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Force on a static charge outside a Schwarzschild black hole
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An exact calculation of the gravitationally induced electrostatic self-force on a charged test particle held stationary
outside a Schwarzschild black hole is presented. After mass renormalization, there remains a finite repulsive force
proportional to the square of the charge of the particle and to the mass of the black hole. In a local, freely falling
frame momentarily at rest with respect to the charge, the repulsive force varies as the inverse cube of the
Schwarzschild coordinate distance of the charge from the origin.

I. INTRODUCTION

Over the last twenty years a number of auth-
ors' ' have investigated the influence of a gravi-
tational field on charged test particles. Such work
has been motivated both by formal and by practi-
cal considerations. On the formal side, the ques-
tions involved are interesting because they are
simple yet subtle. As DeWitt and DeWitt' pointed
out, they raise "some of the most delicate issues
in classical particle physics. " On the practical
side, this work may be viewed as a small part of
the ongoing astrophysical research program' to
understand electrodynamical effects in processes
such as accretion and x-ray emission around black
holes and other strong gravitational sources.

One of the results of these investigations is that
a gravitational field modifies the electrostatic self-
interaction of a-charged particle in, such a way that
the particle experiences a finite self-force. The
origin of this force is the distortion of the charge's
long-range Coulomb field by the spacetime curva-
ture associated with the gravitational field. A
variety of techniques have been used to demon-
strate this. DeWitt and DeWitt' employed a for-
malism of curved-space covariant Green's func-
tions previously developed by DeWitt and Brehme. '
Berends and Gastmans' used covariant perturba-
tion theory to do a quantum-field-theoretic deriva-
tion. MacGruder used an approximate Lagrangian
for charged-particle motion derived by Bazanski'
from the Einstein field equations. Most recently,
Vilenkin' has approached the problem in perhaps
the most straightforward way, using the curved-
space Maxwell equations. In all of these approach-
es the authors assumed that the gravitational field
was weak; thus they worked to leading order in the
small dimensionless quantity GM/c'r, where M is
the mass of the gravitational source and r is the
distance from it. They found that the self-force
on a charge e is repulsive (i.e., directed away
from the gravitational source) and has magnitude
GMe'/c'r'

The purpose of this paper is to present an exact

calculation, valid to all orders in GM/c'r, of the
gravitationally induced electrostatic self-force on
a charged test particle which is held stationary
outside a Schwarzschild black hole. In this admit-
tedly special case an exact calculation is made
possible by the fortuitous existence of a previous-
ly discovered' ' analytic solution to the curved-
space Maxwell equations which are the basis of
our approach. Our result for the magnitude of the
repulsive self-force is

GMe'
self C2&s

Here rs is the Schwarzschild radial coordinate
of the stationary test particle. This formula
gives the self-force which would be measured by
an instantaneously eomoving, freely falling ob-
server at the position of the test particle. We note
again that Eq. (1) is exact. Its similarity to the
weak-field result obtained by previous authors is
a coincidence resulting from our particular
choice of Schwarzschild coordinates and a freely
falling observer. For example, in terms of iso-
tropic coordinates [see Eq. (11)], the self-force
takes the form

GMe' 1
c'r ' (1+GM/2c'r)'

e' GM 3GM
c2r

We arrive at our result by calculating the exter-
nal force required to hold the test particle static
and find that it is given by

Fext Ca& '~ C2& 3
s S / s

where m is the mass of the test particle.
The first term is present for uncharged as well

as for charged test particles. In Newtonian lang-
uage, it is just the negative of the gravitational
force that the hole exerts on the test particle.

The second term is peculiar to charged test
particles. Since the hole is uncharged, we must
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interpret it as arising from the test particle's
electrostatic self-interaction. It vanishes as M

0, indicating that the effect is induced by the
hole's, spacetime curvature. We conclude that the
hole's gravitational field causes a stationary test
particle to feel a repulsive self-force as given in
(1). As a consequence, the external force needed
to support a charged test particle differs by this
amount from that for an uncharged one of the same
mass.

