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Covariant 2+2 formulation of the initial-value problem in general relativity
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A covariant 2+ 2 formalism is developed in which space-time is decomposed into a family of spacelike
two-surfaces and their orthogonal timelike two-surface elements. The resulting 2+ 2 breakup of the Einstein
vacuum field equations is then used to investigate covariant formulations of spacelike, characteristic, and
mixed initial-value problems. In each case the so-called conformal two-structure (essentially the conformal
metric of a family of spacelike two-surfaces) is identified as the freely specifiable initial data. The formalism
makes clear the geometrical significance of both the initial data and the various choices of gauge variables.
A Lagrangian formulation is included which supports the role of the conformal two-structure as dynamical
variables of the pure gravitational field.

I. INTRODUCTION

The covariant formulation of the spacelike
Cauchy problem in general relativity, using a
space +time or "3+1"formalism, where space-
tirhe is considered as being foliated by space-
like hypersurfaces rigged by the normal time-
like vector field, has been extensively studied—
initially by Stachel' and later by, in particular,
York and others. ' Although there has been con-
siderable success with this approach, there would
appear to be two problems associated with using
a 3+& formulation. The main problem is that
it cannot be used to analyze characteristic or
mixed initial-value problems, where it is ne-
cessary to consider foliations of null (as opposed
to spacelike) hypersurfaces. This stems from
the fact that, unlike spacelike hypersurfaces,
null hypersurfaces are not Riemannian submani-
folds and consequently do not have induced on them
any natural affine structure. (A fuller discussion
of this problem can be found, for example, in Ref.
3.) The other problem is related to the difficulty
of identifying the gravitational degrees of free-
dom (that is, essentially, in defining two quanti-
ties per space-time point which uniquely charac-
terize a solution)4 and the associated dynamical
variables of the theory. Now in the 3 +1 formu-
lation, one starts by prescribing initial data
(essentially the first and second fundamental
forms) on an initial spaceiike hypersuriace, and
then the six evolution equations are used to gen-
erate a solution forward in time. These initial
data are not freely specifiable but are subject to
differential constraints. Considerable progress
has been made in the analysis of these constraint
equations by the introduction of conformal three-
geometry techniques. This leads to an identifi-

)
cation of the gravitational degrees of freedom as
the conformal three-geometry of a family of
spacelike hypersurfaces, but only after an arbi-
trary choice of basis has been subtracted out at

each point. One way of removing this arbi-
trariness is to construct a transverse trace-
free tensor, the Bach tensor, which has the pro-
perty of being invariant under conformal trans-
formations and diffeomorphisms of the three-geo-
metry on each slice. Although this quantity uni-
quely characterizes a solution, it depends upon,
spacelike derivatives of the conformal metric

'

and hence has a nonlocal interpretation. It is
therefore hard to see how the Bach tensor could
be interpreted as explicitly embodying the
dynamical variables of the theory, for, in par-
ticular, one cannot explicitly isolate a subset of
the six evolution equations as dynamical equations
for propagating the Bach tensor. Closely related
to this is the fact that in a Hamiltonian formula-
tion of the Cauchy problem, the 3+1 approach
leads to a constrained Hamiltonian (with the five
functions in the conformal three-geometry acting
as constrained configuration coordinates). ' This
property may inhibit progress towards a quan-
tization program, since in at least one approach
to the problem one requires the two dynamical
variables explicitly isolated, and this in turn
leads to an unconstrained Hamiltonian. We hope
to demonstrate that a 2+2 formulation adopted
in this paper may overcome the two problems
outlined above.

In a recent paper4 it was suggested that the so-
called "conformal two-structure" —essentially
the conformal metric of a family of spacelike
two-surfaces —might be considered as the dynam-
ical variables of the theory. Using coordinate-
dependent techniques this prescription is shown
to work, formally at least, in characteristic,
mixed, and spacelike initial-value problems. The
work motivates the introduction in this paper of
a covariant "2+2" formalism, in which we con-
sider spacetime as being foliated by spacelike
two-surfaces, rigged by a pair of normal vector
fields which span timelike two-surfaces (which
are in general anholonomic). Then by a suitable.
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choice of these rigging fields subfamilies of the
spacelike two-surfaces can be regarded as folia-
ting hypersurfaces in space-time, which may be
either spacelike, timelike, or null. This for-
malism allows us to deal conveniently with all
three types of initial-value problem, namely
Cauchy, mixed, and characteristic. In the last
two ca.ses, it is because we are working directly
with the geometry of Riemannian two-manifolds
that the problems of the degeneracy of the in-
trinsic geometry of null hypersurfaces are es-
sentially bypassed.

