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Gravitation, geometry, and nonrelativistic quantum theory
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In Cartan's description, classical particles freely falling in a Newtonian gravitational field follow geodesics of a
curved spacetime. We cast this geodesic motion into generalized Hamiltonian form and quantize it by Dirac's
constraint method in a coordinate-independent way. The Dirac constraint takes a simjJified form in special
noninertial frames (nonrotating, rigid, Galilean, and Gaussian). Transformation theory of'tHe state function allows
us to compare descriptions of a given quantum state by two different observers and to illukti'die how the principle of
equivalence works for quantum systems. In particular, we show that. quantum states of-'a-,particle moving in a
homogeneous gravitational field and of the gravitational harmonic oscillator can be reduced to the study of plane
waves in an appropriate frame.

I; NEWTONIAN GRAVITY AND QUANTUM THEORY

Recent attempts to reconcile quantum field the-
ory with the general theory of relativity uncovered
an unsuspected number of conceptual difficulties.
While the least understood ones stem from at-
tempts to quantize geometry, others arise at a
more elementary level: It is not entirely clear
how to interpret relativistic quantum fields propa-
gating on curved classical backgrounds. ' A little
reflection shows that at the heart of this class of
difficulties lies a conflict between the local char-
acter of the principle of equivalence and the global
nature of some basic procedures in quantum theo-
ry.

In its simplest application, the principle of
equivalence asserts that freely falling particles
within a freely falling elevator are all brought to
rest or into a uniform rectilinear motion. The
situation is often described by saying that gravity
is locally indistinguishable from inertia and cannot
be logically conceived as a force. Globally, how-
ever, the tidal effects prevent the stacking of local
freely falling elevators into an all-encompassing
inertial frame. Unfortunately, such a frame is a
logical prerequisite for many conventional patterns
in quantum theory. For example, elementary par-
ticles are introduced as irreducible unitary rep-
resentations of the Poincarb group connecting dif-
ferent inertial frames. " The construction of these.
representations relies on the identification of mo-
mentum and energy with generators of spacetime
translations. In curved spacetimes, translational
symmetry is broken and if we try to introduce
particles by reference to their momenta and en-
ergies measured by a noninertial observer, we
are led to the unpalatable conclusion that different
observers do not agree on how many particles
there are in space at a given instant of time. '

After we trace such difficulties back to the prin-
ciple of equivalence, it becomes suddenly strange

that ordinary nonrelativistic quantum mechanics
can avoid similar dilemmas when Newtonian gravi-
tational fields are present. The principle of equiv-
alence is clearly applicable to Newtonian space-
times as well as to the general relativistic ones.
When Einstein initially calculated light deflection, '
he used the principle of equivalence in the New-
tonian context. A complete geometrical descrip-
tion of Newtonian spacetimes incorporating the
principle of equivalence was given by Cartan' and
developed later by many authors. As in relativ-
istic spacetimes, there is no global inertial frame
in a Newtonian spacetime which is curved by New-
tonian gravitation. Still, most of us are inclined
to evade the problem and quantize the motion of a
nonrelativistic particle in a Newtonian gravita-
tional field in the same way we quantize the mo-
tion in an ordinary potential field of force, start-
ing from the Schrodinger equation

its, g = [-(h'/2m) V"s,s, + my]g.

We use the Kronecker delta &" and the gravita-
tional potential p without an explanation. By writ-
ing the Schrodinger equation in this form we are ta-
citly assuming that there is an inertial frame and that
gravity is a force. Neither of these assumptions be-
ingtrue, we face the problem of whether Eq. (1.1) can
be justified within the framework of Cartan s geo-
metrical theory which respects the universal
character of Newtonian gravitation, speaking about
it in terms of a curvature of spacetime rather than
in terms of a force. More generally, we want to
discuss what form the Schrodinger equation takes
in noninertial frames 'and how different noninertial
observers describe a given quantum state of a
nonrelativistic system.

Let us briefly state the main conclusions. The
Schrodinger equation (1.1) makes sense when

properly interpreted. There is a geometrial pro-
cedure allowing us to write the Schrodinger equa-
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tion in an arbitrary noninertial frame in a space-
time curved by Newtonian gravitation. In special
frames, this equation takes on the form (1.1).
Moreover, different noninertial observers agree
that there is just one particle in space and on its
position distribution, though they disagree on its
energy and momentum. Nonrelativistic quantum
.mechanics escapes the difficulties of the relativ-
istic theory because Newtonian spacetimes possess
a unique foliation by leaves of absolute time. It
is the light-cone structure combined with the prin-
ciple of equivalence rather than the principle of
equivalence by itself which is to be blamed for the
conceptual complications of generally relativistic
quantum theory.

A different way of posing our problem is to order
basic physical theories in a three-dimensional dia-
gram (Fig. 1} indicating the role played by the
fundamental constants c, G, and h. What emerges
from the diagram is the limiting position which
some of the theories occupy with respect to others.

Start from what we shall call "the classical ver-
tex"—the beginning of every physicist's curricu-
lum. There, quantum effects are neglected (h=0),
the curvature of spacetime caused by gravitation
is unimportant (G= 0), and interactions are in-
stantaneous (c '= 0). Global inertial frames, con-
nected by the Galilei group, set the stage on which
nonrelativistic particles move, acting on each
other at a distance.

Let us next pass along the c ' axis into the spe-
cial theory of relativity. Interactions- start propa-
gating with finite speed and are described by Poin-
car0-invariant field equations. Quantum effects
are still neglected and global inertial frames are
at our disposal. Let us continue further into the
"classical plane" (c ' 0 0, G 4 0, h = 0) of the gen-
eral theory or relativity. The principle of equiva-

lence asserts that the global inertial frame no
longer exists but has been broken into local iner-
tial frames by the tidal effects of the gravitational
field. Classical fields are described by "generally
covariant" equations and the gravitational field
possesses its own dynamical degrees of freedom.
It is identified with the geometry of spacetime.

On the other border, the classical plane is
bounded by the G axis. On it the dynamical de-
grees of freedom belonging to the gravitational
field become frozen and interaction again becomes
instantaneous. However, the principle of equiva-
lence is still at work so that the. global inertial
frame cannot be recovered from the local inertial
pieces. Spacetime continues to be curved by New-
tonian gravitation described in geometrical terms
by Cartan.

Let us return to the classical vertex and take
off again, now in the vertical direction. The h. axis
is the seat of nonrelativistic quantum mechanics,
comparatively well understood in its conceptual
structure. From the Planck axis, we move into
the plane (c ' c0, G= 0, ho 0} representing rela-
tivistic quantum field theory. Beset by problems
of its own, this theory can at least rely on rigid
inertial frames for its formulation.

Through the equilateral triangle facing us in the
diagram, we must finally gaze into the interior of
our schematic pyramid, the terra incognita of
generally relativistic quantum field theory and
quantum gravity. The conceptual difficulties we
mentioned all reside in this largely unexplored re-
gion. All theories we represented by axes and
planes meeting in the classical vertex are but
limiting cases of the problematic theory hidden in-
side the pyramid.