It may appear strange at first glance that a
gravitational field can induce such a self-force,
because the equivalence principle assures us that,
for a freely falling observer, in the neighborhood
of the test particle the same Maxwell equations
hold as in Qat spacetime, where there is no self-
force. But this paradox is resolved when one
realizes that the equivalence principle does not
say that these same differential equations will

have the same solution locally as in Qat space-
time. Indeed, a solution for the potential which

locally looks just like the flat-space one would

not have the correct asymptotic behavior at spatial
infinity, because spacetime curvature affects the
long-range behavior. The solution which does
behave correctly at infinity is not the same locally
as the Qat-space one, although it still satisfies
the Qat-space Maxwell equations locally. The
different local behavior gives rise to the self-
force. The long-range nature of electromagnet-
ism has forced us to impose boundary conditions
far outside the local jurisdiction of the equivalence
principle.

II. CALCULATION OF THE SELF-FORCE

A. Metric and freely falling observeJ

(6)(&yg-z)d =o ~

The construction of such locally flat coordinates is
a well-known procedure. " Given an arbitrary set
of coordinates x in which the metric is g„„, the

coordinates

x~ = (IP„)~[(x —b)" + ~ (I'„"~)~(x —5)"(g —b) ~+ ~ ~ ~ ]

(I)
. are locally Qat at the point 6', the coordinates of
which are x" = b" in the arbitrary coordinates and

x = 0 in the locally Qat ones. Here F"„„is the af-
fine connection

(6)

will have precisely the same location dependence
as the gravitational force on the "bare mass" of
the test particle, and thus it can be absorbed by
a renormalization of the test particle's mass. A

finite part of the self-force will remain, though.
In order to focus, on measurable quantities, we

must specify the observer who measures the ex-
ternal force. The most convenient choice is a
freely falling observer, located at the test parti-
cle, instantaneously at rest with respect to it.

To transform quantities into this observer's
frame, we need expressions for his coordinates in

terms of the Sehwarzschild coordinates. Since he
is freely falling, his coordinates x' -=t, x' = x,
x' =—p, and x' =-z can be chosen to be locally Qat;
this means that, at the spacetime point 6' at which

the force is measured,

(gaIt)~ = ~a

We consider a gravitational field described by
the Schwarzschild metric,

and A „must satisfy
c F

gpu=neSA t
A v ~ (9)

ds'= —(1-2Mlr~)df '+ (1 - 2M/r, ) 'dr~'

+ r~'(d8'+ sin' 8dp'),

written here in terms of the standard Schwarzs-
child coordinates t, r~, 8, and @. (In this section
G =c =1.) We shall compute the external force re-
quired to hold a test particle with mass m and

charge e fixed at the point &~=5~, 8=0. It is an-
ticipated that this external force will have two

contributions, one of which is to be identified as
the negative of the gravitational force on the test
particle and the other as the negative of the elec-
trostatic self-force.

We expect to encounter the usual divergences
associated with a point particle, and indeed the
electrostatic self-force will turn out to be infin-
ite. However, the infinite part of the self-force

We note that the condition of local Qatness deter-
mines the coordinates x only through second or-
der in (x b), but this-will be sufficient. Also,
Eq. (9) determines A „only up to an arbitrary
Lorentz transformation.

In the present case, it proves convenient to take
the x" to be isotropic coordinates"

x'=- t,
~' —= x = r(r~) sin8cosp,
x'=y = r(r~ }sin8 sin@,

x'-=z =r(r~) cos8,

rather than the standard Schwarzschild coo'rdi-

nates themselves, where

r= ,'(r, -M+[r~(r~ -2M)]'~'),-
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or
r, =«(1+ M/2«)'.

y(xF y 0'.E + y&F (16)

In these coordinates the metric is given by

ds'= — dt'+ (1+M/2«')'(dx'+ dy'+ da') .1-M/2~ '

(12)

The first term,

(17)

