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The coupled Einstein-Maxwell system linearized away from an arbitrarily given spherically symmetric

background space-time is reduced from its four-dimensional to a two-dimensional form expressed solely in

terms of gauge-invariant geometrical perturbation objects. These objects, which besides the gravitational and

electromagnetic, also include mass-energy degrees of freedom, are defined on the two-manifold spanned by

the radial and time coordinates. For charged or uncharged arbitrary matter background the odd-parity

perturbation equations for example, reduce to three second-order linear scalar equations driven by matter

and charge inhomogeneities. These three equations describe the intercoupled gravitational, electromagnetic,

and acoustic perturbational degrees of freedom. For a charged black hole in an asymptotically de Sitter

space-time the gravitational and electromagnetic equations decouple into two inhomogeneous scalar wave

equations.

I. INTRODUCTION AND SUMMARY

This article extends the computational, structur-
al, and conceptual streamlining of the Einstein
field equations (linearized around a generic, in

general matter-occupied, spherically symmetric
space-time) from the pure Einstein system" to
the coupled Einstein-Maxwell system. Coupled
electromagnetic and gravitational perturbations
are being investigated in an active way. ' " So
far-the interest has centered itself solely on vac-
uum background space-times, Reissner-Nord-
strom space-time being the favorite. The anal-
ysis of this article does not suffer from this re-
striction. The approach of this article is naturally
tailored to any spherical background. This allows
one, therefore, to consider (a) the intercoupling
between acoustical, electromagnetic, as well as
gravitational degrees of freedom, and (b} the ef-
fect of the temporal or spatial structure of the
background on the evolution (and structure) of
any or all of these degrees of freedom. Thus, in
regard to item (b), for example, one has at one' s
disposal the means to discover which type of back-
ground best facilitates the generation of gravita-
tional radiation.

The discussion and classification of many phys-
ically and astrophysically interesting phenomena
(involving the Einstein field equations linearized
around spherical symmetry} has involved an in-
ordinate expenditure of effort by a number of
workers dealing with just the perturbation-theory
formalism itself. The lack of speedy progress
towards a detailed understanding of slightly

aspherical relativistic configurations has been
due to the lack of a sufficiently well-tailored
perturbational formalism. This has led to
claims that calculations in perturbation theory
are typically long, tedious, and filled with long
mathematical expressions, and at times are down-
right messy. Such an assessment does not, how-
ever, do justice to perturbation theory itself but
rather reflects (i) the proliferation of ad hoc co-
ordinate-dependent expressions with its concomi-
tant difficulties on one hand and (ii} the ambigu-
ities associated with infinitesimal coordinate (i.e. ,
"gauge") transformations on the other.

Now gauge ambiguities in perturbations away
from certain spherically symmetric space-times
have been eliminated by Moncrief's explicit in-
troduction of gauge invariants. "'" The equations
describing perturbations on a Robertson-Walker
space-time have also been given in terms of gauge
invariants only. " But the perturbation theory re-
veals its most striking structural beauty, versa-
tility, and ease of applicability when expressed in
terms of geometrical objects that are gauge in-
variants. In fact, it is difficult to find formula-
tions that require less investment to achieve equal
or higher levels of applicability.

The formulation in terms of gauge-invariant
geometrical objects" (tensors, vectors, and
scalars on a two-dimensional space-time) captures
the best of two worlds: namely, geometric for-
mulation (neither a coordinate nor a background
geometry commitment is necessary) and gauge
invariance (representation of any perturbed quan
tity is invariant and hence unique with respect to
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infinitesimal coordinate changes).
The background geometry as well as the coor-

dinate system used to describe it can be that of
an arbitrarily selected spherically symmetric
space-time. These space-times may be grouped
into overlapping classes associated with the names
(1) Reissner-Nordstrom, "(2) Bertotti-Robinson, "
(3) Vaidya, "(4) Robertson-Walker ""(5) Kan-
towski-Sachs, "(6} de Sitter and anti-de Sitter, "
or ( l) some collapsing" or radially pulsating star
with an asymptotically flat or de Sitter exterior.

The properties of matter, gravitational, and
electromagnetic perturbations on several of the
above-listed spherically symmetric space-times
have been considered by many workers. Their-
works are best classified as to the manner in
which the perturbational degrees of freedom in-
tercouple among each other. The intercoupling
is determined by the individual presence (or ab-
sence) of (a) background matter stress energy,
(b) background electromagnetic field, or (c) back-
ground charge current.

Thus, in the absence of all three of these back-
ground quantities each perturbational degree of
freedom evolves independently. This corresponds,
for example, to the propagation of gravitational
and electromagnetic waves in a Schwarzschild
geometry. "' '""" On the other hand, energy
might be fed by some matter sources into the '

gravitational or electromagnetic degrees of free-
dom. This corresponds, for example, to (i) ra-
diation from an uncharged"'" or charged"'" par-
ticle falling into or passing by a Schwarzschild
black hole, (ii) 'Machian effects of a slowly rotat-
ing uncharged'7'" or charged" star, or (iii) star
suffering from odd-parity perturbations such as
differential rotations" or torsional oscillations.