One boundary, curiously enough, has, so far,
not been given much attention: It is the plane
(c '=0, GoO, h40}. It represents nonrelativistic
quantum theory in the Newton-Cartan spacetime.
There is at least one thing we need not worry
about on this side of the pyramid: quantum grav-
ity. This is because the dynamical degrees of
freedom of the gravitational field remain f rozen
in the c '= 0 plane. Such a simplification unfor-
tunately also means that we cannot learn anything
about quantum gravity from this limit. On the

other hand, spacetime is curved and global inertial
frames do not exist in the c '= 0 plane, while
spacetime is Qat and there are global inertial
frames in the G= 0 plane. We can thus hope to
get some insight into quantum theory. on curved
backgrounds from the c '=0 limit, insight which
is not readily available in the usual G= 0 limit.
Our diagram simply illustrates various "corre-
spondence principles" imposed on the yet unknown
generally relativistic quantum field theory.
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Following this program, we build a geometrical
description of the quantum mechanics of a single
nonrelativistic particle freely falling in an exter-
nal Newtonian gravitational field. We leave to a
later paper the quantum field theory of an unspeci-
fied number of identical particles interacting
through their own Newtonian gravitational field.

The classical part of the theory, characterizing
the free fall of a point particle as a geodesic mo-
tion in an appropriate spacetime, was developed
almost concurrently with the formulation of the
theory of relativity. The geometry of Galilean
spacetimes without gravitation was discussed by
Frank' and Weyl, ' of Newtonian spacetimes with
gravitation by tartan' and Friedrichs. " tartan's
theory was elaborated by Havas, "Trautman, " '~

Misner, "t"Dombrowski and Horneffer, ""and
Kurizle. " The correspondence transition from
general relativity to the Newton-tartan theory
was spelled out by Dautcourt" and Kunzle. " We
shall summarize the main geometrical features
of Newtonian spacetimes in Sec. II. The Galilei
group connecting inertial frames in spacetimes
free of gravitation gets extended into a "quasi-
Galilean gauge group" connecting Galilean (rigid,
nonrotating) frames in the presence of Newtonian
gravitational fields. ""Because the four-velocity
of a Galilean observer enters as an auxiliary
structure into the equation of a Newtonian geodes-
ic, it is important that both the classical and
quantum theory of freely falling particles be in-
variant with respect to this gauge group.

In Sec. III we derive the equation of a Newtonian
geodesic from a homogeneous Lagrangian and

cast the action principle into generalized Hamil-
tonian form. The action principle is invariant
under the quasi-Galilean gauge group.

In Sec. IV we write the action as it appears to
an arbitrary observer in the general gauge. We
also introduce a hierarchy of special observers,
including the Galilean obse~rver and the Gaussian
(freely falling and nonrotating) observer. We de-
parametrize the action by labeling the world lines
by the absolute time. We let each observer use
his comoving coordinates and discuss how to sim-
plify its action by gauge transformations.

By casting the action into generalized Hamilton-
ian form, we prepared everything for quantization
by Dirac's contraint method. The transition to
quantum theory is accomplished in Sec. V for an
arbitrary observer and an arbitrary gauge in a
coordinate-independent manner. We define an in-
ner product between any two state functions which
satisfy the Hamiltonian constraint. We prove that
this product does not depend on absolute time and
that it makes the Hamiltonian Hermitian for an
arbitrary observer. We also analyze the gauge

behavior of the state function.
The Hamiltonian constraint is deparametrized

by using the absolute time and comoving coordi-
nates of an observer (Sec. VI}. We show that the
resulting equation is nothing else but the Schro-
dinger equation which could have been obtained
directly by quantizing thd:, deparametrized action
principle. We notice the- Simplifications achieved
by special observers. In=particular, we recover
the Schr5dinger equation (1.1) for the Galilean ob-
server.

The last two sections are devoted to a detailed
discussion of two simple examples. We want to
see how the principle of equivalence works when

applied to nonrelativistic quantum mechanics. In
Sec. VII we observe the state of a free particle in
a space without gravitation from two different
frames, an inertial frame and uniformly accel-
erated frame (Einstein's elevator), and we com-
pare the two descriptions. We show how. to ob-
tain the stationary states in the accelerated frame
(Airy's functions) as appropriate "transforms" of.

stationary states in the inertial frame (plane
waves}. In Sec. VIII we apply the same technique
to a system moving in a true gravitational field,
namely, to the gravitational harmonic oscillator.
We compare the descriptions of the oscillator by
a Galilean and a Gaussian observer and we again
interpret stationary states in the Galilean frame
(Hermite functions) as appropriate "transforms"
of stationary states in the Gaussian frame (plane
waves). We hope that these two examples help to
develop an intuitive feeling about the relationship
between the principle of equivalence and quantum
mechanics.

II. GEOMETRY OF NEWTONIAN SPACETIMES

ge~h = 0

(8). The symmetric affine connection V„is
compatible with both metrics,

(2.1)

In this section we summarize the main geomet-
rical features of Newtonian spacetimes. For de-
tails, we refer the reader to papers by Traut-
man, '4 Kunzle, "and the review paper by the

Newtonian spacetimes are endowed with three
interrelated structures: the space metric g ~,
the time metric h. z, and the symmetric affine
connection O', . These structures satisfy the fol-
lowing conditions:

(A). The space metric g~~ is degenerate, with
signature (0;1,1, 1). Similarly, the time metric
is degenerate, with signature (1;0, 0, 0}. The two
metrics are mutually orthogonal,
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V g ~=0=V hy y a8' (2.2)

hafP 63u~ (2.3)

(C). The curvature tensor of the affine con-
nection has the properties ' g '= 5,X"Xb~,

ab

Q T~=1

u X'

(2.11)

(2.12)

(2.13)

(2.14)

I g~Q
;ty6i = ~ " Sv~ (2.5)

The time metric helps us to distinguish timelike
vectors from spacelike vectors,

& 0= so timelike
h salsa~

= O~m spacelike .
(2.6)

The space metric determines the norms of space-
like vectors: To every spacelike vector zv we
can find a covector n which generates zv by

Rfn y3 0 (2 4)

The coordinates of an event are x ={t,x'}, with
a=0, 3., 2, 3 and a=1, 2,, 3. Spacetime covariant
differentiation will also be denoted by a semicolon,
V Wo—

8

Greek indices are raised by the space metric g ~.

The curvature tensor Re&„,is introduced by the
convention

(2.15)

(2.16}

and are connected with the curvature tensor by

(2.17)0'6 tl~ lEv 63 '

Equation (2.11) implies that the vectors X' are
parallel propagated, so that the Galilean coordi-
nates are nonrotating. According to Eq. (2.12),
they are also Cartesian coordinates. The leaves
of a constant absolute time are thus flat. Equation
(2.13}means that the world lines of the Galilean
observer are parametrized by the absolute time T.
Equation (2.14) states that X' are the comoving
coordinates of the Galilean observer. From Eq.
(2.15), we learn that the Galilean observer is rig-
id, ' g' 't"=0, and nonrotating, g '~'=0. We also
learn that -P has the meaning of the gravitational
field strength,

(2.7)
(V„u)o=-u, ~u~= y'. (2.18)

The norm of zg is then defined by
According to Eq. (2.16}, g" has a potential P.