The test particle is located at x=0, y=0, g =b
=g~b~ -M+[bz(b~ —2M)]' '] for alit. Choosingthe
time of the measurement of the external force to be
f=0, we take b" =(0, 0, 0, b). We impose the re-
quirement that the observer be instantaneously at
rest relative to the test particle at t = 0 and that
his local coordinate axes to be aligned with the
isotropic ones at that instant; then A „ is uniquely
determined to be

d& = —g„pdg" dg = —g„„d$~d$" . (18)

The second term,

is the "mechanical" energy-momentum tensor for
a particle of mechanical mass m0. Here g
=— det(g„-~); « is the proper time along the world
line x"= ("(«) of the particle and is given by

~00
T "~ =—(P"«P&— —'g "&E«y -) (19)

(13.)

Using (7), we then find the following transforma-
tion between the two frames:

1 -M/2b M 1
1+M/2b b' (1+M/2b)'

is the energy-momentum tensor for the particle's
electromagnetic field. The field I'" and the cor-
responding potential A" are related to the current
density

(20)

+ O((x" —b")'), (14a)
by the Maxwell equations

M 1-M/2b
+M/2b) (x b )+2b (1 M/2b)

—
2b

—, (1+M/2b)[2(x' —b' )(2 —b) —5")x" —b'
[ ']

+O((x~ -b")') . (14b)

+nX=&Z; a -&n;Z

F . =4m'" .;8

(21)

(22)
In the locally flat frame the metric takes the form
g-~=«)-„~+O((x«)'); i.e., it is Minkowskian up to
second-order corrections in the coordinates.

With these preliminaries out of the way, we may
proceed to calculate the self-force, which we do in
the next two subsections by two different methods.
In subsection B we use the fact that the external
force can be obtained by integrating the covariant
divergence of the energy-momentum tensor over
the spatial extent of the test particle. This is a
local approach to the problem. In subsection C we

employ a global energy-conservation argument to
obtain the external force.

The external force F,',t on the test particle is ob-
tained by integrating the space components Q',„,of
the force density at t =0 over the extent of the test
particle. For a point test particle, we cannot do
this; instead we shall integrate over a small
sphere of radius e centered on the test particle
and take the limit c -0 afterward. In freely falling
coordinates the sphere e = const is a true metric
sphere. By symmetry, it is clear that the exter-
nal force can on~1 have a Z component, so we need
only calculate I,"„t. Ne have

B. Local method

The test particle is assumed to be held fixed by
some external force. The density Q,„t of the ex-
ternal force measured by the freely falling ob-
server is given by"

Q& y OlF (15

The energy-momentum tensor T of the system
has two contributions:

E,'„,= lim Q»„, t 0 d~g
6~0 t' —6

(23)

where r'=x'+y'+Z'. Now the observer's metric
is Minkowskian up to O((x")') corrections, so the
covariant derivative in (23) is T' ~=a-, T"
+ s~ T"+O(x"T «). Therefore
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a

O ~(~ Bt t o

+ T~44h t Od $—

(24a)

(24b)

is the spatial position of the test particle in the
observer's frame at time t, with

g M 1 1 gf a
b' (1+M/2b)' 1-M/2b (30)

P ~CyFg pe
r-&

(24c)

(24d)

being the test particle's acceleration in this frame
at t = 0. Using (28), one finds that term (24a) is

Mmo 1
(1+M/2b)' 1-Ml2b '

(31)

+ [T,".b, d'S-, (24e)

+ pg" y~; Od3X (24f)

1 -Ml2b
1+M/2b (25)

where the divergence theorem has been employed
to obtain the surface integrals in (24b) and (24e).
Here d'8; =- 5,&

n~ r'dG, w-. —ith n' —= x'/r being a radial
unit vector and dQ an element of solid angle in the
locally flat frame. We proceed to evaluate each
term in order.