In Sec. II we analyze the 2+2 formalism in
detail, in particular introducing various funda-
mental geometrical quantities and then expressing
the field equations in terms of these quantities.
After some general remarks about the initial-
value problem in Sec. III, we then use this for-
malism in Sec. IV to discuss a covariant 2+2
formulation of the spacelike Cauchy problem. In
Sec. V we formulate covariantly the characteristic
and mixed initial-value problems. It is seen that
in the latter case, by a suitable choice of gauge
quantities, we can obtain the covariant analogs
of these problems as considered in a coordinate-
dependent manner by Sachs, ' Qambini and Res-
tuccia, ' and Tamburino and Winicour. ' In each
case, it is seen that the dynamical variables are
the conformal two-structure and that they are
propagated by the same subset of the field equa-
tions, namely the dynamical equations. In Sec. VI,
a Lagrangian formulation is considered, and in
particular it is shown that variation of the I.a-
grangian with respect to the dynamical variables
does indeed lead to the dynamical equations.

All our considerations are purely local and we
restrict our attention to the vacuum field equa-
tions. More importantly, our results are purely
formal in character; that is to say, we do not
prove results concerning uniqueness, existence,
and stability of solutions, but rather simply pro-
vide iterative integration schemes which hope-
fully generate solutions from given initial data
for certain classes of space-times. We follow
Schouten's' conventions and notation in the main,
and in addition we take the metric of space-time V
to have signature (+- ——), and we use an arbi-
trary coordinate system x, n =0, 1,2, 3. In

fact, many of our results are valid also in a
general space-time basis (E,E ), but we use
a coordinate basis, since this simplifies the
discussion at some points.

II. 2+ 2 DECOMPOSITION OF SPACE-TIME

A. Foliation of space-time

A foliation of V by two-surfaces JS) ((S) is a
foliation of codimension 2) is defined by a pair of

closed one-forms n'=n' dx (a =0, 1). Now n'
and n' define, respectively, foliations of V,
(Z, ), and (Z, ) into hypersurfaces, and each
Ss(S) can be thought of as the intersection of
some Zoc(Zo) and Z, s(Z, ). Since n' are closed,
we have

"'V n' =0
Ln 8&

where ' 'V is the covariant derivative in V.
Equation (2.1) implies that (locally) there are
scalar functions P' such that

(2.1)

n' = '4'V g
Then (Z, ) and (Z, }arise as the level surfa, ces
of P' and Q', respectively. Each Z &, &s(Z &, &) is
itself foliated by a subset of (S), and we denote
these subsets by (S}&, &

(where parentheses
around a Latin index indicate that we are re-
ferring to a fixed value of that index), as indica-
ted in I ig. i.

We restrict our attention to foliations JS) into
spacelike two-surfaces. A necessary and suffi-
cient condition that (S) be spacelike is that at
each point of V, n' should span a timelike two-
surface element, say T. We denote the totality
of these elements by f T). f T) must necessarily
be orthogonal to (S). The reciprocal basis of
(T), namely n, =n, s /Bx, is uniquely defined
by

(2.2)

n~nb =eb n~ =q nb™
a 0, ay a ab (2.3)

where g„ is a symmetric 2 x2 scalar matrix with
inverse g' . The vectors n, and n' form a dyad
basis of (T), with dyad (Latin) indices raised and
lowered by q'b and g,b, respectively. In general,
n, are not closed under the Lie bracket operation,
so the elements of I T) do not define a foliation
of V; they are rather anholonomic timelike two-

S~ S

0

FIG. 1. A typical 8 arising as the intersection of some
Zp and Z~. S is spacelike, but Zp and Z~ can be space-
like, timelike, or null.
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surface elements, or fields of nonintegrable
timelike two-planes. Equations (2.3) imply that
n &, &

is tangent to (Z &, & ), and also that it is the
orthogonal connecting vector of neighboring
members of fS) &, &. Each element ri &, & &, &

of
q„defines a "lapse" function; the metrical
separation of nearby members of (S) &, &, para-
meter distance 6&I&

"' apart, is given by

( &4& &a ss )t/s6y &a& —
~ t/a6y &a&

gag (a ) (a ) (a) (a)

[not summed over (a) ], (2.4)

as illustrated in Fig. 2. The elements g" 3nd
&I" determine the metrical properties of (Z,) and

(Z,), respectively, since

(a & (a & —(4) fzg + (a &+ (a &

Ot 8 (2.5)

Projection operators B 8 and Cg, which project
tensors of V into (S) and (T), respectively are
defined bys

5N =B o+Co Co=n~na.
8 8 8 & 8 a 8 (2.6)

It is straightforward to show from (2.1) and (2.3)
that

[n„ytt] =8„n, =——20, = —2BsQs. (2.7)

Thus the commutator of 'Pl
p and n, is a vector

tangent to (S), and ( T) is holonomic if and only
if 0 vanishes. The most general vector con-
necting neighboring members of (S) &, &

is e &, &,

where

e~=n~+b o b =B b 8
a a a~ a 8 a (2.8)

(see Fig. 2). We shall restrict our attention to
those b, for which the resulting e, commute. By
virtue of (2.7), such /&, always exist for a given
foliation (S) but are not unique. From (2.3) and