Newton's law of gravitation"
llzoll'-=g '~ w, . (2.8) 6$ = 4mp, (2.19)

The covectors

SON = 20o + Aogv (2.9}
can be then written as a restriction on the Hicci
tensor R z,

h ~=T T~, withT —= T (2.10)

generate the same vector w . The norm llavll,

however, does not depend on the auxiliary vector
v~ .

The basic structures A, ~, g ~, and V acquire
an operational meaning through the correlation
postulates

(a) timelike intervals can be measured by stan-
dard clocks,

(b) spacelike intervals can be measured by stan-
dard rods,

(c}neutral test particles move along timelike
geodesics.

From the fundamental postulates (A)-(C) there
follows the existence of privileged spacetime fields

T absolute time,
X' Galilean (nonrotating, Cartesian) coordi-

nates,
u four-velocity of the Galilean (rigid, non-

rotating) observer (frame),
gravitational field strength,

scalar gravitational potential,
which satisfy the conditions

R g= 41T pk~g ~ (2.20)

X'(x) = A', X'(x), T(x) = T(x) T„—
6""A' A'„=6'~, A', = const, T,= const, (2.21)

X'(x) = X'(x) —R'(T),

u (x)=u (x)+ U,(T)X' (x),

j(x)= y(x)+ ~,(T)X'(x)+ q (T),
U'=dR'/dT, 8'=dU'/dT=d R'/dT

(2.22)

(2.23)

(2.24)

(2.25)

While (2.21) is a Lie group, Eqs. (2.22)-(2.25)
contain four arbitrary functions of T, -namely,
R'(T) and y(T), and consequently represent a

The curvature tensor R && is uniquely deter-
mined by the elements T, X', u, and p by Eq.
(2.1'I). However, there exist many elements T,
X', u, and p interlocked by the relations (2.10)-
(2.16) and generating the same curvature tensor
(2.1V). Different Galilean observers are thus con-
nected by a gauge group which is a generalization
of the Galilei Lie group to spacetimes with gravi-
tational fields, "
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gauge group. Equations (2.22)-(2.25) connect two
Galilean frames by an arbitrary accelerated trans-
lation. The potential sp = 8,,(T)X'+ y(T) automati-
cally satisfies the Laplace equation and therefore
it cannot be distinguished from the "true" gravi-
tational potential. Equation (2.24) expresses the
principle of Einstein's elevator in a Newtonian
spacetime. %e require that all equations, classi-
cal and quantum, be form invariant with respect
to the quasi-Galilean gauge group (2.21)-(2.25).

III. NEWTONIAN GEODESICS

Geodesics can be defined as "straightest paths"
by the requirement that the tangent vector gg

—=~™
be parallel propagated along them,

(V n]} -av or x' +r x]'x"-x .Bx (3.1)

g ~=g ~-T(OX~)Ua+ U ~a~a' (3.3)

From g ~ and g ~ „weconstruct the Christoffel
symbol 'I' z„' by the standard prescription. Equa-
tions (2.2), (2.15), and (2.16) then ensure" that
the affine connection'Z'~~„has the form

(3.4)

For nondegenerate metrics, the compatibility con-
dition g ~.„=0 fixes I"~~„to be the Christoffel sym-
bol constructed from g ~. In Newtonian space-
times, the compatibility conditions (2.2) for the
degenerate metrics g ~, fi z are insufficient to fix
the affine connection. To express the Newtonian
affine connection in terms of the potentials f g"~,
u, T, ]P}, we must adjoin to Eq. (2.2) the supple-
mentary conditions (2.15), (2.16) characterizing
the Galilean observer.

We introduce first the covariant space metric
g ~ by the relations"

(3.2)

This metric is again degenerate, with signature
(0;1,1,1). We use it for lowering the Greek in-
dices. However, g z is not gauge independent.
If we change u according to Eq. (2.23), g ~

changes into

etrization independent. To write the Lagrangian,
we select a Galilean observer (u~, ]p) in the given
Newtonian spacetime f g ~, h~, v ) and write"

L(x, x)=- ,'g„-xx'(&„x")'-stsr„x". (3.6)

The Euler-Lagrange equations of the action (3.5)
and (3.6) imply" that

x +I „x'x"=N-'Nx&
Bw

where I 8„is given by Eq, (3.4) and

N= T, i = dT/dr

(3.V)

(3.8)

is called the lapse function. For T= y, the right-
hand side of Eq. (3.7}vanishes, which shows that
absolute time is an affine parameter.

From the homogeneous action (3.5) and (3.6),
we can pass to the generalized Hamiltonian for-
malism. " The four-momentum conjugate to ~e is

P =I .=N IJ ~x —ET

E= ,N 'g—~i—i~+ ]p . (3.9)

The canonical variables x and p are not inde-
pendent, being subject to the constraint

X—= z g p p&+ u p + ]t] = 0 (3.10)

which follows from Eqs. (3.9), (2.13), and (3.2). '

The original action principle is thus transformed
into the form

SS=O, S[*,S]= f d, S.d, (3.11)

where the variations of x and p are restricted
by the auxiliary condition (3.10). If we adjoin
(3.10) to the action (3.11) by a Lagrange multi-
plier N, we get the variational principle

IIS=O, Sl* p;N] fd~]S d-S]SC. ' (3.12)

in which all the variables x, p, and N can be
freely varied. The Hamilton equations imply that
~ is the lapse function, Eq. (3.8). The function
X(x,p) is often called the super-Hamiltonian.

Under the gauge transformation (2.22)-(2.25),
the Lagrangian (3.6) changes by a total time de-
rivative

While '1 ~„is not gauge invariant, the total con-
nection (3.4) is gauge invariant.

To quantize the geodesic motion, we must find
the action

I,(x, x) = 1.(x, x)+ i(x),
~(x) = V.(r) [Z'(r) -X'(x) j

PT T
—J] dr ,'U'(T)+ dT y(T—).

(3.13)

(3.14)

(s.5)

which yields the geodesics (3.1), (3.4) as ex-
tremal paths. The Lagrangian L,(x,x) must be a
homogeneous function of the first degree in the
four-velocity x so that the action (3.5) be param-

The action thus changes only by a boundary term
and the equations of motion remain the same. The
transformation (3.13) of the Lagrangian induces the
change

(s.15}
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=X(x p g" u y)=-X (3.16)

Equation (3.15} implies that the canonical action
(3.12) again changes only by a boundary term.

of the canonical momentum. This change is exactly
compensated by the gauge transformation (2.23)
and (2.24) of the potentials u and Ip, so that the
super-Hamiltonian stays invariant:

X=-X(x p .g ' u" y)

Gaussian observers are widely used in Rieman-
nian spacetimes. To pass from a Galilean ob-
server to a Gaussian observer in the Newtonian
spacetime, we write the Hamilton-Jacobi equation

X(x,p, = A ) -=u A, + —,'g 'A,A ~+ y = 0 (4.9)

for the principal function -A. Any particular solu-
tion A(x) of that equation defines a Gaussian ob-
server

V =Q +g A gt (4.10)
IV. GENERAL AND SPECIAL OBSERVERS:

DEPA RAM ETRIZATION

The action (3.12), (3.10) describes the motion
from the standpoint of a Galilean observer. We
now want to find the action as it appears to an ar-
bitrary observer. We characterize him by the
normalized four-velocity vector v,

(4.1)

and introduce the vector

(4.2)

which tells us how his motion deviates from that
of a Galilean observer. If we introduce v into
the super-Hamiltonian (3.10),

and, conversely, any Gaussian observer can be
generated in this way. "

Inertial observers exist only in spacetimes which
are free of gravitation; all other observers in the
'able (4.8) exist in arbitrary Newtonian spacetimes.