Our first task is to obtain g"(v), the world line
of the test particle in the observer's frame, since
this enters into T „h . In the isotropic coordinate
basis, the test particle is at rest at x' = b' =55"
for all t, so the world line in this frame is E"(T)
= (t {r),0, 0, b). Using the metric in {12), one finds
from (18) that

The surface term (24b) is zero because the inte-
grand contains 5'(x'), which vanishes on the sur-
face r =e Te.rm (24c), due to the 0((x )') cor-
rections to g—

„g~ is also zero because it entails
integrating 0 (x' )5'(x' ).

Now we face the more difficult task of evaluating
the electromagnetic terms (24d)-(24f). We need
to know A. in the vicinity of the testyarticle so
that we can then calculate I"" and I", . We can-
not obtain A" by solving (21) and {22), because the
locally flat coordinates (7) do not provide a global
coordinate system, which is required in order to
impose boundary conditions on A" at spatial in-
finity. Even if we were to define x everywhere,
rather than just in the neighborhood of 6', g-y
would be so complicated except near 6' that we
would be unable to find an exact solution to (21)
and (22).

We therefore consider the Maxwell equations in
the global isotropic coordinate system. We may
write them in the form

Choosing v= P when t = P, we have

g ( )=~,o, o, bl .t'1+ M/2b
(26)

(32)

Transforming this into the observer's frame by
means of (14), one finds

( M 1 1
2b' (1+M/2b)' 1 M/2b

"
I

+0(~') . (27)

Substituting this and g = -1+0((x")') into (17) and
performing the integration over ~, one finds that

s „(v'-g I'"') = 4irl gJ" . - (33)

-s) (&-g g 'g" BqA, ) =4nv'-gZ' .

Using the metric in (12), this becomes

(34)

Now in this basis the situation is static with J"
=(J'(x, y, z), 0, 0, 0) and A„=(A,(x,y, z), 0, 0, 0).
The only nontrivial component of (33) is the p = 0
one,

~SO O

1+0((x")')
M 1 1
b' (1+M/2b)' 1 M/2b-

x P(x" -x'(t))
where

(28)

M 2 -M/2r 8
r' (1+M/2r)(1 M/2r) er

4(1 +M2/r)'(1 - M2/r) V ' . (35)

Since the test particle is stationary at x' = 6' =55",
its charge density is

x' (t ) = ,'a' f '+0(P)- (29)
1

(1+M/2r)'(1 M/2r)— (36)
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A - e/—r as r- (38)

Thus A, satisfies

M 2 —M/2r B

r' (1+M/2r)(1-M/2r) Br

='"' 1.M 2b

1 -M/2b

The boundary conditions to be imposed on A, are
tha, t

where b=M'/4b. This is the exact electrostatic
potential of a point test charge in the Schwarzs-
child metric.

Now we must transform (39} into the freely fall-
ing frame. We have

8A- =g-pA =g-8 „A"=g-~,g'"A„.
~X ~X

(40)

Using the fact that A,. = 0, that g„„is diagonal, and
that g-, —, is Minkowskian plus O((x )') corrections,
this becomes

so that, by Gauss's law, the net charge is just e.
In a 1926 paper on electrostatics in curved

spacetimes, Copson' found a particular analytic
solution to Eq. (37). It did not satisfy the boundary
condition (38), but Linet' made the necessary
modification. The solution he found is

a '
+O((x )') g "A, .

(41a)

(41b)

b(1+M/2b)'r(1+M/2r)'

�

@2 2bg + $2'II&t 2 ( y2 2' + y
M+ r2 2bx+b2) +

I( r2 25x+52

(39)
I

Because of the limit q —0 in (23), all we really
need is the first few terms of an expansion of A-
about the point x =0. Towards this end we first
expand each factor in (41), for which we have ex-
pressions in isotropic coordinates, about the cor-
responding point x" = b" Fro.m (14}, we get

and

Bt 1-M/2b M 1 l
1+M/2b

' b' 1+M/2b 1 M/2b

Bx' M 1 -M /2b
Bt b' (1 M/2b)'

(42a)