(2.8) we have

(2.9)

and so for a given choice of b, we may write, by
virtue of (2.9) and the fact that e, commute,

8 8e =e
Bx 8$

The integral curves 6 „& of each e,, &
are para-

metrized by Q
"' and define a one-to-one corres-

pondence between points on different members of
(S). Put another way, if we start at some point
'P on a given initial 'Ss/S), then traveling
parameter distances Q' and Q' from 'P along
curves of 6, and C„respectively, we always
arrive at the same point I' on a particular two-
surface S. The vectors e, are thus the natural
ones with which to propagate quantities through
V. If we assume that the equation of 'S is Q'
=P'=0, then the value of some geometric ob-
ject Ca (indices suppressed) on S is given, in
terms of @~ and its I ie derivatives with respect
to eo evaluated on 'S, by a generalized Taylor
expansion'

=exp(P'2, )C (2.10)

We may think of the foliation and fibration of
V as being generated in a rather different way.
Suppose that we are given in V a pair of commuting
vector fields e, and a two-dimensional cross
section S of e, . The fibrations 6, of V are then
just the integral curves of e, (as before), but
the foliation (S) is obtained by Lie dragging S
with e, so as to fill up V. The covariant normals
n' and the normal rigging vectors n, can then
be determined from f S). The two viewpoints are
essentially equivalent (cf. , for example, in the
3+1 decomposition of space-time, the approaches
of York' and Stachel').

B. Induced metrical structure in ( S}and (T)

The metric of V has only two nonzero pro-
jections, namely

gys =Bys ~g& y ~ gys =Cys g& y i

then g„s and 'g„s are the induced metrics of (S)
and (T), respectively. They have contravariant
form

g7'8 —Byg (4 ) ~ Qv
Pv

Igrg -Cvg(4)
Pv (2.12)

~ T. : f = const.

~S:4 =40
, ~jsI,

(q„lsd' n',

r
bc

0

FIG. 2. Two neighboring members of JS) foliating
some Zp. Shown are the orthogonal connecting vector np,
the general connecting vector ep~, and shift vector bp of
(Sj. Metrical separation is

~ y&&&s~
'/ 6$ .

respectively, and satisfy

gfs Bg I Eg'1/6 Cy (2.13)

From (2.3), (2.6), and (2.11) we can see that

g g
='g ~'Pl 'Plg 'g ='Pl Sg g„g

' (2.14)

that is, tl, „are the dyad (scalar) components of
'g„g. Similarly, q" are the dyad components of
'g"s. Covariant derivatives in (S) and f T) are
defined by projection:

V„v~ =B„",e ' 'v„vy for any ve Bfvs, (2.15a)

'V„t&& =C„", &4'V„t&&' for any t&& =Cat&&s (2.15b)
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and we define for any scalar A. in V,

V X =B" '4'V X.ci Q (2.15c)

C. Extrinsic curvatures and decomposition of dyad
derivatives

With the above definitions it is easy to show that

(2.16)

and hence the connections induced in (S) and (T)
by (2.15) are the connections of the induced me-
trics. Taking dyad components of Eq. (2.15b) we
get

n,"n''v w~ =g„w'+I"' gg =-'v,gg' (2.]7)nc

where se'—= n' so are the dyad components of zo

and

I", =I"„,= —'7i'~(S„q +Q q, -R„q, ) (2.18)

are the dyad components of the induced connec-
tion in(T). We may define Riemann tensors in

(S) and(T) as follows. In(S) we define

We start by considering the curvature tensors
of valence 3 of (S) and (T), defined by Schouten'
as

H O=B "~ VB~
5y 5y

a C)LP (4) V6y 5y

(2.24a.)

(2.24b)

~II
g ~ nP

H[6y] 0
p

L (uc) —= ldc —2V 4c ~

(2.25a)

(2.25b)

(2.25c)

The contravariant indices of H, y and L5y lie in

(T} and (S},respectively, and the covariant in-
dices in(S) and(T). Then, taking the dyad com-
ponents of (2.24) we get

aH
& 6& ~ k~& 2B6y 7 ~nP ov

5yg (5 y 3 y 6yg (2.19) Lidc) --~dc ~ (2.25d)

which is precisely the definition we would expect.
However, the Riemann tensor in (T) has a more
complicated definition due to the anholonomicity
of (T). It is given by'

gg =2 Vp Vyjgg + 'gg Q5y Vega

B~ R6yg 0

where

(2.20)

05y' =Qpyj' =B~n6ny Qdc
(2.21)

where

From (2.22) we can show that 'R„,&„& has all the
usual symmetries of the Biemann tensor of a
metric two-space (although of course 'B~„,are
just scalars), but in addition we can show that

n„= --,'R„,n,
is the anholonomic object of (T), which vanishes
if and only if (T) is holonomic. Q~, has only one
independent component, Q„=Q [cf. Eq. (2.7)].
The extra. term in (2.20), involving the anholo-
nomic object, is required to keep the right-hand
side linear algebraic in w . Taking dyad com-
ponents of (2.20), we get

'n, b n' ny n "g ~W'
dcb d c a 5yg

We define h5yp as the extrinsic curvatures, or
second fundamental forms of (Sj. With regard to
its defining equation (2.25a) we note that the Lie
derivative with respect to n, of a contravariant
vector field tangent to (S) is itself tangent to
(S), whereas the same is not true of a corres-
ponding covariant vector field.