For a given observer, we can simplify the action
(4.'l) by (i) the choice of coordinates and (ii) the
choice (4.l} of gauge.

(i) Any three independent scalar functions Y'(x )
which are constant along the observer's world
lines are called his "comoving coordinates",

v Y'=0 (Y'-=Y' ). (4.11)

We insert the privileged coordinates jT, Y') into
the action (4.6). This yields

X=v p +-,'g '(p -A )(p~-A~)+p„, (4.3) p ~e = P~T+ P,Y', (4.12)

we can interpret A as the vector potential and with

y„=-y--,'g"'A A, (4.4) Pz=p v, P, =p Y, ,
as the scalar potential of the gravitational field
for the observer v . Once we admit A in the
super-Hamiltonian, we can also modify p by an
arbitrary gauge transformation

p, -p = p + &,(x) . (4.5)

This brings the action into the most general form

Yo -gogyb g

The super-Hamiltonian reduces to

X= P~+H,

where

(4.13)

(4.14)

S[~',«, ;«j = fdr(«, x' -««), (4.6}

H= ,'g"(P, -A,)(P,—-A)+ P„
= 2g"P,P~ A'P, +p. (4.15}

X=v p + ,'g '(p, -A )-(p~-A~)+y„,

where

A =A +X'~, Q„=Q„—v X (4.S)

v' '~'=0 rigid

v'I'~' = 0 nonrotating

v,.~v~= 0 freely fal1ing

Galilean
inertial

Gaussian
(4.8)

is the general gauge transformation of the gravita-
tional potentials.

Galilean observer is rigid and nonrotating.
Another important observer is a freely falling
observer who moves along geodesics. Combining
these properties, we get the whole hierarchy of
special observers,

Because A is a spacelike vector, it is completely
characterized by the three projections A'—=A Y' .

If we solve the constraint K= 0 with respect to
P~ and parametrize the world lines by the abso-
lute time y= T, the action reduces to the "depara-
metrized form"

(4.16)

%e see that II= -P~ is the energy of the particle
measured by the general observer v and ex-
pressed in an arbitrary gauge.

(ii) For a given observer, we can simplify the
gravitational potentials tp„and A' by the gauging
(4.'l). We shall summarize the final results" in a
table:
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Observer P otentials fined by picking out an arbitrary leaf of absolute
time T and by putting

General A'(, = 0 or (3I)„=0
Nonrotating A' = 0 (((((.)= J&-)'.,a,"(~)t)(*)

T
(5.5)

Rigid

Galilean

Gaussian

Inertial

+ah gab

A'= 0

A'= 0,
A'= 0

ga() 5ab

P gab= gab(T Ya)

p a() 5ab

X.= fl.,(T)Y', fl.,(T) = -fl,.(T),
(f)„=P —a &aaQ, Q~ Y"Y"

—&, V'(T)Y' —[dV,(T)ldT] Y',

q~~"~ T X~ X2 X3 = 1.e,8,y, 6 (5.6)

%e then form the parallelepiped with the edges
d, x, .a= 1, 2, 3, lying in the leaf T,

Here, dV~ is the invariant volume element on
the leaf T. To obtain an pgplicit expression for
dV~, we introduce the contravariant Levi-Civita
pseudotensor g ~". We cap characterize it com-
pletely by its antisymmetr'ya and by the property
that in oriented Galilean coordinates I(T, X')

(4.17} T d, x =0. (5.7)

In particular, for a Galilean observer the grav-
itational field influences the motion only through
the scalar potential, while for a Gaussian observ-
er only through the space metric g'"(T, Y'). ax =g d x~ ~

The volume element of the parallelepiped is

(5.8)

To each vector d, x, there corresponds a covec-
tor d, x such that

V. CONSTRAINT QUANTIZATION
dV~=T~ E

" d,xp,d2x) d, x6. (5.9)
We shall quantize the motion of a freely falling

particle by Dirac's method. " We start from the
generalized Hamiltonian form of the action written
for an arbitrary observer and in an arbitrary
gauge. First, we turn the coordinates x and the
momenta p into operators

x =x . P =-iV' (5.1)

Next, we interpret the super-Hamiltonian (4.6) as
an operator

X= - ,'i[v (x)v-, +v v (x)]+H„
= —f(V Va+ av . )+H , a

Here,

a„=,'g"( zv. -w. )(-zv,—-x,)+j„
= ——,'ga('V Vq+i(A V +gA . )+Q

(5.2)

(5.3)

is the Hamiltonian operator of the particle ob-
served by v . Finally, we impose the super-Ham-
iltonian constraint as a restriction on the state
function g(x),

Xji(x) = 0. (5.4)

The factor ordering in the super-Hamiltonian (5.2)
is such that the terms quadratic in the momenta
are replaced by the covariant Laplacian with re-
spect to the (degenerate) space metric g ~, and

the terms linear in the momenta are symmetrical-
ly ordered through anticommutators.

We now turn the space of state functions P(x) into
a Hilbert space. The inner product between two
functions which satisfy the constraint (5.4) is de-

J dVV n = dBV m n ~ 510
Fr
™

ayT

Note that Eq. (5.10) deals only with space vec-
tors on leaves of absolute time; the spacetime
volume element is not defined in Newtonian space-
times. One can easily check Eq. (5.10} by passing
to the Galilean system of coordinates.

Helped by the Gauss theorem, we are able to
evaluate the difference

((,
l (,) —(aa„(,

l (,) fd v„v.j;, =
T

„d(ST)j;,n. . (5.11)

The application of the theorem is justified, be-
cause

q»=-, [q,*(v™y,)~-(v j,*)j,] (5.12)

The covectors d, x are arbitrary up to terms
proportional to T; such terms, however, do not
contribute to the volume element (5.9).

The Hamiltonian (5.3) is Hermitian under the in-
ner product (5.5). The proof is based on Gauss's
theorem which takes the following form in Newton-
ian spacetimes:

I et zpo be a spacelike vector, zv T =, 0, and n
a unit spacelike vector normal to the boundary
8V~of avolume V~ ontheleaf T; putn =g nz. Fur-
ther, let d,x,d, x be the edges of a two-surface ele-
ment onthe boundary andd(8 V~) = & ~"'T n~ 4 x„d,x,
its surface area. Then
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is a spacelike vector. For state functions g„t/r,

vanishing sufficiently fast at spatial infinity 8T,
the last integral in Eq. (5.11) goes to zero. Ttus
means that II, is a Hermitian operator.