(42b)

the expansion of g" is

(1+M /2b)' 2M 1 1
M/2b)' b 1+M/2b 1-M/2b

and that of Ao is

e 1-M/2b M 1 —M/4b
I x —b I (1+M/2b) b (1+M/2b)(1 —M/2b)

M 1 1 1 —M/2b' b' (1+M/2b)' b 1+M/2b

(43)

(44)

Now we use (14) to express these series in terms of the locally flat coordinates. This is straightforward
except for the transformation of the factor 1/ ~x' —b"

~, which turns out to be

1 (1+M/2b)' 1 —, , Z+O((x )') .
I x —b I Ixa X$(t)I 2b' 1+M 2b'

The final result is

1+a~X+0((x )~}
(( ~)2)

I
x~ —X'(t} I

and

Xb, ,t+O((x. )')
-(t }I

+ ~6 -t+ O((x

where

(46)

(46a)

(46b)
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1+M'/4b'
b' (1+M/2b)' 1 M/2b ' b' (1+M/2b)'(1 —M/2b)' ' (4 l)

By differentiating (46) one finds the following expressions for the electromagnetic field components F.:—F;-o= B'Ao BpA" and B7=—2 &i&kF&k= fiick B&Ak and their time derivatives at t=0:

n'
[E, j-, , =-e —,+ nn'n' —(o.+ ]].)5"

— —(y+ p)5" + [O(V') terms with an odd number of n'j, (4Sa)

[a;.];.,= o(Y), (48b)

j
Bf ~ p

= o(l/v), (48c)

BB-
BI;

nl
= -eq-,.;.k X, + [O(1/v') terms with an even number of n'j. (4sd}

We proceed to use these expressions to evaluate the electromagnetic contributions (24d)-(24f) to the ex-
ternal force.

From (19) one obtains

yko g jk E fl + O((~n)2(F])P)2)
em 4&

~ j k

so term (24d) becomes

1 BF- BB- B&'x= ~'" v'dv d& -' B,+ & —"--.+ v'dr d6 — o((x')'(F~")'l
Bf B$ t

(49)

(50)

Consider the second integral first. One can show from (48) that in the neighborhood of the test charge the
most singular terms in its integrand have the structure (odd number of nk)/v'; these vanish by symmetry
when integrated over solid angles. The less singular terms will vanish when the limit q -0 is taken. Thus
only the first integral above contributes. Substituting the expressions in (48) and performing the angular
integrations, one obtains

(51)

after dropping terms which vanish in the limit q -0.
Next, since

r:~ = [-.'(z;zk+ flkak) 5'~ —z; z-,. —a-, a-,.]+o((x )'(I"")'),
4w

term (24e) becomes

],]T,d S-,.= — F'f dQn'] —(k';8-+B;B-,)IF E;E —~B~k , ]-, , -,. -.
e
~
~

m

~I

t ~ 0
2

JI
~~ ~~

~

~ ~~

~

~ ~~

~ «
J

~ ~~
~

2 ~» k
«
k k

~
~~

~
z

~
~

~
~ ~

z
~

~I t »~ 0
t'kk e r g~ 6

(52)

+5 dQn' 0 g ' F~' (53)

As before, the second integral vanishes in the limit p-0 because the terms which are singular enough to
contribute contain an odd number of unit vectors and thus vanish by symmetry when the angular integration
is performed. The first integral yields

[T j,.,d's , =(-,' n+ ]].)e' —-+ (y+ -i.],)e'
t'= 6

Sq b' (1+M/2b)' 1 -M/2b b' (1+M/2b)' (54)
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where

M 6m 1 1
b' (1+M/2b)' 1 -M /2b

Me' 1
b' (1+M /2b)' (55)

1 'dF
6m=- —', e'lim —+, = —', e', . (56)

0 g p F p

The fact that Sn is divergent is of course due to
the fact that we have treated the test particle as a
point charge. However, since the first two terms
in (55) have the same dependence on b, we can ab-
sorb this divergence by a mass renormalization:
we consider m —=m, + Gm to be the actual, finite
mass of the test particle. Then the external force
necessary to hold it stationary at r = b, 8 = 0 is

after dropping terms which do not contribute in the
limit q -0.