If only the background matter stress-eriergy
tensor is nonzero then there is only an intercou-
pling between the acoustical and the gravitational
waves. An example of 'this is a star undergoing
even-parity pressure"' oscillations. If only the
background electromagnetic tensor is nonzero,
then electromagnetic and gravitational waves are
intercoupled. ' " The associated coupled modes
are very directly described in terms of a beating
phenomenon, Faraday rotation, or both. ' The
source of such coupled modes may be an un-
charged4' or a charged particle falling into, say,
a Reissner-Nordstrom black hole.

Nothing seems to be known when all three waves
(gravitational, acoustical, electromagnetic) are
intercoupled by virtue of both the matter as well
as the electromagnetic (together with possibly
the charge current} background being nonzero.

It is clear that any spherically symmetric space-
time together with a gauge-invariant perturbation,

projected onto a spacelike hypersurface, ordinar-
ily represents a moving point in superspace. "
The background space-times under considera-
tion in this article have two Killing vectors.
Consequently, if the spacelike hypersurface is
compact, then a perturbation must satisfy addi-
tional initial-value constraints associated with
these Killing vectors. This is due to the linear-
ization instability. ""

The body of the paper is arranged as follows.
Various background tensor fields (metric, Max-
well, electromagnetic, and matter stress-energy)
as well as the background Einstein and Maxwell
field equations for any spherically symmetric
space-time are given geometrically in reduced
form on a two-dimensional manifold in Sec. II.
In Sec. III the linearized Einstein field equations
are given both for odd and even parity in reduced
form in terms of gauge-invariant geometrical
objects on the above-mentioned two-dimensional
manifold. In Sec. IV the same is done for the
linearized Maxwell equations, in Sec. V for the
linearized electromagnetic stress-energy tensor,
and in Sec. VI for the odd-parity coupled Einstein-
Maxwell system, including the perturbed mass-
energy and charge conservation law. In addition,
if there is no charged background matter, the
linearized field equations are reduced to three
coupled scalar equations which are decoupled for
a charged black hole in an asymptotically de Sit-
ter space. Whereas Sec. VI considers the equa-
tions for l) 2, Sec. VII considers and decouples
them in an uncharged matter background for the
case l =1. Section VIII presents the even-parity
coupled Einstein-%howell system in terms of
gauge-invariant geometrical objects only.

Notation: Use louer-case letters for the bach
ground geometrical objects; indicate their per-
turbations by the prefix 6 and their gauge invart
ants by using capitals. We apply this rule con-
sistently to all geometrical objects except the
Einstein tensor and the metric tensor g„„, where
we attempt to deviate as little as possible from
the now well-established notation of Regge and
Wheeler. "

II. GEOMETRY AND ELECTROMAGNETIC FIELD ON N~:
BACKGROUND

a Maxwell field

gf»dx" n dx"= 2f~sdx~ Adxs+ &f,~dx'ndx~, (2.2)

Consider a spherically symmetric space-time
with a metric

ds =g~„dx dx

= g» dx"dxs+ r'(xc)[d8'+ sin'8 dy'], (2.l)
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a charge current

g ~dx =Jgdx

and a stress-energy tensor

t, „dx"dxv= f, ~dxAdx~

+ ,'t; r'(—xc)[de'+ sin'8 d y'].

(2.3)

(2.4)

is therefore

Bf„dx"«x = 2f'eA BdxA A. dxB+ Bf 'B&„dx' Adx'.

(2.7),
It follows that on a spherical space-time the elec-
tromagnetic stress-energy tensor, Eq. (2.5), has
the form

t'„„dx'dx"=8 [(f')'+(f ")']gABdxAdxBV 1

Capital latin indices A, B, C, . . . refer to some
as-yet-unspecified radial and time coordinates,
while lower-case latin indices a, b, c, .. . refer
to 8 and q. The functions r(xc), gAB(xc), fAB(xc),
and jA(xc) as well as the partial trace t,'= t,'+ t,'
are scalar, vector, and tensor fields on the to-
tally geodesic submanifold M' spanned by xc(C
= 0, 1). Covariant derivatives on M' and on the
unit two-sphere (spanned by x') will be indicated
by a vertical bar and a colon, respectively. Ob-
serve that spherical symmetry implies the vanish-
ing of the angular part of the charge current. The
off-diagonal elements (t,„and f,A) of any second-
rank tensor vanish for the same reason.

The stress-energy tensor decomposes into a
part due to matter and a part due to electromag-
netism

+8 [(f')'+( f ~)']g„dx'dx'. (2.8)

It turns out that ii the radial magnetic field (due
to magnetic monopoles, say) is nonvanishing, then
the parity of the electromagnetic and gravitational
perturbations is not conserved. In other words,
there a radial magnetic field brings about a cou-
pling between even- and odd-parity modes, which
are described by spherical harmonics of order
l, m. Instead of decoupling them after the linear-
ized Maxwell-Einstein system has been written
down, it is simpler to first do a duality transfor-
mation:

f'= f' coso +f *'sinn,

f "=—f'sinn +f "coso,

gmat+ gem
gV gV 4t V0

where

em ng & ngt:.=4 (f..f.gr"- .f.Bf"a..).-
71'