It is fairly straightforward to show that the in-
ner product (5.5) does not depend 'on the choice of
the leaf T. To do that, follow how the expression
(5.5) changes along the world lines v from one
leaf to another:

"~dV 0,"g.

rdVr[y,*(v V y, )+~(v V g, )y, +v, P,*y,]. (5.13)

The last term in Eq. (5.13) comes from the change
in the volume element,

(5.14)

Equation (5.14) can be proved by going to the
comoving coordinates (T, Y') of the observer z

the necessary details are found in Sec. VI.
Because p, and p, are subject to the constraint

(5.4}, we can rearrange the expression (5.13}into

the vector and scalar potentials change,

A =-A +6v

p-„=g„-A&v ——,'g ~5v 5v~,

(5.19)

x =x, p =p+~ (5.20)

can be considered as a canonical transformation
of the classical variables x, p . %hen we turn
these variables into operators (5.1) the transfor-
mation (5.20) is induced by the unitary operator

e fx(x)

through the formulas

(5.21)

and the super-Hamiltonian is split differently into
a -i(v V + —,'v . ) part and the H„part. The total
super-Hamiltonian, however, stays the same and
so does state function g(x} satisfying the constraint
(5.4). The transition amplitude (5.5) and the prob-
ability density (5.16) are observer independent.

(iii) Let us discuss finally how the constraint
quantization in the new gauge is related to the con-
straint quantization in the old gauge. The gauge
transformation

x = U 'g U , p = U 'p U

Ne introduce the new state function

(5.22)

(5.15)

and conclude that it vanishes by the argument used
in Eq. (5.11). The inner product is thus time in-
dependent.

Putting g, = g, = g in Eq. (5.15), we identify

cv=g*g (5.16)

as the probability density and

j = &i)*& tJ) Ag*t/- (5.1'l)

v -v =v+~v T &v =0 (5.18)

as the probability current. Both expressions are
referred to unit prope~ volume.

The quantum mechanics of a freely falling parti-
cle is based on the constraint (5.2)-(5.4) and the
inner product (5.5}. The theory is expressed in tbe
language which is manifestly covariant with re-
spect to the changes of (i) spacetime coordinates,
(ii) tbe observer, and (iii) the gauge. We shall
discuss these three changes in succession.

(i) The super-Hamiltonian (5.2) and (5.3) is a
scalar operator and the state function g(x) is a
scalar function. The Hamiltonian constraint (5.4)
is thus manifestly covariant with respect to the
change of coordinates. The probability density
(5.16) is a scalar and the inner product (5.5) is an
invariant.

(ii) When we pass from one observer to another,

g=U g. (5.23)

From Eq. (5.22}, it follows that

More generally, let F(x, p) be a polynomial opera-
tor function of p. Then

F(x, p) = F(x, U„'PU„)= U ~ 'F(x, P) U i (5.25)

(q ~F(x, P)y)= &q ~F(x, /)y). (5.26)

In particular, let F(x, p) be the super-Hamiltonian
(4.6) of the particle in the new gauge. This super-
Hamiltonian was constructed so that

X(x,P) =X(x, P) .
Putting Eqs. (5.25) and (5.2V) together,

(5.2'7)

(5.29)

X(x,p) = U,-'X(x,p)U„ (5.28)

we see that tbe constraint (5.4) on the old state
function P is equivalent to the constraint

x(x, -iv) (=0
on the new state function g.

Equation (5.29) tells us that the constraint quan-
tization in the new gauge is achieved by substituting
the old operator -iV for the new momentum p in
the classical super-Hamiltonian K(x, p), and by
imposing the super-Hamiltonian constraint on the
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VI. DEPARAMETRIZATION: SCHRODINGER'S
EQUATION FOR SPECIAL OBSERVERS

The Hamiltonian constraint (5.4) is nothing more
than the Schrodinger equation of the particle. This
fact clearly emerges when we write the constraint
in the comoving coordinates (T, Y').

To do that, we first express in these coordinates
the two divergences, v . andA . . For anarbi-
trary vector field zoo,

w, ,=w",,(r v'+ Y' Y,')

=(w T ) ~v~ —(w"T„)v'Y',~Y~

(6.1)

Because

(6.2)

is the Christoffel symbol of the metric g,~ and

g r/g = -g„g"r —-g,y(g' Y' Y&&}.yv"

= -2v Y'. Y~
@;P a (6.3)

is the logarithmic time derivative of its determi-
nant, Eq. (6.1) can be written as

w .,=(w r ), ' v'(+g, /g) rw+w'&, .
Specializing now tosv =v andre =A, we get

(6.4)

v . =-,'(gr/g), A'. =A'„. (6.5)

From here, we read out the action of the linear
differential operators contained in 3C,

(V Va+ 2V .a)$ g, r+ 4 (g,r/g)$

g -l /4 (g 1/4y)
6.6

(Aa V +aAa. )g ~A' g, + ~A'&, p

=g '(A'e + —'A' )g' 'g
t-

The quadratic operator g ~V'
V~ reduces to the

Laplacian d in space with the instantaneous metric

new state function &I(. Equation (5.26) implies that
the mean value of an observable F (x,p} construct-
ed from the new variables x,P can be calcu-
lated by substituting the old operators z and -iV
for x and p into F(x, p) and sandwiching E(x, -jV)
between the new state functions g. Finally, Eqs.
(5.21) and (5.23) give the new state function in
terms of the old state function. We shall see in
Secs. VII and VIII how these prescriptions work
for specific examples.

Let us finally note that the probability density
and the probability current are gauge independent,

(5.30)

j a —= ig*Va(— Aag-a)= ' lg*V—ag -Aa(ag =fa

(5.31)

i(g'/'&i() =[- —,'/(. +i(A'V, + ,'A'„)+-Q] g'/'g. (6.8)

Equation (6.8) is the ordinary Schrodinger equa-
tion for a nonrelativistic particle moving in a
space with a time-dependent metric g,~(T, Y')
under the influence of a vector potential A'(7, Y')
and a scalar potential &p(T, I"). The operator
acting on the state function g'/4g is the Hamilton-
ian operator obtained from the classical Hamil-
tonian (4.6) by standard Dirac rules: The mo-
mentum P, is replaced by the operator -iV, and
linear terms are symmetrically ordered by anti-
commutators. In a nonrigid system, it is impor-
tant to use the state function g'/4 g which is space
density of weight —,

' rather than a scalar. The con-
servation of probability follows then by standard
arguments, the inner product (5.5) assuming the
form

(&t(il &= j" (s ~ ((l (s ~
&(( ( ' )

Also, applied to the density g'/'g, the linear dif-
ferential operator

(Aa v +
~ Aa )gl/4 &t( (Aas + ~Ac )gl/4 i&(

g gl/4y (6.10)

is simply the Lie derivative along the space vector
A' on the leaf of absolute time.

The expression (6.5} for v . can be used to
prove Eq. (5.14} by going to comoving coordinates
fr, Y').

For the general observer v, we can simplify
the Schrodinger equation by the choice of gauge.
We have seen in Sec. IV that we can either make
A' divergence-free, or remove the scalar poten-
tial (p„. For special observers, the equation sim-
plifies even further. We summarize the canonical
forms of the Schrodinger equation in table (6.11)
which reflects the canonical forms [table (4.1'7) ]
of gravitational potentials:

Observer

General

or

Schr Minger's equation

i(g' g) = [-—,'n+iA'v, +(p]g'

i(g'/' y},= [-.'g" (-iV. -A.}

&& (-iV, -A,)]g'"y

gap x

g"~ V V~ g =g ~(&((» T T~ + &I(» Y'& T~,

(6. l )

The Hamiltonian constraint (6.4) thus assumes the
familiar form
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Nonrotating i( g'~'g) r = [-—,'a+ g„]g'~'g

iy, = [ —,'5"s,s„-in"(T)I;s,+ j„]y
[see table (4.17) for P„]

Rlgld

Galilean

Gaussian

Inertial

ig r= [- ,'&"—&,&,+P]P
i(a'" 4), T = —'~(g '"4)

(6.11)

In particular, we see that the geometrical. ap-
proach justifies the Schrodinger equation (1.1) in
Galilean frames, which was obtained by treating
gravity as an ordinary force and disregarding the
difficulties arising from the nonexistence of iner-
tial frames.