Finally, one can check that the last term (24f)
does not contribute to the external force for the
same reasons that the other terms arising from
the O((x')') corrections to g-8 did not.

Combining our results in (31), (51), and (54), we
find that Eq. (24) gives

Mm,
b (1+M /2b)' 1 —M /2b

1 5M

1+M /2b 1 M—/2b 6b
(60)

Now, Carter" has shown that the change in mass
5M between two nearby, nonrotating black-hole
configurations is given by

5M = M —— -6 G c~gd x+
I 0 3

x G fg~p —gd g )

5M = -5 To v'-g d g. (62)

Let us split the "energy" integral above into a
mechanical contribution and an electromagnetic
contribution, i.e. ,

where z and A are the surface gravity and the
area of the black hole, respectively, G"" is the
Einstein tensor, and h„„ is the difference in the
metric between the two configurations. The inte-
grals are to be evaluated over the exterior of the
black hole. For a slow displacement, no matter
or electromagnetic radiatian crosses the horizon,
so OA=O. Furthermore, since we are dealing
with a test charged particle (ignoring the direct
effect of the particle's mass or charge an the me-
tric), we can ignore the term involving b, „.
Hence, invoking Einstein's equations, we have

Mm 1
b' (1+M /2b)'
Me 1

b (1+M /2b)

1
1 -M/2b

(57)

'o~-g d'x-=V,.n+ ~, ~

Then combining (60), (62), and (63), we have

(63)

C. Global method
1

ext 1 yM/2b . 1 M/2b 6b ( mech em (64)

The ex''ernal force can also be calculated by a
global, energy-conservation method. Consider a
Gedank'enexperiment in which the charge is dis-
placed slowly a distance ~5b

~
(in isotropic coor-

dinates) toward the hole. Then, according to the
freely falling observer, an amount of work 6g js
done on the mechanical support, given in his basis
by

1 —M /2b
mech 0 ] +M/2b (65)

To evaluate the electromagnetic contribution, we
first note that

The mechanical contribution to the energy is eas-
ily found from (17) and (26) to be

&O' = —F,'„,5b . (56) 1
T, 0= „g g "B,.AOB~AO, (66)

This work is sent in the form of a bundle of energy
to an observer at rest at asymptotic infinity; be-
cause of the gravitational red-shift, the energy
M received by this observer is given by

as follows from (19), so

(67)

But by conservation of energy, this energy must
be equal to the change -5M -.in the asymptotically
measured mass of the system that results from the
displacement of the charge. Then using the fact
from (14) that bb = (1+M/2b)'5b, we have

At this point one cah substitute (39) for A, and
actually carry out the integration explicitly in po-
lar coordinates. The integral diverges because of
the singularity in A, at the point charge, but it is
possible to separate out the divergent behavior and
regulate it by excluding from the region of inte-
gration a ball of radius a around the test particle.
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The result of this lengthy calculation is

e' 1-M/2b Me 1
2a (1+M /2b)' 2b' (1+M /2b)4 (68)

A much quicker route to this result is via an in-
tegration by parts in (67); one obtains

1
U = d'~A, s, (v'-gg "g"s,A, )

It follows from (64) that

1 1
b2 (1+M /2b)' 1 M—/2b

(1+M/2b)' '

in agreement with the local method.