We can now decompose the covariant deriva-
tives of the dyad vectors n, and n' in terms of
their projections into (S) and (T). We get

(2.26b)

We are now able to decompose the covariant
derivative of any arbitrary tensor of V in a con-
venient way. Suppose we have a tensor with every
index lying in either {Sjor (T). (An arbitrary
tensor can always be expressed as a sum of such
tensors. ) For example, suppose for some „z we
have

b
Tyg By ng T~b e

The only projections of the covariant derivative of
T„~ which involve derivatives of T„~ are

projections follow immediately from (2.26). We
can then show that

~dc i( bg) dc 6~A cb 2~cb ~

where

'a ='a e.
cb ecb t e

(2.23)

B 6y &b VqTgv V6Ty b +Lb 5Tye

nd By nb' 'V~T„„='VdTyb+hy dT b

where

b ~b dbT

(2.27a)

(2.28a)

(2.29a)
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Similar formulas hold for contravariant ten-
sors, namely

We define the conformal extrinsic curvatures of
(S}by

and

yS 4 V' T~ =V' Tyb L byre6o v X 6 e6
y~bg) V' T ~v V Tyb g y Tab

d 0 v )i. d 6 d 7

(2.27b)

(2.28b)

(2.37)gyB —&g gyB
a ~ n

We now look for a conformal factor such that the
trace of each conformal extrinsic curvature
vanishes. That is such that

(2.29b)

D. The alternating quantity e~b

We first define

q=[-det(q„)]'" and q„=q 'q„. (2.30)

&V Tyb-=g yyb+pb yye.
d nd. de

Equations (2.29) extend the definition of 'V, to
tensors with both dyad indices and tensor in-
dices lying in (S}.

-=g 5'=0e a oB a (2.38)

(where all indices on quantities marked by - are
raised and lowered by the conformal metric). The
necessary and sufficient condition for (2.38) is
that y should satisfy

@„.(ny) '~ g=-o, Z-=det("'g. , ). (2.39)

Pne solution of (2.39), unique up to a constant
scalar factor, is

Then from (2.15b) and (2.17) we have immediately
y=n '~ g- {2.40)

'V,q =0, (2.31)

~ab ~ac~bd~ (2.33)

that is, formally, q behaves like a "scalar den-
sity of weight 1"with respect to the operator

We next introduce the antisymmetric quan-
tities z, b and z ' defined by

(2.32)

It follows from (2.30), (2.31), and (2.32) that

For any y satisfying (2.39) we denote the resulting
conformal metric g,B as the conformal two-struc-
ture. We see by virtue of (2.38) that g„~ has only
two independent components. In fact y', as de-
fined by (2.40), is just the determinant of the
metric of (S}when the metric is expressed in a
basis adapted to (S}. Note that y has the same
tensorial character as v' —g. We may now write
the extrinsic curvatures as

and so z, b behaves like a density of weight —1
with respect to 'V'„which leads to

"yBa yhyBa+&gyBha i

where

(2.41)

+a~ bc

We can now write

Qd, =qd, 0

(2.34)

(2.35)

We define 'V', on y by

n

{2.42)

(2.43)

which implies that

'v.n =a„.n -r;,0, (2.36)

that is D behaves like a scalar density of weight
1 with respect to 'V', .

E. Conformal two-structure

nonformal two-structure is defined in Ref. 4,
but only the case of two-surfaces embedded in a
three-dimensional manifold is considered in
detaiL However, as indicated, it is quite straight-
forward to extend the invariant definition of can-
formal two-structure to the case of two-surfaces
embedded in a four-dimensional manifold. We
make that extension here. We start by removing
a conformal factor y from the induced metric of
fS}, and we denote the resulting conformal me-
tric by

—2Qd, 'Q, (2.43d)
/

where we have introduced an abbreviated nota-
tion

& (4) )trav r (4)
yBa =+6yB "a R~u~

which extends in an obvious manner. The only

F. Projections of the Riemann, Ricci, and Einstein tensors

The equations of Gauss and Codazzi for (S} and

fT} are given, for example, by Schouten. ' Taking
dyad components, we obtain

6yBai 6yBof L6 IB I y &cfe &
(2.43a)

(4) i + 6
R«ba = Rd, b, +2LIdIbI Lc

—20dc'Lbae ~ (2.43c)

Rdcbe =2 &IdLc]b +2hfM I'dLc)be
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+V y L„~ +L~egL ' (2.43e)

We define the Ricci and Einstein tensors of V by

further independent projection of the Riemann
tensor is &' 'Raga/ and this is obtained from the
Ricci identity applied to 'g g. We get, eventually,

Rd„g, — „h„g, +kg, ~h

and in (2.46a), we have used the notation

T[X'8] =yX
'"8' ——,'g"8X,' for any X"8 in (Sl .