Let

zgABdx ndx = B(detgc ) 2[A&]dx A dx

(2.5)

which changes the background to an "extremal"
one,"i.e. , one having no radial magnetic field.
Linearize the Maxwell-Einstein system around it,
obtain the even and odd normal modes, and then
finally perform the inverse duality transformation
on them to obtain the coupled even- and odd-parity
modes, which solve the original linearized system
under consideration. In this paper we shall only
consider the Maxwell-Einstein perturbation prob-
lem on an extremal background, i.e. , one where
the background tensors are

f»dx" hdx = f'qABdxA A, dxB, (2.6)

be the antisymmetric unit tensor on M'. Any an-
tisymmetric tensor, including the Maxwell field,
on M' is a multiple of this unit tenser. Thus,

Bf~qdx h dx = Bf&ABdx Adx

t, jx'dx" =
3

f'g „Bdx"dxB+ f'g„dx'dxB. —
(2 9)

where

f8 — Lf CB Let

(2.10)

is the radial electric field.
Similarly, if p„ is the antisymmetric unit ten-

sor on the sphere of surface area 4'',
f„dx'ndx~= f *'q,~dx'ndx, ,

where

f, lllag — f ~
Cd—

v, =r,lr
be the vector field on M' constructed from the
scalar r(xc), which characterizes the concentric
spheres. The Einstein field equations for any
spherically symmetric space-time assume the
form of one tensor and one scalar equation on

M,

is the radial magnetic field. The Maxwell field
in a general spherically symmetric space-time

AB (VA IB A 8)

+( "C! + "C" )&AB= AB (2.11)
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8~-.'t '= vc "+vc~'-@.= —.'G ~. (2.12)

The conservation law implied by these equations
1s

(PfAB) 4v+jA

Aab C3

(2.16a)

(2.16b)

The vertical bars refer to covariant derivatives
on M', and @. to its Gaussian curvature defined by

For the extremal field Eq. (2.9), Eq. (2.16b) is
satisfied identically. Using Eq. (2.9) and the fact
that q

I
c= 0 the equation becomes

nD
AI B I C A I C IB .D " ABC

.AB(e/) =4.ejA (2.17)

= ~B6t(6BgAc - 6cgAB)

The stress-energy tensor is expressed in terms of
geometrical units (length '). The Maxwell equa-
tions are

f'".„=4'',
fr.B:.) = 0

(2.14)

(2.16)

and the Maxwell tensor as well as the current
vector are also expressed in term of geometrical
units (length '). In a spherically symmetric space-
time they are satisfied by expressions (2.2) and
(2.3). The only nontrivial equations are

The charge conservation equation implied by these
Maxwell equations is

(~j"}iA=0~

The field equations and their conservation laws
thus formulated, incorporate only the spherical
symmetry of space-time. They do not make any
coordinate or background geometry commitment
as is done explicitly or implicitly in standard
formulations. This can clearly be a great advan-
tage if one wishes. to let the equations speak for
themselves as to what, for example, the most
natural coordinate chart should be.

III. THE PERTURBED EINSTEIN EQUATIONS

Perturbations away from a given background geometry are determined by

(3.1)(h„„, ' —h~, „' —h„,„' +h „,„)+g~„(.h B' 'B —h o B'B-h p. B}+h„„R= 16vtbt „.
For a general spherically symmetric background metric (2.1) and stress-energy tensor (2.4) these per-
turbations can be expanded in terms of spherical harmonics characterized by the integers l, m.

Suppressing these angular integers, one has for odd-parity perturbations

and

h „dx"dx"=hA(x )S,(8, y}(dxAdx'+ dx'dxA)+ h(xc}(S,, b+Sb.,)dx'dx" (metric)

&t„„dx"dx"= &tA(xc)S,(8, y)(dx"dx'+ dx'dx") + &t(xc}(S..b + S...)dx'dx' (stress-energy),

(3.2)

(3.3)

where the expansion coefficients h„, h, &t„, and At have the usual geometrical significance on M, the
totally goedesic submanifold spanned by x (C = 0, 1). The odd-parity geometrical gauge-invariant pertur-
bation objects are'

k„=h„—r'(his') „(metric),
TA = tAt„- (t;/2)h„(stress-energy),
T = tbt - (t,'/2)h (stress-energy) .

The odd-parity linearized Einstein field equations are

(S,.b+S, ,): k„"=16xT (l ~ 2),
S: -[r'(r 'kA) —r4(r~k ) "j +(l —l)(l+2)k =16vr'TA (l~ 1).