III. SUMMARY AND CONCLUDING REMARKS

(75)

g gg, pog&~A a Ai 0 J 0

+ d'S, ~gg "g "A,s,A, .8f g~g/
(69)

We have computed the external force that is re-
quired. to hold a test particle of mass m and charge
e stationary outside the horizon of a Schwarzschild
black hold of mass M. In the frame of a freely
falling observer who is instantaneously at rest at
the position of the test particle, it is

U'
p J Ap& gdl

(VO)

Since v-gJ'= e5'(x' —b'), V, is formally equal to
-2 eAp evaluated at x' = b', which is divergent. %e
regulate it by substituting

&-gJ'= -, »m 6( ~x' —b" ~-a)4@a' (Vl)

and doing the integration before taking the limit.
Physically, this corresponds to giving the charge
a finite radius g in isotropic coordinates. To be
more correct, one should give the charge a con-
stant finite radius gr in freely falling coordinates,
as in subsection B. In freely falling coordinates,
a surface of constant a is not exactly spherical;
however, it is straightforward to show that this
does not alter the final conclusion. Using the ex-
pansion (44), this yields the result (68).

Now, in order to renormalize the mass mp to m,
we must express the radius of the ball of charge
in local freely falling coordinates, because it is
this radius that is treated as constant as the
charge moves. We thus have from (14)

a = a(1+M /2b}'.

Then we can write

1-M/2b Me' 1
1+M/2b 2b' (1+M/2b)

(72)

The integral over the surface at infinity vanishes
because A, drops off as I/y at large distances. An

easy calculation using (39) shows that the angular
integral on the horizon averages to zero. One is
left with the first term, which because of (34) be-
comes

GM
~

2GM
&(

GM
e&t &

2
~ g2y

(V6)

E„,= E,„, „(1—6),
where E,„,„„is the first term in (76) and

e'/me' t' 2GM

c'r, j

(VV)

(78)

is the fractional correction due to the self-force,
then it is easy to show that the maximum value of
b (which occurs at rz -—3GM /c') is e'/Sv 3GMm.
For an electron outside a one-solar-mass black
hole, the self-force gives at most an insignificant
fractional correction of 4 x 10 ".

But suppose we have a black hole whose mass is
less than M „«=-e'/Sv 3Gm (V.3 x 10'4 g for elec-
trons as test particles; for the critical mass, the
Schwarzschild radius is 38% of the classical elec-
tron radius, e'/mc'=2. 82xl0 "cm). Then one
finds that the fractional correction exceeds unity-
and thus the repulsive self-force exceeds the at-
tractive gravitational force —over the range of ra-
dii r &r 8& r„where "

where we have used (11) to express the force in
terms of the test particle's Schwarzschild radial
coordinate (now denoted r~ rather than b ~) instead
of the isotropic radial coordinate b used in (57) and

(75). No approximations have been made other
than treating the particle as a test particle and thus
ignoring its metric perturbations.

The negative of the second term above is the
gravitationally induced electrostatic self-force of
the charged test particle, as given in Eq. (1). It
is interesting to determine when, if ever, it be-
comes important physically. If we write

(73) 2e' (, , Sv SGMm wl,
2 cos 3 cos

v Smc' (79)

with

e'
m =m, + lim

g~p 20
(V4}

WhenM =M «, r, =x =e'/MSmc'=SGM„«/c'
=1.6xlO" cm. As M-0, r -2GM/c' and r,- e'/mc'. It is amusing to note that at r = y, the
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test particle's electrostatic self-force would suf-
fice to support it against the hole's gravity, with-;
out the help of any extt;mal force; moreover, such
an equilibrium situation would be stable against
radial perturbations. Unfortunately, in a regime
where the black hole's Schwarzschild radius is
comparable to or smaller than the classical elec-
tron radius, quantum effects will vitiate a clas-
sical treatment of the problem. Indeed, it is
meaningless to talk of an electron being held
fixed at, say, 10"cm from a miniblack hole,
when the Compton wavelength of an electron is
two orders of magnitude larger than this.

One is led therefore to wonder about the signifi-
cance of an effect such as the self-force within the
context of a fully quantum-field-theoretic treat-
ment. How much, for example, would it affect
the Hawking radiation rate and spectrum? The
self-force is the classical manifestation of one

of many effects that will presumably appear when
the free-field treatments generally used in investi-
gating quantum processes in curved spacetime
are extended to include interacting fields. Further
work along these lines is in progress.
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