VII. PROBLEM 1: EINSTEIN'S ELEVATOR IN
NONRELATIVISTIC QUANTUM MECHANICS

iy, (T,X') = —,'~y(T, X'), — (V.1)

where h is the Laplacian in Cartesian coordinates
X'. We pass to the frame (T,X') of an Einstein's
elevator by the transformation (2.22)-(2.25) with

R'(T) = (—,
' 8T', 0, 0]. (V. 2)

This creates the homogeneous gravitational field

y(X')=ex', (7.3)

of intensity 8, along the negative X' axis. The

Because the Schrodinger equation has its famil-
iar form in Galilean frames, there are no surpris-
ing quantum effects, caused by Newtonian gravity,
which we could not foresee without the geometrical
formulation. However, the transformation theory
of the state function allows us to compare the de-
scriptions of a given quantum state by two differ-
ent observers and to obtain in this way interesting

- insights into how the "principle of equivalence"
works for quantum systems. We are ready to il-
lustrate this point on two typical examples:

(i) In this section, we shall look at the inertial
motion of a particle in a space free of gravitation,
first from an inertial frame of reference and then
from a uniformly accelerated frame (Einstein's
elevator) which simulates a homogeneous gravita-
tional field.

(ii) In the next section we shall observe a simple
system subject to a true gravitational field, name-
ly, the gravitational harmonic oscillator, first
from a Galilean and then from a Gaussian frame of
reference.

In our first example, the particle moving in an
inertial frame (T,X'f is described by the state
function g(T, X') satisfying the Schrodinger equa-
tion

ge(T, X) = ue(X) e ~

are, of course, plane waves:

(7.5)

u~ (X) -=ue(X) = (2m) '~'e+&, P,= av'2E; (7.6)

E must be non-negative, E& 0, in order that
ua(x) stay finite. In the momentum representa-
tion,

u, (P)= &(P-P,). (V.V)

The general solution of Eq. (V.1}is a linear super-
position of the plane waves (V.5) and ('l. 6).

Stationary solutions

y(T, X) = ue(X) e (7.8)

of Eq. (7.4} for a particle moving in a homogen-
eous field are equally well known (see, . e.g. ,
Landau and Lifshitz"). In the momentum repre-
sentation, Eq. (V.4) becomes

ie,(T, p) = (--,' p' ia e/sP ) y-(T, p), (7.9)

and its stationary solutions are

ue(P) = (1/V'2mB )e "e

They are normalized to the 6 function

dPu-*P u~ P =5E, -E, (V.ll)

and satisfy the completeness relation

dEQg Pg Qg P2 =~ Pg P2 ~

e(
(7.12)

The general solution of Eq. (V.4} is a linear super-
position of the stationary solutions (7.8) and
(7.10).

In the X representation, the functions ('l. 8) are
mapped into the Airy functions which remain finite
for all values of Ec (-~,~).39 The energy E can
thus take all real values. Our further calculations
are simplified if we stay in the P representation
(V.10).

In an inertial frame, the stationary solutions
(7.6) are simultaneously the eigenfunctions of the
momentum operator P= ie/8X corr-esponding to

Einstein elevator is a Galilean frame and in it the
Schrodinger equation assumes the form given in
table (6.11),

iq, (T,x') = (- —,'i + ex') j(T,x'), (7.4)

where 6 is the Laplacian in Cartesian coordi-
nates X'.

The motion in the X'=X' and X'= X' directions
can be separated off and, since it is unaffected by-
the "ficticious" field (7.3), it does not interest us.
We can thus focus on the one-dimensional problem
in the remaining direction X'—=X, X'=—X.

Stationary solutions of Eq. (V.l)
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the eigenvalues P,= +v'2E. This is possible be-
cause the H and P operators commute, [H, P] =0.
In the elevator frame, the stationary solutions
(7.10) are not eigenfunctions of the P= -i 8/BX
operator; in fact, the simultaneous eigenfunctions
of H and P do not exist, since

[H, p] = ie ~ o. (V.13)

Our aim is to relate the (l)(r, x) and )7)(T,X)
descriptions by our transformation theory. The
transformation (7.2) leads by E&I. (3.14) to the
gauge function

('l. 20)

g( T, p I = fd'p, ee( T, p; 0, p, ) )(0,p, ) .

Similarly, the plane wave

("I.21)

('7.5}, ('l.7) for the particle in the inertial frame:

(I, (O, P)=6(P P-,).
The solution of the Schrodinger equation match-

ing the initial condition (7.20) is, of course, the
propagator K(P, T;P„O)of the particle. Given
the state function $(O, P,) at T= 0, we obtain the
state function P(T, P) at T from the formula

a(r, x) = -ex' —-'8'r'. (7.14) Z(r, P; O, P,) = 6(P -P,)—e "»' ('l. 22)

y(T, X) = e"&' )q(T, X+ —,'er'). (7.16}

In particular, the plane wave (7.5), ('7.6) appears
as the state

(T,X) = (2v)-a/2e&Pp&T)x e&fpdT&p'&r) ('7.16
p

P,(T) = P, —8T, E,(T) = 'P, '(T)—
to an observer in the elevator. One can check di-
rectly that the state function (V.16}solves the
Schrbdinger equation (7.4}. However, this solu-
tion is obviously not a stationary solution of Eq.
('7.4), in spite of the fact that a classical particle
keeps its energy E while falling in the elevator.

To interpret the solution (V.16) we identify
P,(T) and Ep(T) as the momentum and .the kinetic
energy which a classical particle would have at an
instant T if it starts falling at T= 0 with the mo-
mentum P, in the elevator. Correspondingly, the
state function (V.16) is the simultaneous eigen-
function of the operators

P= i&)/&)X -and Hp= -pt). ('7. 18)

belonging to the eigenvalue P,(T) of the momentum
operator P, and to the eigenvalue E,(T) of the kin-
etic energy operator H, . In other words, it is al-
way's an eigenfunction of these operators, but at
each instant it belongs to different eigenvalues,
the eigenvalues changing with time according to
equations expected for a classical particle. We
label the function )/)~ (T,X) by the momentum P,(0}

Pp Pp which the particle has at the time T = 0.
In the P representation, P~ becomes

p

(I)p (T,P)=6(P-P (Tp))

T 1

&& exp;i dr —,
' P,'(T); (7.19)

lee p

at T= 0, the state function (7.19) for the particle
in the elevator coincides with the state function

The particle described by the state function )l)(T, X)
in an inertial frame appears to an accelerated ob-
server to be in the state

is the propagator of the particle in the inertial
frame. We have thus obtained the propagator for
the particle in the elevator by transforming the
propagator of the particle from an inertial frame.
Due to the commutation relations (V.13), g). (T,X)
cannot be an eigenfunction of H since it is an
eigenfunction of P. In fact, Eq. ("I.13) implies the
uncertainty relation

aP aE & —,'8 (7.23)

ke,(&,i) fad ()e (d ) eg(i ) e ' '. =
M po

('7.24)

We want to use this equation for the construction
of stationary states ue(P) in the elevator from the
stationary states ue(P) in the inertial frame. We

between the momentum and the total energy of the
parti. cle in the elevator. If P has a well-defined
value, as it does in the state (l)~ (T,X), the energy
E must be completely undetermined. We can ex-
plain this further by saying that a particle having
a definite momentum P is entirely smeared out
in its position X, so that it can be found anywhere
in the field of the gravitational potential (7.3).
While the kinetic energy E, of such a particle has
a definite value, the potential energy ('l. 3), which
is proportional to X, can attain any value with
e&lual probability; the same conclusion follows for
the total energy E.