Similarly, for even-parity perturbations one has

h»dx"dX"= hABYdx"dxB+ h„Y,(dxACx'+ dx'dxA}+ (y'KYy, +r'GbY, . )dx'dxb (metric)

and4'

(3.4)

(3.6a)

(3.6b)

(3.6a)

(3.6b)

(3 7)

&t„„dx~dx'= &tABYdxAdxB+ &tAY, (Chic'+dx'dx")+ (r tbt Yy, b+ tbt'Y, .b)dx'dxb (stress-energy) . (3.8)

The even geometric perturbation objects are
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&AB-&AB-PA(B-PB(A ~

(metric),k=E —2n pc
C C C

AB AB ABIC'P A PCIB t BPCIA &

A
= +tA —tA PC —+(t.'/ )G, A

T' = t t'- (p'/H)(Ht;/2)„,
T'= ~t' —(r't ~/2)G

where

(stress-energy),

(3.9)

(S.IOa)

(3.1Ob)

(3.10c)

(3.10d)

Pc kc B1 G, c'
The reduced even-parity linearized Einstein field equations are obtained by first substituting Eqs. (3.V)

and (3.8) into Eq. (3.1) and then by equating the coefficients of the linearly independent harmonics
I

IY, Y., Yy„& Y, ,) (3.11)

Y;~,II+ &l(l+1)Yy„=0 for I =0, 1,
as one can easily verify. This is remedied by a slight change in basis functions in Eq. (3.8),

&t„„dx"dx"=bt„BYdx"dx + htAY (dx"dx'+dx'dx")+r'&t'Yy, dx'dx + at'[Y, II+ —,'l(l+1)Yy„]dx~dx~.

This is the orthogonal basis used by Zerilli. The stress-energy gauge-invariant perturbation objects
with respect to this basis are the same as those given by Eqs. (3.10a)-(3.10d) except for the first scalar
(3.10c):

on the left-hand side to the corresponding coefficients on the right-hand side. This has been done for l ~ 2
in Ref. 1, where the corresponding equations on M' are given. However, for l = 0, 1 the set of harmonics
is not linearly independent. In fact,

C C C
AB tAB ABI Cp A PC(B B PC(A &

TA = htA —t„pC —r'(t;/4)G „,
T =Et —(p /y )(y t;l2) c+l(l+1)(t,'/4)G ) (stress-energy).

1l(l+ 1)

(3.12)

T'= &t' —(Ht:/2)G

The corresponding perturbed Einstein field equations are"'" "
Y; 2v (kAB Ic kcA IB kcB IA) [l(l + I)/y + Gc + G + 2lR]kAB 2g ABv (kBBIc kc IB kcv jB)g

+gAB(2v 'B+4v vv-G )kcB+ gA[Bl(l +I) y/' +B(Gcc+G,')+IR]kBB+2(vAk B+vBk „+k „IB)

-g„B 2k c +6vck c—,k = —16wT„B, (3.13a)
(l —l)(l+ 2)

Yy: —(k Ic+2vck + G,~k)+ [k IcIB+ 2vck Iv+ 2(vcIB+ vcv B)k ]

(s.lsb)

Y,.~+ —,'l(l+ 1)Yy„: kcc = —16vT'.

C 2P C

(3.13d)

Consider the linearized conservation equation 4(t~„' ) =0. It is in fact implied by the linearized field equa-
tions. It consists of a scalar and a vector equation, namely, "

(S.I4a)
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+ —,'(k „kc-A)t; + 2DBkBctcA+ kB,t'„,B. (3.14b)

These equations are identities if one uses the background field Eqs. (2.11), (2.12), the linearized field
Eqs. (3.13}, and the identity

AB IC CA IB CB IA} C IA IB +AB( CD C ID } ADB( C kE C } (kE gAB kAB} '

IV. PERTURBED MAXWELL FIELD EQUATIONS -FA' A+
2 F r'f-"B(r 'kA)IB=4E& & 1 (4 8a)

The linearized Maxwell equations together with
the linearized charge conservation equation are

Af„„'"=4whj +f,„.„h""
FA~B —EB~A=O, l & 1

F„=E„, l & 1.
(4.8b}

(4.8c)

+f""h „,„+f "(h„".„-—,'h"„.„), (4.1)

„„.,~=0, (4.2)

(4 3)

They govern perturbations in the electromagnetic
(em) field and in the charge current. For a gener-
al spherically symmetric background metric (2.1),
em field (2.2), and charge current (2.3), these
perturbations can be e~qaanded in terms of spher-
ical harmonics characterized by the integers l, m.

The perturbed charge conservation Eq. (4.3) is
trivially satisfied.

B. Even parity

Even-parity Maxwell and current perturbations
have the form (suppress the angular integers I
and m)

,'t f,„dx"—~dx" = 2&fAB(xc) Yd—x"+ dx'

A. Odd parity

Suppressing these integers, one has for odd-
parity perturbations

+ t f„(xc)Y,dx" ~ dx'

+ 26fYK IIdx Adxq

&j„dx"=&j„(x ) Ydx" + &j(x )Y,,dx'.

(4.9)

(4.10)

2&f„„dx"~ dx"= t fA(xc)S, dxA I dx

+ b j(S~,, —S,.~)dx' A dx, (4.4)

4j„dx"= hj(x )S,dx'. (4 5)

The corresponding gauge invariants are very easy
to obtain because D fA, n f, and hj are unaltered
by an infinitesimal odd-parity background coor-
dinate transformation. The odd-parity gauge-in-
variant geometrical perturbation objects are sim-
ply

~A = ~jA -&A Id" -&'P cIA
(current) .

