eged CF. Thus the theory departs from the spirit,
if not the letter, of the principle of CI—that phys-
ics should look the same in any system of units,
and so there should not be a privileged one.

It must also be realized that because it does not
determine Po, the theory does not satisfy the mini-
mal demand that a gravitational theory should be
complete in order to be considered viable. " In ef-
fect the variability of y is put in, not demanded by
the theory. For all these reasons we do not find
the theory of Canuto et al. convincing as a theory
of variable y which also incorporates the idea of
CI.

The Hoyle-Narlikar CI gravitational theory was
originally interpreted as equivalent to GR within
each "domain" of the Universe. "" A new inter-
pretation has been given recently by Canuto and
Narlikar" in which it is regarded as a framework
for y variability in the context of cosmology. This
interpretation is not required by the equations. In
Hoyle-Narlikar theory rest masses are also re-
garded as proportional to a universal mass field or
function m; they have the form ~m. For an iso-
tropic expanding universe in which t is the cosmic
time and I the particle density, the equations only
require that in units for robics m is constant, An
~ t . These units can be identified as gravitation-
al; in them the gravitational equations look like
Einstein's equations (constant G). Hence y~A'.
Canuto and Narlikar postulate that ~ ~ t ' ', thus
obtaining varying y. 'The price is that in a comov-
ing volume element the number of particles varies
as t' '. matter is not conserved. Had they made
the more straightforward choice ~ =const there
would have been conservation of matter. And, of
course, then y =const. Since the equations do not
determine ~, it wouid seem most appropriate to
avoid arbitrary choices and to take it as constant,
especially when this is the only choice which re-
spects the conservation law. 'Thus, no strong
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evidence for the belief that the theory of Hoyle and
Narlikar implies y variability exists. The varia-
bility must be put in by hand.

Evidently, then, within the framework of genu-
inely CI theories involving a single dynamical ac-
tion for a mass field and gravitation, y must be
strictly constant. We must now investigate the
possibility that separating the issue of mass field
dynamics from that of gravitational dynamics may
lead to a viable CI theory of variable y. How can
one build an action S~ for gravitation which does
not include the mass field P'? Out of g 8 and its
derivatives one can build CI scalars" (i.e., the
squa, re of the Weyl tensor), but they all are quad-
ratic in the curvature. They would thus lead to
fourth-order gravitational equations which would
then lead to causal pathologies" or problems of
negative energies. ' A CI action which only in-
volves the curvature linearly can be built only with
the aid of a scalar field y as compensator for the
"bad" transformation properties of the curvature
under CT's. In fact, if one defines S~ by very
broad postulates paralleling postulates (b)-(e}of
Sec. III, the only possibility is

S — Sc g p' + —Ap +A+ -g d g, 40

S,' =ScA y + —,
' ay -g '~'d4x, (41)

where A. is a dimensionless real constant. How-
ever, one can combipe SI with the analogous terms
in S~ —9& to get, apart from the cosmological
terms proportional to l and A, , the S~ with y+A(i)
replacing y minus the S& with '(1+A')'?')I) replacing
)i. One can even get the l and A. terms by including
in (41}an appropriate quartic polynomial in y and

(I); this is implicitly included in (42) below. Since

y does not appear in matter, y+ A(l) is just as good
as it for the role of compensator field (it trans-

where ~ is a dimensionless constant. The factor 2

is conventional, and Ac appears because we define

[y] =I. '. Evidently, y-qQ ' under CT's. The qr

is directly related to the characteristic length of
gravitation.

The full CI theory is now described by the action
Sc —S& + Sz +S„, where S& is defined by (35), S~ is
the CI interaction term between y and ((), and S~ is
the matter action which includes (() (in all rest mas-
ses), but not y. The sign of Sc has been chosen
positive in order that a positive gravitational con-
stant emerge in gravitational units (p =const) for
which S~ looks like the Hilbert action. We choose
the sign with which S& enters into the total action
as negative so that )l) will be a field with positive
energy 4'

One conceivable CI S, would be

forms in the right way}. Also one can use
(1+A')' '(l) as a mass field if one divides all the
proportionality constants between rest masses and

the mass field by (1+A')'?'. Hence, inclusion of
5,' does not add anything to the physics. The only
other SI which is CI and does not introduce deriva-
tives higher than the second in any of the field
equations is

Sr= 2@C' E p -g d (42)

a&((I) ) =--,' y(1+ (j ) ',
P(y) = 6P,'[F(y/(l), ) +?((~/y, )

' l], -
(44)

(45)

(46)

As in Sec. III we have defined G as 3c'/4vh((), '
Thus the theory is a scalar-tensor theory with a
cosmological function A.~ For such a theory the
local Newtonian gravitational constant (in particle
units) is given by

G 4+ 2(o G /+4
3+2&v 3

where the second equality applies to the specific
theory being considered here. Evidently, if one
defines y in terms of G„, the theory is a CI vari-
able-y theory.