As a final preliminary to our analysis of the
initial-value problem, we decompose the Bian-
chi identities in terms of the projections of G'g.
We get

(4)Ryg (4)Reyg
6

G"g = Ryg ——' yg R2

(2.44)
a '4'VG" ='V~G' -(2h +5 h )LG"

6 e 68 6

+V &G~e - l ~G~6 +/ ~Gef =0
6 6 8f

We next split the projections into (S] of 'a'R"8

and Gyg into their respective trace and trace-free
parts by defining

~G =~G '
6

y
- ~gGyg =gG» ' gyggG

a(4) V G&e - &V Gea g Gea
v 6 e e

+& ~Gaa (2L a +6al )~Gee

+g a&G68
68

(2.47a)

(2.47b)

and similarly for ' 'Ryg. It is then easy to show
that the projections of ' 'R g and Gyg are related
by

~G yg —~ (4)Ryg
7

~G=- '4'R '
e

~G" =~R"

Gcb (4)ltcb &~cb(&(4)ft + (4)ft e
)e

G '=-~(4)R.
e

(2.45a)

(2.45b)

(2.45c)

(2.45d)

(2.45e)

~Gyg='v @yg -2ky"gg
e 68 e

+T[(P18 —P~"1,~8 —2q 'Q~P ],
~G =- 'R —'V ye+-,'@ he+h688g,

e 2 e , 68e

—v, /'+/, l' -4g-'O'0, ,

-LG'8=q 'e" ['&,P —2(h8„+58h, )O']

—v'a'„+-,'vgh'+2' l"'

(2.46a)

(2.46b)

In order to obtain explicit expressions for the
projections of G"g, we first of all take the ap-
propriate combinations of various contractions
of (2.43), indicated by (2.45). We then substitute
in the decompositions of L„, given by (2.25c),
(2.25d), and (2.35), together with that of h„8,
given by (2.41). We eventually obtain

III. THE INITIAI VALUE PROBLEM

In this section, we examine the following prob-
lem. Given a solution to the vacuum field equa-
tions G„& =0 in V, together with a particular folia-
tion(S] and fibrations e„what data, on an initial
two-surface 'S and either or both of the hypersur-
faces 0Z, intersecting in 'S, are necessary and
sufficient to determine that solution in some neigh-
borhood of 'Sl The metric of V can be written as

(4)gn8 -)g n8 + ~ab (&a ba)(&8 b8 )

Hence to determine a solution, we must find the
ten independent components (y, g, q'b, b,") of
"'g"~. We may choose four of these components
arbitrarily (subject to maintaining the correct
signature of "'g" ), since the field e(luations are
invariant under a four-dimensional coordinate
gauge group. This gauge choice essentially gives
us freedom to specify some (though not all) of the
metrical properties of, and relations between, the
foliation (S} and the fibrations (', . For example,
if we demand that one of the foliations (Z,},(Zj,
say, be a family of null hypersurfaces, then by (2.5)
we must impose the gauge condition

—I g '/' —-'I '/g —'v /«g +'v'/g
e (2.46c) 00- 0 (3.1)

Gcb ~-2~ e~bf ~V I +2~-2~8(c/b) eg 1hcgb
( s) 8 6 2

~ h' '0 +v /' ' —2l"'l —l' 'l
68 e 86 6

+q' (,'h' 'hae, +ah'h, ——&,P

p)'el + alai +q- ail ag fl) (2.46d)

V /6 +l'f'l +2g-'O'0, -R,

The imposition of this gauge, which allows us to
study characteristic and mixed initial-value prob-
lems, makes the ensuing analysis fundamentally
different from the analysis of spacelike initial-
value problems, in which case we demand that
(Z,) be spacelike and (Z,) timelike. That is,
by (2.5)

where
(2.46e) q"& 0, q" & 0 (3.2)

/Ol —
/ 8Q Having chosen either (3.1) or (3.2), the remain-
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ing analysis falls, roughly speaking, into three
parts: firstly, the investigation of the role of the
Bianchi identities; secondly, the choice of the
(remaining) gauge quantities; and thirdly, the
construction of a formal integration scheme. The
scheme then indicates how the field equations
propagate the six field variables into some region
of V in the neighborhood of an initial Se(S}. This
leads naturally to the identification of the freely
specifiable initial data, and hence the dynamical
variables. Since, as we have said, the analysis is
very different under the alternative choices (3.2)
and (3.1), we shall consider them separately in
Secs. IV and V, respectively. First, we introduce
some notation which will facilitate the ensuing
discuss&on.