These remarks help us to understand why the
transformed plane wave (V.16) is not a stationary
state for an observer in the elevator. We would
like, however, to analyze the situation further
and find an explicit connection between the sta-
tionary states for an inertial observer and the
stationary states for a uniformly accelerated ob-
server.

To do that, we take the plane wave (7.5) and

(7.V) which is a stationary state in the inertial
frame, observe it from the elevator, where it ap-
pears as a time-dependent state ('I.19), and ex-
pand this state in the stationary states (7.8) and
(7.9} in the elevator:
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thus forget the actual form ('7.10}of the stationary
states ue(P) and assume only that they form a
complete orthonormal set, Eqs. ('l.12) and (V.ll).

The expansion coefficient P~ (E} is the plane-
0.

wave state in the E representation. We can see,
however, that it must be at the same time the
conjugate form of the stationary state ue(P, ), i.e. ,
of the H eigenstate in the P representation:

0,( )=;*Pg. (V.25)

This follows by looking at Eq. (V.24} at T = 0 and

by comparing it with the completeness relation
("l.12), keeping in mind the initial condition ('l. 20).
We can then invert Eq. ('7.23} by taking its Fourier
transform in time, obtaining

OO

ue (P) ue *(PJ'= —dT )I/I-*,(T, P)e' ~ (V.26)
~00

The expression on the left-hand side of Eq. (V.26)
is the density matrix pe(P, P,) of the H eigenstate
.~E} in the P representation:

p/7(P, P,) = (Pi p; ~P,}=u;(P)u; (Pg,

p- = [E}(Ef

Equation ('l. 26) tells us that this density matrix is
the temporal Fourier transform of the plane wave
(in the P representation) observed in the elevator.

Equation (V.26) enables us to recover the state
function ue (P). Substituting the explicit form
("1.18) and ('7.1'7) of the state function g~ (T, P) into

0
Eq. ('l.26), we arrive at the integral

dT 6(P Po+ 8T)-
2r

x exp[-i( ,'Po'T —2P,8—T'+-'8'T')]e' . ('7.28)

Such a potential is produced, according to the New-
ton law of gravitation (2.19), within a spherically
symmetric body of a uniform density p, , with

CO = -PTER,
2 4

3
(8.2)

The particle is influenced by the gravitational
field of the body, but it is not supposed to interact
with its material in any other way.

In the Galilean frame, the Schrodinger equation
is [Table (6.11)]

ig r(T, X'}= (- —,'6+-, ~'H') g(T, X'}. (8.3)

y„(T,X) = u„(X)e (e", -

are the standard Hermite functions

u (X) 2(& /2n)-)/)4/( l)-&/2
8

x e &)/2)""'H„()t&oX},

E„=(n+ —') &&), n = 0, 1, 2, . ..

(8.5)

(8.6}

(8.7)

As in our previous example with the Einstein
elevator, it is best to carry out all calculations
in the P representation. The stationary solutions
are again the Hermite functions

We can separate the Cartesian coordinates X' and
thereby decompose the isotropic harmonic oscil-
lator (8.3} into three independent linear oscillators

i(7/ (T,X)= [-—,'(8'/SX')+ —,'&O'X']g(T, X). (8.4)

For simplicity, X denotes any one of the coordi
nates X', and we have retained the old symbol &7)

for the single separated component of the original
state function. In the following, we shall focus on
the one-dimensional problem (8.4).

Stationary solutions of Eq. (8.4),

Because

6(P P,+8T) =8 -'6(T -8 '(P, -P)), ('7.29)

(P) 2 o/2)nv 1/4( [) 1/2

)& e &~"2")H„(P/ &u). (8.8)

VIII. PROBLEM 2: GRAVITATIONAL HARMONIC
OSCILLATOR

The gravitational harmonic oscillator is a neu-
tral particle which, in a Galilean frame, freely
falls in a harmonic gravitational potential

y(X')= —,'~2E2 H2=5 X'X'. (8.1)

everything reduces to the simple substitution
T = (P, -P)/A and we get the expected result

(P )u g (Pg (1/y 2(&8 )e- i&//P- & & / ())P2) / 0

x(1/)/2v8)e ' e 0 "/" 0 ' e

(7.30)

We have thereby reconstructed the stationary
state ue(P) as the appropriate "transform" of the
plane wave ue(P}.

We note that they are orthogonal and satisfy the
completeness relation

g„P,u+P~ =&P~-P~ .
n=o

(8 9)

The general solution of Eq. (8.4) is a linear super-
position of stationary solutions (8.5)-(8.'7).

We now want to look at our harmonic oscillator
from a Gaussian frame of reference in which the
gravitational potentials P„andA' are gauged away.
Recall that Gaussian frames are freely falling and
nonrotating. One such frame is obviously realized
by test particles which are all released from rest
at a single moment of absolute time, say, at T= 0,
and which then oscillate freely, all with the same
frequency ~, in the interior field of the central
body. The transformation from the Galilean frame
{T,X') to this Gaussian frame {T,F'] is thus given
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by the formula

X'= F' cos&T. (8.10)

In fact, we need to find this solution, becagse A.

= -A. is the gauge function which removes the vec-
tor potential.

Since the motion (8.9} is spherically symmetric,
we seek a spherically symmetric solution of Eq.
(8.11),

-A r(T, R) = —,'(A „'+~'R'). (8.12)

One such solution is

A= —,
' &uR-'tan~dT = —,

'
&o sin2arT 6„Y'Y'. (8.13)

It generates the Gaussian observer (4.10),

i/ =(I, -&uK'tan+T). (8.14}

It is easy to check that the coordinates Y' given by
Eq. (8.10}are comoving coordinates of this ob-
server, as

(8Y'/8K )@~=0, X~=(T,K'). (8.15)

They are uniquely specified by the further condi-
tion that F' and X' coincide at T=O.