Is the theory viable? The first requirement for
this is that Q~&0, at least in the solar system.
This can be true only if the value (()0 of (I) at large
distance from the sun is positive [by (46) p&-1].
Then the solar-system value of ru, to($0), is be-
tween -2 and 0. By contrast, the current very
conservative limit on ~ of a scalar-tensor theory
from the solar system exper-iments is" (&u(& 30
(and more optimistically one believes today that
(&u(&200). Hence, regardless of the choice of l, A

and I', the theory just described is strongly ruled
out by experiment.

One could try to build more complicated CI the-
ories, for example, by using more scalar fields,
or a vector field in conjunction with a scalar one.
No physical basis for introducing these extra fields
exists. Also, the previous example suggests the

where F(x) is an arbitrary real function.
To find the physical content of the theory, we

pass to particle units which amounts to setting (I)

=(0 =constant. S„ then takes on its standard form
with constant rest masses while S~ —S& +S~ may be
written as

S=c (16wG) f [(R —fd(p)(

+A (y) ](-g)'?'d'x,

where
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theories would find it difficult to meet experiment-
al constraints. In general, complicated many-field
gravitational theories have fared badly in the con-
frontation with experiment. ' So without belaboring
the issue, one can state with some confidence that
there exists rlo viable and complete CI theory of
gravitation saith variable y. S~ =-z@c,~ ' +qR ' -g ' 'd x. (48)

if both functions are the same (real) power s of
L~g, for then the constant multiplying g can be
absorbed into the unimportant coefficient of the ac-
tion. Thus by defining g= L~'~'P'~"' we find that

V. BROKEN CONFORMAL INVARIANCE AND
VARIABI.E ~

If one's belief in the principle of CI is strong,
one would now reach a negative answer to the ques-
tion first raised by Dirac. We, however, think it
more prudent to also consider the alternative pos-
sibility that gravitation and the mass field explic-
itly break GI, and that as a result y actually var-
ies. In this manner the final decision as to the
correct gravitational theory is taken out of the pro-
vince of "pure thought" or esthetic considerations,
and the role of experiment as final arbiter is rec-
ognized all along.

The mass field is still defined by microphysics,
but we must now consider non-CI dynamics for it.
In the absence of CI we must specify the units in
which the action has the form we postulate. We
are first tempted to use particle units. In these p
=const, so only g„e is available for constructing
the action. The only physically reasonable candi-
date is the Hilbert action with a cosmological
term. Thus we find gravitation to be described by
QR with a constant y. Thus particle units are not
the appropriate ones for our task. Of the remain-
ing infinity of CF's, one is singled out by the phys-
ics: that whose unit of length is the characteristic
length defined by gravitation, namely, the Planck-
Wheeler length L~. These Planck-Wheeler units
are not a Priori identical to particle units. Let us
formulate 8& in them by adopting postulates (a)-(d)
of Sec. III (but now we allow L ~ to enter the the-

oryy).

At first sight the most general action allowed is
(35) with the 8 replaced by a general parameter
q.4' (We take the action with negative sign to avoid
negative energies and drop the cosmological term. )
But, in fact, we can multiply each term in (35) by
a different function of L~g without upsetting the
postulates. [We could not do this in Sec. III be-
cause L~ was explicitly excluded by postulate
(c).] The functions, however, are not arbitrary
for t:he following reason. . Inverse Compton lengths
are certain multiples of g. But we can think of
these multiples as being, say, seven times smaller
if we regard P as seven times larger Thus mu. lti-
plying g by a constant should not affect its dyna-
mics. We can easily see that this will be true only

Let us first assume that (48) also gives the grav-
itational dynamics. To visualize them we now pass
to particle units. An appropriate conformal factor
for the transformation is 0 =gL~ which will make
masses constant. Thus we replace g„„ in (48) by

g„,f ", where f=(pLpq )''-, g„„ is the metric in par
ticle units, and r =2(s+2) '. We also express R
in terms of the R built out of g„„,R is given by the
right-hand side of (30). (However, we do not
bother to express P in terms of its particle units
equivalent because we only want to focus on the dy-
namics of g&„.) After an integration by parts we
get

S~ =-p+c Lpg q
' "R

+-,'(1 —12qr+6qr')f ' "fQ ~g"8]

x(-g)'~' 'd x.

This is not familiar, but define

p =-8vqt' ",
&o = —,'(12qr —6qr' —1)q '(1 —r) '.