~Ap
(4.i2)

The corresponding gauge-invariant geometrical
perturbation objects are therefore (see Appendix
for details)

AB fAB fAB Pc f Bt C IA fA PCI B &

IC C C

FA = +fA -fA P c~ (Mmnvell),

F=hf
(4.11)

(MKI+I ell), (4 8) The gauge invariants for the metric perturbations
are

(current),

and they satisfy the linearized Eqs. (4.1)-(4.3),
AB AB PA IB PBIA &

(metric) .
k=&-2v Pc

(4.i3)

In terms of these objects the linearized Maxwell equations (4.1) and (4.2} are

AB} t(t } A v A ( fAB}IC B+f ( BA IC BCIA kACIB}

~r'fA g (kCBID kcDIB kBDIc} r'fA k, C t

Y -FBIB=4~J l) 1

Y: FAB —EAl~ —EB)A, l ~ 1

0, l+0

(4.14a)

(4.14b)

(4.14c}

(4.14d)
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The linearized conservation equation (4.3} is

[y'(jA -jckc„)]"—l(l+1)j+j"[k+ qkc ] „=0, l & 0.
It is implied by Eqs. (4.14}.

(4.15)

V. THE PERTURBED ELECTROMAGNETIC STRESS-
ENERGY TENSOR

f..=~ (f..f. —4..f.af"').
471'

(5 1)

In fact, one has

The linearized Einstein equations (3.1) are cou-
pled to the linearized Mmavell equations (4.1) and
(4.2) by virtue of the fact that, in the presence of
a nonzero background electromagnetic field f„„,
first-order deviations bf„„away from f,„result in
first-order deviations At „away from the em
stress -energy tensor

as usual, suppressed. The to-be-determined odd-
and even-parity gauge-invariant stress-energy ob-
jects, Eqs. (3.5} and (3.10), must now be expressed
in terms of the odd- and even-parity gauge-invari-
ant electromagnetic objects, Eqs. (4.6) and (4.11),
as well as in terms of the corresponding gauge-
invariant metric objects, Eqs. (3.4} and (3.9).

The procedure is particularly easily accom-
plished for odd-parity modes. The expansion co-
efficients of Eq. (3.3) are obtained from (5.2}with
the help of (4.4) and the fact that

fc„dX dX =fABdX ~ dX

The result is

4«fA = -fA'&fc

-4k..f af '-2g. .&(f.sf ')] (5 2)

Focus, as usual, on a particular harmonic mode
characterized by the integers l and m, which are,

4m&f = ,'kf, Bf =—2kf,'. ——

Substitute these expressions into Eqs. (3.5), take
note of Eqs. (4.6), and obtain

1 c1"A = fA &c ~

—
I4m'

(odd-parity electromagnetic stress-energy) .
T=0

(5.3)

This is the odd-parity Maxwell source that drives the Einstein perturbation. The odd-parity linearized
Marvell-Einstein system is therefore given by Eqs. (6.1}below.

For even parity the construction is analogous. The result is that the even-parity stress-energy gauge
invariants, Eqs. (3.12), expressed in terms of the electromagnetic ones, Eqs. (4.11), are

4+TAB +AcfB +BcfA, kcDf Af B 4kABfCDf 4HgAB I
C C ' C D 1 CD & )

«&A=-fA'I" c ~

47t'T =0, l & 2

4&T =4vT = —«kfcD f —,'H, I & 0—
where

(even-parity electromagnetic
}stress-energy),

H = 2(ECDf - kDBf Cf c)
is the gauge-invariant perturbation scalar of f Bf ' .

On M the antisymmetric background Maxwell tensor fAB, Eq. (2.6), and the gauge-invariant perturbation
tensor EAB, Eq. (4.14c), can be expressed in terms of scalars as follows:

fAB =f~AB &

~CI D
GCDGAg o

Making use on M of the identity

~A
CB

the electromagnetic stress-energy gauge invariants Eqs. (5.4) reduce to
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4vTAB=F cDfgAB+Pf (kAB+kc gAB 2kcD~ A~ B) s
CID l 2 c C D

4vTA = F-~ecAf, l ~ 1

4mT2=0, l&2

4vT =F ecDf+ —,'f (k-kc ), l & 0

lo0

& (even-parity electromagnetic stress-energy) .

(5.5)

VI. THE COUPLED LINEARIZED EINSTEIN-MAXWELL
SYSTEM I

Here T "and T„"include all those stress-energy
gauge-invariant perturbations which are not elec-
tromagnetic perturbations. The perturbed conser-
vation equation

~(f""„+f.""},„=0

for odd parity is (l ~ 1)

(r'T„")" (l —1){l+-2)T "=r'q"F „. (6.3)

These are, in fact, implied by Eqs. (6.1) and Max-
well's equation (2.16a). Equation' (6.3) is the
("Lorentz") equation of motion for odd-parity mat-
ter perturbations.

The odd-parity perturbation equations (6.1)-(6.3)
can be given a simplified and more transparent
form by expressing them in terms of t artan's
calculus of the differential forms.