In what follows, 'S denotes an initial spacelike
two-surface and 'Z, denote the initial hypersurfaces
emanating from 'S. In addition, we denote the
"kth neighboring hypersurface" to 'Z, by 'Z, and

the subsets of (S}foliating Z, by (S},. Finally,
we denote the two-surface defined by the intersec-
tion of 'E, and ~Z, by '~ S. Then, for example,
the "jth neighboring two-surface" to 'S within 'Z,
is '"S. When, in Secs. IV and V, we refer to
knowledge of some field variable 4 A, say on
' '~'8, what we mean is that we know

6"=0
subsidiary conditions.

ggoo

First of all, we analyze the Bianchi identities. If
we assume that the main equations hold every-
where and that on some arbitrary member of (Z1}
the subsidiary conditions hold also, then on this
hypersurface the Bianchi identit'les (2.47) imply
t at

g g" =4 iG"=0.
eo eo

Hence, by induction we immediately deduce the
foQowing lemma: The subsidiary conditions are
satisfied everywhere if they are satisfied on the
initial hypersurface Z„and the main equations
hold everywhere.

One possible set of gauge quantities is (q", q01,

bo"}. These four quantities describe the develop-
ment of g,}from 0Z„and the correspondence
between points on different members of fZ,}.
Now the covector defining (Z,}is n'„, and hence
the natural vector field orthogonal to (Z,}con-
necting successive members is

(~00)-1+OtX

g" 8 "4A, , x=0, 1, . . . , s, ) =0, 1, . . . ,)
1

At this stage, we must make clear the limitations
of the approach which we are adopting in the next
two sections. We shall show how the field equa-
tions can be used to calculate successive Lie
derivatives with respect to e~ of the field var-
iables on 'S. In order that this process might
generate a solution in some region of 'S, we must
assume therefore that the field variables can be
expanded in a Taylor series of the form (2.10) in
the region of integration under consideration.
This condition is very strong, since it assumes
analyticity of the initial data and of the field var-
iables. By the same token, our formal integra-
tion scheme only guarantees uniqueness in the
analytic case.

IV. THE SPACELIKE INITIAL-VALUE PROBLEM

In this section, we shall assume (3.2) holds.
We group the field equations as follows using the
terminology of Bondi'.

iG" =0, dynamical equations~

KG=0, &

G"= 0, )constraint equations

The lapse function a of (&,}is defined by

((4)g nBgO NO )-1/0 (F00)-1/0

and its interpretation is as follows. If two nearby
members of (&1} are separated by a parameter
distance 6/0, then the orthogonal proper time in-
terval between them is

("'g„8N"N )' '5p'= ada' .

(Z,}is a family of geodesically parallel hypersur-
faces if and only if a =1. The function q" defines
the "angle" between(ZQ and f&,};they are mu-
tually orthogonal if and only if q" =0, In that case,
the orthogonal connecting vector of fZ,},N", and
the orthogonal connecting vector of fS}„n",, co-
incide. The vector bo is the shift of (S}„and by
varying q" and 6,", the curves of 6, can be made
to set up an arbitrary correspondence between
points on different members of (Z1}. In particu-
lar, if g" = bo = 0 then C, coincides with the tra-
jectories of X".

There are some additional choices of gauge with-
in 'Z, which correspond to the freedom to specify
the development of 'f S},from 'S and the corre-
spondence between points on different members
of 0(S},. This is governed respectively by the
lapse! q»!'/' and shift I1,

" of 0(S}1, which we shall
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thus allow to take arbitrary values within 'Z, .
There remains one final choice of gauge on 'Z,
which corresponds to the specification 'Zy as a
hypersurface in V. One possible candidate is

pq», the geometrical significance of which may
be interpreted as follows. If we set V gyes 0 on
'Z„ then for a given choice of the remaining gauge
variables we can always find a choice of f~qyy for
which the resulting trajectories of n,"are geodes-
ics in V. Finally, on 'S we may specify g" ar-
bitrarily. Since 'S is conformally flat, a choice
of g" merely corresponds to a particular choice

I

of basis in 'S.
To summarize, we choose the following as gauge

variables:

fq", q", h,") in V, fq„, 8 q„, h", $ on'Z„

g"' on'S,

and we regard these as freely specifiabl, subject,
of course, to (3.2).