(49)

(5o)

(51)

Then by renaming Z„&g & (49) can be written in the
form (43) with &o constant. We recognize this as
the action for the Brans-Dicke theory of gravita-
tion (BDT ).33

Thus, somewhat suprisingly, the explicit break-
ing of CI of S& leads inescapably to BD'T. By its
original construction" BDT is evidentally a vari-
able-G theory (in particle units). Its generaliza-
tions, the scalar-tensor theories, 4' involve a vari-
able coupling constant v and are thus not in general
pure variable-0 theories. 44 In fact, BDT can be
viewed as the most general theory of variability of
the fundamental constant G. BDT has lately fallen
into disrepute because of the large values of u re-
quired to make its predictions conform with solar-
system experiments (&o &200). Our way of deriving
it here shows this "shortcoming" to be fictitious.
'The fundamental parameter is not &, but the GI-
breaking indices q- —', and s (for q= —', , s =0 we have
CI). For illustration consider the moderate values
s=0.2 (r=0.9) and q= —0.05. We get p&0 as re-
quired by the interpetation of p

' as the gra, vita-
tional constant, - and ~ =785 in agreement with all
experiments. Looked at this way BDT is perfectly
viable and not expected to depart much in its pre-
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dictions from GR.
Thus far our way to break CI is not the most gen-

eral possible. We could also introduce an explicit
non-CI action for gravitation. In Sec. III we re-
frained from such addition primarily because it
would break CI. Here we free ourselves from this
inhibition. Adding to (48) the Hilbert action we re-
cover the VMT theory proposed by one of us" as
the most general theory of variable rest masses
(in Planck-Wheeler units) which is consistent with
Einstein's equations. In particle units VMT has the
form of a scalar-tensor theory with a special (but
variable) ar. It is thus too general to be a theory
of the variability of the fundamental constant C. In
fact, because ~ is variable the relation between
the scalar field P and G is unclear. 44 However,
VMT's Newtonian approximation" defines a vari-
able ¹setonian gravitational constant G~. Thus
VMT is a theory of the variability of y -=G„m'/h'c;
we have argued earlier ' " that it is the most gen-
eral such theory. (The general scalar-tensor the-
ories cannot be characterized as neatly. 44)

In previous work, "4~ we demonstrated that
VMT's predictions for solar- system experim ents,
neutron stars, and black holes are in close accord
with those of GB for ~ & 0 and q&0. Thus, for z
& 0 and q &0 VMT is a viable theory. " (The case
r = I, q =

~ of VMT is actually the Py theory of Sec.
IV.) The agreement with GH improves all the time
as the Universe expands. 4' Yet VMT has a supreme
advantage over GR: it has nonsingular cosmologi-
cal solutions which, at late times, are indisting-
uishable from those of the GB which describe the
present Universe so well. In VMT models of our
expanding Universe, y decreases due to the ex-
pansion, but in the vast majority of models the
present time scale of variation is some orders of
magnitude longer than the Hubble time scale."
Thus Dirac's specific proposal' for variation on
the Hubble time scale does not receive support
from the VMT. By contrast many VMT models
predict very large overall variation of y from the
start of the expansion till today, allowing for a
semiquantitative explanation a la Dirac of the
(present) large value of y '. Thus if one shares
Dirac's confidence that the numerical agreement
between the "large numbers" is not a coincidence,
one cannot help seeing this model result as a sug-
gestion that y is variable in nature, and that gravi-
tation explicitly breaks conformal invariance.

VI. CONCLUSIONS

One conclusion is that microphysics is CI: the
dynamics of fermions, mesons and their strong,
weak, and electromagnetic interactions, as cur-
rently understood, are local units invariant. Best
masses do not break CI as interpreted; rather,
they define a mass field with important physical
implications.

A second conclusion is that mass field dynamics
may be reinterpreted as gravitational dynamics.
If one follows the example of microphysics and

postulates CI dynamics for the mass field, one has
no choice but to describe gravitation with general
relativity, and to accept the absolute constancy of
y. Attempts to circumvent this logic fail because
they introduce arbitrary elements into the theory,
or violate in spirit the principle of CI, or run into
contradictions with experience. Thus variation of

y can arise only if gravitation and the mass field
do not themselves respect CI.

The third conclusion is that allowing for an ex-
plicit controlled breaking of CI in mass field and
gravitational dynamics leads to precisely those
gravitational theories which are pure variable-y
theories: the Brans-Dicke theory and the VMT.
The first is viable for modest CI-breaking indices,
the second for wide ranges of these indices. - 'The

VMT predicts, in the framework of nonsingular
cosmological models, that y varies only weakly
today, but decreased very strongly in early stages
of the Universe. Thus one has at hand an explana-
tion of the large-numbers puzzle which does not
imply that general relativity is a bad description
for the Universe today.

The last conclusion is that since constancy of y
and CI of gravitation are two faces of the same
coin, one would do well to interpret any experi-
mental constraints on y variability in terms of
what they imply about GI or lack thereof in gravi-
tation's dynamics.
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