To obtain the equations governing a given odd-
parity perturbation mode of the metric and the
electromagnetic field, insert (5.3) into (3.6), and
(4.8c) into (4.8a). The result is evidently

k' =16mT" lo2 (6.1a)

[r -(x kA)lc & (& kc)IA1 +(l — )(I+2)kA

+ 4r2fAcF c =16vr2TA", l ~ 1 (6.1b)

E,„+-F rf -(r kA}~B
——4vJ, l ~ 1.(l+ )

(6.2}

the Hodge dual of d(r k„dx") with respect to
gABdx"dx and a specified orientation of M . A
second scalar is 4 with the property

d4 = «kAdx + other (matter-associated) terms .
In terms of the Hodge duals Eq. (6.4) and

«k„dx" =k "gA@x

and with the help of Eq. (2.6), the coupled equa-
tions (6.1)-(6.3) assume the form~'

-«d«k„dx" =16vT ', l o 2 (Einstein) (6.5a)

«d [r4«d(r kAdx")] + (l —1)(l + 2)k„dx" —4r f«dF

=16vr T„"dx", l ~ 1(Einstein) (6.5b)

*d«dF+ 2 F+r f«d(x kAdx")=4vJ,l(l +1)

l ~ 1 (Maxwell) (6.6)

«d(r ¹T„"dxA)+(I-1)(l +2)T "=xjAdX" »dF,

l ~ 1(Lorentz) . (6.7}

Alternatively, the (co)vectorial linearized Einstein
equation (6.5b) could be converted into a scalar
equation by operating on it with the operator +dr
and then using Eq. (6.4}. The result is

«d«r ~dr4 II + (l —1)(l + 2)11 —4¹d(f«dF)

= 16m«d(T„"dx") . (6.5b ')

Equations (6..5b') and (6.7) describe the coupled
acousto-electro-gravitational modes on a generic
spherically symmetric space-time.

A. Odd-parity coupled scalar modes

In order to solve the coupled system of Eqs.
(6.1)-(6.3), express all relevant dynamical wave
fields in terms of dimensionless scalar functions.
The gravitational degree of freedom is expressed
in terms of the covector field

k~dx"

on the manifold M . There are two scalars that
can be constructed from k&dx and which each give
rise directly to-its scalar master equations. They
are first of all

B. Coupled modes in space permeated by uncharged matter:
I&~ 2

I et us now assume that the spherically symme-
tric background is permeated by a radial electric
field, but that the matter permeating the space is
uncharged

gcdxc =O.

Consequently, the background Marvell field equa-
tion (2.17) yields

(~'f), A =o ~

11=«d(r k„dx ) =-e (r kA)~c,
t

(6.4) Thus, the radial background electric field has the
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well-known form

f=e/r'. (6.8)

In the presence of such a special background field
the Einstein Eq. (6.5b) assumes the form

d[r'«d(r k„dx") —4eF]

= -(l —1)(l + 2)*k„dx"+16vr *T„'dx

and dictates therefore that the right-hand side is
the exterior derivative of a scalar, say (l —1)
x(l + 2}C. Thus,

d 4 = «k„dx" —16m[(/ —1)(l + 2)] 'r «Tz "dx",

(6.9)
where

(/ —1)(l +2)4 =r «d(r k&dx") —4eF . (6.10)

The idea now is to consider the scalars 4 and I
as the new descriptors of the gravitational and
electromagnetic degrees of freedom, instead of
k„dx" and F. Eliminating k„dx" between Eqs. (6.9)

I

and (6.10) yields therefore

~4¹d(r~«d4) + (l —l)(l + 2)C

= —4eF + 16v[(/ —1)(l + 2)] r»dT„"dx
(6.11}

It is advantageous to cast this Einstein equation
into a form that has its second-order differential
operator the same as that of the Maxwell field Eq.
(6.6). This is achieved by letting

(6.12)

Thus

«d(r «d4) =«d(r «d(r4))

=-[r («~},cl
'

+,c r (vc vcv )(' ~

I c -2 I c c

where

vc = r, c/r .
Thus, the Einstein Eq. (6.11) becomes

«d¹dP+r '[vcv vc +l(-l + 1) —2]gi = 3F + 1—6—v[(/ —1)(l + 2)] 'r*dT„"dx" (Einstein) .r'
The Mmovell Eq. (6.6), using Eqs. (6.8), (6.10), and (6.12) is

4e' e
«d*dF +r 2 l(l + 1)+, F = ——

3 (l —1)(/ + 2)g~ + 4mJ (Maxwell) .

(6.13)

(6.14)

The conservation Eq. (6.7) for the type of background under consideration is

¹d(r'«T„'dx")+(/ —1)(l+2)T "=0 (matter). (6.15)

Equations (6.13)-(6.15) are the odd-parity equations that govern coupled gravitational, electromagnetic,
as well as matter perturbations (l ~ 2) away from any spherically symmetric space-time background oc-
cupied by uncharged matter.