The metric tensor g"—=g ~Y' Yz takes the form

We know from the general theory of Sec. IV that
we can generate the transformation (8.10) from a
particular solution A(T, X') of the Hamilton-Jacobi
equation (4.9) which for the harmonic oscillator
takes the form

-A,(T,X') = ,'(&"—A,A, + id'6„X'X') (.8.11)

The gravitational field influences the motion of the
particle only through the conformal dependence of
the metric g" on time. We simplify the problem
even further if we label the leaves of absolute
time by a nem parameter

dT cos '&T = & ' tan~T.
0

(8.19)

or
~ 1

g4 yy ~

A-ny separated component of 4 is connected with
the corresponding separated component of g by an
appropriate piece of Eq. (8.1I):

g(T Y) cosl/2~T e(&/&) ital' sin2u&T

(8.22)

x g(T, Ycos+T). (8.23)

We need to concentrate only on a single component
equation (8.22}.

Stationary solutions of Eq. (8.22)—stationary in
the new time &—are, of course, the plane waves

4~ (f, Y) = u; (Y)e (8.24)

With this parameter, the Schrodinger equation
formally reduces to that of a free particle

z4, (&, Y')=--,' n,e. (8.20)

Equations (8.18) or (8.20) can again be separated
in coordinates F'. For each single component
function, we get

cos +T 4 yz (8.21)

g~~= cos 2 (8.16) u- (Y}= e'Po" E= 'P '-
Po ~2

t 2 0 t

in the Gaussian coordinates fT, Y'). We see that
the Gaussian system is not rigid and the metric
becomes singular every half period, T= —,'(i//id),
~ (v/~), 2 (&/v), . .. . This singularity is a coordi-
nate singularity caused by the isochronous charac-
ter of the harmonic motion, which forces all the
reference points of the Gaussian frame, whatever
place they have been released from, to meet si-
multaneously at the center.

In the Gaussian coordinates (8.9) and the gauge
(8.13), the Schrodinger equation for the ~ -density
state function

e(T, Y') =g' g=g' e''g

and the general solution of Eq. (8.22) is their lin-
ear superposition.

We have. thus transformed the gravitational har-
monic oscillator in a Galilean frame into a system
which formally looks like a free particle in the
Gaussian frame. We mant now to knom how the
plane wave (8.24} looks in the original Galilean
frame and what its relationship is to the Hermite
functions (8.6).

Equation (8.23) can be inverted, yielding

g (T K}—cos i/2~T e

x 4(T,Kcos &T). (8.25}

= cos"'~T
x exp(-,'i~ sin2&uT 6„Y'Y')
x g(T, Y'cos&uT)

takes the simple form [Table (6.11)]
g4' g= —g cos TAO+ q

g -=6"(e/s Y')(s/s Y').

(8.1V)

(8.18)

In particular, the plane wave (8.24) transforms
into the function

g~ (T,X) = cos '/'&oT
2m

x exp( i [P,X cos ' idT ——,
' idX' tanid T

—(I/2~d)Po'tan(uT]). (8.26)

Of course, one can check directly that this rath-
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er complicated function of X and T satisfies the
Schr6dinger equation (8.4). Obviously, the state
(8.26) is neither a stationary solution of Eq. (8.4)
nor an eigenfunction of the momentum operator P.
We get an insight into the physical meaning of this
state by noticing that it reduces to a plane wave
in the Galilean frame at the initial time T= 0,

a
(0 X) eiPpx

~2m
(8.2'I )

Therefore, the time-dependent state function (8.26)

describes the process of the scattering of the plane
wave (8.2V) by the harmonic potential. The state
{8.27) is an eigenstate of the momentum operator
P= -i S/SX for the eigenvalue P,=P, . As time
goes on, the incident wave breaks into components
with other values of P and the state ceases to be
an eigenstate of P. The probability amplitude for
the momentum P at the time T is obtained by cast-
ing the state function (8.26) into the P representa-
tion:

] 00

gp (T, P) = —dX(P- (T,X)e 'P
27T CO

=—cos '~ ' &oT exp (i/2 p~) (P'+ P,') cot&oT-
27r sin&T

x dXexp - 2i~tan~T X+ ~ ' Pcot~T -P, sin '~T (8.28)

The Gaussian integral in Eq. (8.28) has the value
(-2vip~ 'tan 'p~T)'~', so that

(P (T,P) = (1/427iipi) sin '~'piT

&& exp{(i/2&v) [ ctopiT( P'+ P,')

—2sin '&uTPPp]). (8.29}

y (O, P)=5(P-P,) (8.3o)

in the momentum representation.
An alternative description of the state (8.26) is

this: It is an eigenstate of an appropriate compo-
nent of a conserved time-dependent operator
P,(T) which is constructed from the basic op-
erators X' and P, in the Galilean frame in such
a way that it reduces to the momentum operator
P, at T=O. Let us show how to obtain this well-
known operator from our transformation theory.
We take the momentum operator P, in the Galilean
frame and cast it into the momentum operator P,
in the Gaussian frame by the coordinate transfor-
mation (8.10) accompanied by the gauging (8.13),

8X" Bx{T,FP)
a 5 gya gy'a

(8.31)= P, cos~T+ (dX. sin~T.

The operator P„expressed in this manner as a
function of T, X', and P„is the desired operator

This is the familiar form of the propagator
K(P, T; Pp, 0) for the harmonic oscillator in the
momentum representation. We obtained this prop-
agator by transforming the "free particle" propa-
gator from the Gaussian frame into the Galilean
frame. The initial condition (8.2V) takes the form

P,(T). It is conserved because

dPa(T) 9P,(T) 1
t P (T),H 1 = 0.

dT dT i
(8.32)

(T,P)= gyp (n)'u„(P)e ""'~""r
n=o

(8.33)

The coefficients gP (n) express the state (8.29) in
the energy representation. For T= 0, we can take
into account the initial condition (8.30) and com-
pa.re Eq. (8.33) with the completeness relation
(8.9}, concluding that

yp (n)=u„*(P,).
The temporal Fourier transform of Eq. (8.33)
gives us then the projection operator into the sta-
tionary state ~EJ in terms of the plane wave
(8.29),

(8.34).

00

u (P}u~(P )= dTy (T P) ei'"+'~ "~
a p

~2 Pp

(8.35)

From here, we can recover the Hermite functions

The state function (8.26) is an eigenfunction of the
operator (8.31) belonging to the eigenvalue Pp at
any time T.

Our last step is to connect "the plane wave in
the Gaussian frame observed from the Galilean
frame, " i.e. , the state (8.26} or (8.29), with sta-
tionary states in the Galilean frame, i.e. , with the
Hermite functions (8.5}-(8.8}. The procedure is
the same as for the Einstein elevator. We decom-
pose the function (8.29) into Hermite functions
(8.8),
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starting from the plane waves in the Gaussian
frame.

The problems we have studied in Secs. VII and
VIII illustrate how the solution of the Schrodinger
equation in one frame of reference generates the
solution of the Schr5dinger equation in another
frame of reference. In this way, we have been
able to reduce the motion of a particle in a homo-
geneous field and the motion of a harmonic oscil-
lator to the motion of a free particle. Such a
simple reduction works only for these elementary
systems. In general, the metric tensor in the
Gaussian frame depends on T and F' in a com-
plicated manner and the rescaling of time does
not bring it back to the Kronecker 5. Stationary
states do not then exist in the Gaussian frame.
Still, we can transform any solution of the Schr5-
dinger equation in one frame into a solution of the
corresponding equation in any other frame by a

combination of coordinate and gauge transforma-
tions.
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