We now use (2.46) to write the field equations
in the fo11owing form:

~Gy8 Q"iV hrbe 2hreehb +h&8eh /[V&I8 IefYI 8 2~-2gpg8]

~G —G '=0~'A=5' 'h, e ——'h'h —l ~'l, +l'l —6q '0'0 +8

~G' =Q ~ece'V, Q =2@ "(h, +6, h )0'+q'[V'~, c--,'V h' -2h „I"'+~,'I'+-,'h'I +'V, /ce —'Vc/ ],
Gcb Q~&ce&bfsVP +&( ce~ I)bye+~2[ hchb+heech b V Icbe+2Iceefb +Icbefe~

We first note that no second derivatives with re-
spect to e," (extrinsic derivatives) of any of the
field variables occur on the right-hand side of any
of the above equations. Second, we see that no
second derivatives with respect to e," (~™»
derivatives) occur in the subsidiary conditions.
In fact, the leading terms (i.e., those involving
second extrinsic derivatives) of the subsidiary
conditions Gpp = 0, G"= 0, &G' = 0 are

h =— y 'k'y+

—(2k„h, + —,'S, h, )=—y R, k, y+

I

we now know all the field variables and their first
time derivatives on 'Z, . By virtue of the Bianchi
identities, the subsidiary conditions hold automat-
ically on all other members of(Z, j. We now turn
our attention to the main equations.

The main equations all contain second time
derivatives of the field variables. The leading terms
of G =0, &G-G e 0, &G O=O, and &Go~=0 are

y Q. y+ ~ ~ ~

Oo ep

0"=———'8' 5 + ~ ~ ~

np 2 ep 1

'8=—g g'q + ~ ~ ~

h '= —'q '8' g ~+ ~ ~ ~

ne 2 ep

respectively. Now let us suppose that in addition
to some choice of gauge variables, the following
initial data are given:

Then on 'S all the field variables and their first
extrinsic derivatives are knovm. Thus we can
solve the subsidiary equations on 'S for , 'yy,
S„8„y, and 8, 8„b„which is equivalent to know-

g +e~y + y, and+ep~„respectively, on "S.This
then allows us to solve the subsidiary conditions
again on "S. Repeating the above procedure on all
successive "S, i = 2, 3, ... , we build up a know-
ledge of y, 8, y, and R,,b", on 'Z, . Assuming that
we have solved the subsidiary conditions on Zy,

respectively. At this stage we have sufficient
initial data to solve the main equations for the
second time derivatives of all the field variables
on 'Z, . Solving the main equations on 'Z, then
allows us to solve them again on 'Z, and then on
all subsequent Z„k--2, 3, ... . In this way we
build up a solution of the field equations in some
neighborhood of 'S. It is easy to see that the in-
itial data given in (4.1) is necessary and sufficient
to determine the solution. Giving h", and h", on
'Z, is fully equivalent to giving the conformal two-
structure and its first time derivative on 'Z, . On
'S the functions y hy and hp then determine the
complete intrinsic and extrinsic geometry of 'S,
and finally giving 0 is equivalent to specifying the
first time derivative of the shift vector '5y.
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V. CHARACTERISTIC AND MIXED INITIAL-VALUE
PROBLEMS

Gll 0
subsidiary conditions,

& G'~ —0

& G = 0, tr ivial equation.

As in Sec. IV, we first analyze the Bianchi
identities, and to do so, we assume that the main
equations hold everywhere. Then one of Eqs. ,

(2.47b) reduces to

n'"~V„G'"= —,
'

qa, ~G = 0. (5.1)

Now, g 4 0, and the condition h, + 0 is necessary
and sufficient for the null rays ruling (Z,}to have
nonvanishing expansion. We shall assume for the
rest of this section that we are dealing with a re-
gion in which h, is nonzero. Then (5.1) implies
that i G = 0. Equation (2.47a) then implies that

g„ i G' —[2h, , + (h, -8„ ln&i)5, ]i G"= 0, (5.2)
I

In this section, we assume that (3.1) holds. We

group the field equations as follows:

&G ~=0, dynamical equations
.
~Go& 0 gnain equations,

constraint equation
Go& 0

and thus if &Gl™vanishes on any cross section of
(Z,}, then it vanishes everywhere. Under the as-
sumption that & G' does indeed vanish every-
where, the other equation in (2.47b) gives

(5.3)a„,G"+ (2a„ 1nq —h, )G"= 0.
Hence G" vanishes everywhere if it vanishes on
some cross section of jZJ. Collecting the results
of (5.1), (5.2), and (5.3) together, we obtain the
usual lemma: The trivial equation is an algebraic
consequence of the main equations; the subsidiary
conditions hold everywhere if they hold on some
hypersurface transvecting(Z, }and the main equa-
tions hold everywhere. In practice, we solve the
subsidiary conditions on 'Zo.