C. Coupled modes in charged asymptotically de Sitter space

Let, for example, the background be a Reissner-Nordstrom black hole in an asymptotically de Sitter
space. Then the metric on M is

dr2
Z~sdx dx =-Z(r)«+ ~

R'(r

with

(6.16)

2m e A2
g(r) =1 — + f r. --

r 3

The equations for the decoupled normal modes can be obtained easily. Indeed for the metric (6.16),

c I c 2 6m 4e
VcV —Vc =

2
—

3 + 4 ~r
Thus, Eqs. (6.13) and (6.14}become

3 4e«d«4'+ —
2 l(l + 1) — + 2 4 =—3[3m@ 4eF] + 16-n'[(/ —1)(l + 2)] r «d(T~"'dx"),r
1 3m 4e

«d«dF +—
2 l(l + 1) — + 2 F =—3[-e(/ —1)(l +2)4 —3mF] +4mJ'.
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By setting

where

z =-,'[(l -1)(l + 2)]'",
these equations have the form

1 3m 4e*da +-I l(l+1) — +r r r'
3m -4e)

-4eg -3m L j'
ax red T„'dx"'

4mJ
(6.17)

which can be easily separated into the normal
modes by means of an orthogonal transformation.
Note that the de Sitter aspect of the geometry
makes itself felt on the perturbations not through
the potential but rather through the nature of the
second-order operator +yf+d. It reduces essen-
tially to Moncrief's result if A =0.

dS =r ~Tg
"0'x". (V.l)

In addition, Eq. (6.8) holds. It follows from Eqs.
(7.1) and (6.8) that the Einstein Eq. (6.5b) can be
integrated to give

sd(r k„dx ) =—4F+ 16vS, l =1 (Einstein) .4e
r'

(7.2}
Introduce this equation into the Maxwell equation
(6.6} to eliminate reference to the gravitational
perturbation k„dx, and obtain

2 4esd~E+ I +, E=4v[J-4eS], l=1 (Maxwell).r r'
(V.3}

This equation determines the electromagnetic di-
pole wave field.

Objections against the gauge invariance of the
Einstein equation (V.2) can be raised. Indeed the
gauge-invariant Eq. (3.4}

r kg=r h„(h/r ),g- (V.4)

VII. THE ODD-PARITY CASE: 1=1
I

For such a mode the three independent equations
are given by Eqs. (6.5b), (6.6), and (6.7). If one
specializes now to the case where the background
charge-current vector j&dx vanishes, then Eq.
(6.7) implies that r *T„"dx"is closed. Conse-
quently, there exists a scalar S such that

I

(„dx"= (S+x',
the perturbation (multiplied by r+) becomes

r K„=r h„-(g/r ),„, (V.5)

r2 ymatdxA ~

4

(ii} Solve the inhomogeneous Maxwell wave Eq.
(V.3) to determine the perturbed Mwtwell field E.

(iii) To find the perturbation in the gravitational
field k„dx ", solve the perturbed Einstein Eq.
(V.2}. This is accomplished by expressing k„dx"
in terms of a to-be-determined scalar tt),

r+k~dx+ =+d J (V.6)

(Qn M, which has an indefinite metric, this de-
composition is not unique. ) Thus, Eq. (7.2) be-
comes

and no gauge invariant such as Eq. (V.4) can there-
fore be constructed from h„. The h, necessary
for this construction, is indeterminate. Never-
theless, even though Eq. (7.5) is gauge dependent,
its curl

[(r h„)~s -(r h~)~Jdx "dx =d(r h„Cx")

d(r k„d-x"}

in Eq. (7.2) is independent of any gauge change.
It is now clear how to solve the coupled Ein-

stein-Mmnvell system Eqs. (7 ~ 1)-(V.3) in an ar-
bitrary uncharged spherically symmetric back-
ground:

(i) For any l =1 matter perturbation, which must
satisfy the equation of motion

d(r2~T„"dx")=0,
solve Eq. (7.1}for S as a line integral on M',

is not a gauge invariant at all when l =1. In fact,
for that angular mode, S, , +S~,,=O, and the me-
tric perturbation Eq, (3.2) has only the form

4e
gd gg =~E + 16vS .r (7.7)

h„»fx"Cx"=h„S,(dx"dx'+dx'Ch") .
Under an infinitesimal coordinate transformation
induced by.

One sees therefore that, for /. =1, odd-parity
gravitational perturbation (7.4) and hence h~dx is
determined modulo the gradient of some indeter-
minate scalar.
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VIII. COUPLED LINEARIZED EINSTEIN-MAXWELL SYSTEM: EVEN PARITY

To obtain the equations governing a given even-parity perturbation mode of the metric and the electro-
magnetic field, one must combine the linearized electromagnetic stress-energy gauge-invariant Eq. (5.5)
with the linearized Einstein field Eqs. (3.13). Also, using the background field Eqs. (2.11) and (2.12), one
has

2v (k„s[c - k,„~~-k,~ [„)- [(I—1)(l 2)/x'+4v c' + 6vcv ]k» - 2g„sv (k~v[, —k,~ [v —k,v ~s)g

y'

+2(v~k s+v~k „+k „(~)-g„~ 2k, 'c+Gvck c—,k
(I —1)(l+2)

= —4g Jsf&cv~ +2f' [k'zs+g»kc -2kove „e ~] —16vT„~', l ~ 0 (8.1a)

(8.1b)

( k ~& 2vck G +k)+ [k I+ID+2vck ~v+2(vc~D+vcvD)k ] k c ~D +cvk D +Qk c k c

= —4',vF' v+2f'(k —k ) —16wT'~" I- 0 (8.1c)

c= ]6&Z'2~t )o2. (8.1d)

These linearized Einstein field equations together
with the linearized Maxwell field Eqs. (4.14)
govern the even-parity interacting gravitational
and electromagnetic degrees of freedom coupled
to the uncharged and/or charged matter degrees
of freedom. No further dynamical equations are
necessary. In particular, the continuum analog
of the (perturbed) Lorentz equation of motion and

of the (perturbed) cha. rge conservation equation
are directly implied by the linearized field Eqs.
(8.1) and (4.14), respectively. The perturbed
Lorentz equation in terms of gauge-invariant mat-
ter and em field objects is Eqs. (3.14a) and

(3.14b). There the objects T», T„,T', and T'
must be replaced by the right-hand sides of Eqs.
(8.la)-(8.ld), respectively. The perturbed charge
conservation equation is simply Eq. (4.15).

SUMMARY AND CONCLUSION

Suppose one wishes to make some precise state-
-ments about first-order perturbations away from
some spherically symmetric space-time of one' s
choice. It is immaterial what the background
geometry or the relevant coordinate system might
be. If the perturbations are of odd [(-1)'"]par-
ity, Eqs. (6.5) and (6.6) [or Eqs. (6.1) and (6.2)]
give a minimal as well as complete description
of the linearized Einstein-Maxwell system. This
description includes via Eq. (6.7) [or Eq. (6.3))

the Lorentz equation of motion for the charged
matter distribution. The (co)vectorial Einstein
Eq. (6.5b) may be replaced by the scalar Eq.
(6.5b'). This scalar equation together with the
two scalar Eqs. (6.6) and (6.7) gives a necessary
and sufficient description of the physically very
rich" coupling between gravitational, electro-
magnetic, and acoustic perturbational degrees of
freedom. If the matter of the background is un-

charged then these equations can be replaced by
Eqs. (6,13)-(6.15) for I ~2, and by Eqs. (7.7) and

(7.3) for I = l. If the background contains no mat-
ter, then the relevant equations are Eqs. (6.17).

In all of these equations the nature of the per-
turbed matter as expressed by the respective
covector and scalar, T~'dz"and T -", is as yet
unspecified. They must be constructed in accor-
dance with the prescription given by Eqs. (3.5).

If one wishes to make precise statements about
even-parity [(-1)']perturbations, then, regardless
of the background geometry or coordinate system
in question, the relevant Einstein-Maxwell set of
coupled equations is Eqs. (8.1) and (4.14). As
discussed in Sec. VIII, they imply Eqs. (3.14) and
(4.15), the continuum perturbational analog of the
Lorentz equations of motion and of charge con-
servation. Thus, once one has constructed the
even-parity matter perturbation invariants in
accordance with Eqs. (3.12), one can investigate
coupled acousto- electro- gravitational modes
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that might be present in a star perturbed away
from equilibrium or in a star undergoing highly
nonlinear radial pulsations or general spherical
collapse. The junction conditions across the star's
surface are already known. ' Nevertheless, the
even-parity equation as exhibited here suffers
from a drawback that the odd-parity equations
do not have: The former have not been decoupled
to exhibit a single master scalar equation for the
gravitational perturbation degrees of freedom.

The outstanding problem for perturbation theory
away from generic spherically symmetric space-
times is this: Find a single scalar master equa-
tion for the even-parity gravitational degrees of
freedom. One's belief that this can be done is
supported not only by the existence of an even-
parity master equation for a vacuum background, "
but also by the fact that at least for a vacuum back-
ground even- and odd-parity perturbations are
obtainable from the same master equation. "

A warning is, however, in order. One should
not count on the Zerilli even-parity mast. er equa-
tion to be the prototype equation to be generalized
to generic spherically symmetric space-times.
This warning is motivated by the observation that
the odd-parity master scalar equation does not
reduce in a vacuum to the one given by Regge and

Wheeler. " Instead, their equation is in essence
the time component of the covectorial equation in
the gauge invariant @Ada". The decoupling they
achieve is made possible by the happy coincidence
that time is a cyclic coordinate of the Schwarz-
schild background. In view of the fact that Zer-
illi also makes repeated use of the cyclic nature
of the time coordinate, one cannot exclude the '

possibility that his master equation is some co-
ordinate component of a second-rank tensor equa-
tion.

APPENDIX: EVEN-PARITY MAXWELL AND CHARGE
GAUGE INVARIANTS

The gauge invariants for the perturbations (4.9)
and (4.10) are constructed in the standard way
by considering linear combinations of the Maxwell,
charge, and metric perturbation that stay un-
changed when the background is subjected to an
infinitesimal coordinate transf ormation. Such a
transformation is expressed in terms of the I ie
derivative with respect to (suppress angular in-
tegers l and m)

( dx' = $„(x )Ydx"+ $(x )Y,dx'.

The change due to an infinitesimal coordinate
transformation is

&f„=&f„-(f„;.k'+ f„P;,+f,.(';„),

and

h~„=h„„-((„„+$„., ~) .
These expressions, when rewritten in terms of
geometrical. objects on M', have the form

fAB fAB (fAB ~c f B~c IA fA ~CIB) &

nf A= &fA-fA'&c ~

bf=hf,

2A 2A (2AIC~ ~ tCIA)

~& =~&-&c&'~

and

AB AB (~A I B (8 I A) &

h„=h„- [$„+r'((I+),„j,
K = K- 2vct' c,
r'G =HG —2$.

Also, if
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