The specific gauge condition (3.1) implies that
several dyad components of various quantities
vanish identically. In particular, the following
results hold:

q"-O~q -l -t" =I' =011 11e

q„=(rP') '=q&0,
and in fact it is necessary in analyzing the Bianchi
identities to take these results into account. It is
simplest in analyzing the field equations them-
selves to write out explicitly the dyad components
of the various terms in the equations. In fact, the
main equations simplify considerably, and we ob-
tain

&i'Goo -=R„h, ——,'(h, }'—h,R„,In&7-h",h„,=0,
-&I'G" =-R„ho —o P 'h, k„t &oohoh&+ 4~

&7 &Ioo(h&) —2'0 &ooh' &h,o, + V, Q'

&I-'Q Q, —,'V'
I &'q+-'(V, &i)(V'q)+ —,'&tft = 0,

Goo=k, „,Q~ —2[h"„+5o(h, + —,
' 8„1n&I)]Q'+@V'h"„— I'Vo&(&I 'h, )+ o&iv 8„1n&1=0,

a&1 G = „h o —2 „&(g &7ooh z) —2h e &oh &&+ &7 &ooh lh el h (oh»

+&i 'q„h",h, +r[v Q' &I
'Q Q' ', V.V'q+ -,'(v &i)(v'-q)]=0.

We now consider the remaining gauge freedom.
Suppose that we have picked an initial two-surface
S and one of the null hypersurfaces emanating

from it, which we take to be 'Z, . The condition
(3.1}ensures the existence of the family of null
hypersurfaces fZ&}, with initial member 'Z„but
this family is nonunique. There remain three
further four-dimensional gauge conditions, to-
gether with lower-dimensional gauge choices as-
sociated with the intrinsic coordinate freedom
within 'Z, and 'Zo and with the freedom to specify
the embedding of the latter in V. We shall first
of all consider the characteristic initial-value
problem, where Zo is taken to be a null surface,
and hence initial data is set on a pair of intersect-
ing null hypersurfaces. This makes the analysis

I

rather easier than in mixed initial-value problems
(where 'Z, is taken to be timelike) since the sub-
sidiary conditions have a considerably simpler
form when evaluated on a null surface and lead to
much simpler integration schemes for the field
equations as a whole.

Now, 'Zo is null if and only if

0~goo = 0, on Zo (5.4)
The subsidiary conditions evaluated on a null 'X'o

become

q'iG' =R„,Q —2Q'[h „+5, (ho+-, R„,in&I)]

gV ~g„ lng —gV 9g,o

+ o &&'V'(&i 'ho) —&Iv'U= 0,
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n ''V n~=vn~
p n p p»

Hence U controls the parametrization of the null
rays in 'X:„and in particular, U=O implies that
they are affinely parametrized. We shall regard
U and b, a's freely specifiable within 'Zp. Suppose
that no =dx /du in 'Z, . Then we can assume with-
out loss of generality that u= constant is the equa-
tion of "S. Since Z, intersects 'Zp in '~S, we
see that a particular choice of U determines Z,
uniquely.

Two of the three further choices of four-dimen-
sional gauge quantities are associated with the
remaining freedom to choose the correspondence
between points on different members of [Z,f„[Some
of this freedom has already been used up by
(3, 3).] This is governed by the shift vector 5, .
In particular, choosing b, =0 implies that the
curves of 6, are the null rays ruling [Z,j. The
final choice of gauge concerns the freedom to
specify the development of [ZJ from OZ„and this
is governed by any one of (at least) three quan-
tities. We consider the three cases separately.

Case (a): @00. This is the lapse function of [Sj,.
If we choose 7i,0= 0, then (Zo] is a family of null
hypersurfaces. In general, gpp can be chosen ar-
bitrarily, providing it vanishes on ZQ.

Case (5): y. Suppose that y is restricted by the
equations

V ky eJ3 on S'

(5 5)

where J„J„and 4, are given functions. Then y
is determined everywhere once it is determined
on 'X'Q. This is the strongest condition we can
impose on y while demanding that 'Zp be a null
surface.

Case (c): q. We can show that

n '"V n'=n' in@.1 e j 1

where

p=-l', ,=8„ inq —,'g —'R„,q„. (5.5)

Given 'S and 'X'„'ZQ is uniquely determined by the
condition that it-be null, since there are precisely
two null surfaces intersecting in any given space-
like two-surface. The vector n, is tangent to the
null rays ruling 'Z„and the gauge freedom within

Zp is associated with the choice of parametrization
of these rays and the correspondence between
points on different members of 0[Sj, set up by the
curves of Cp in +Q The latter is determined by
the shift vector b, , gnd with regard to the former
we can show that on 'Zp,

Hence any q satisfying 2„ in&= 0 implies that the
null rays ruling {ZJ are affinely parametrized.
For a particular choice of parameter u on Zp,
setting g= 1 picks out a particular affine parame-
ter. In general, we may set q to any arbitrary
(nonzero) value, in which case the rays of (Z,]
will be arbitrarily parametrized.

We have not yet mentioned the gauge conditions
associated with the intrinsic coordinate freedom
of the initial surface Z, . In fact, this is auto-
matically used up in cases (b) and (c), but in
case (a) there is still the freedom to parametrize
the null geodesics ruling 'Z„and hence [from our
discussion in case (c)] q is freely specifiable on
OZ, in case (a). Finally, we may choose g ~ arbi-
trarily within '$, since 'S is conformally flat.

The three gauges we have discussed are gen-
eralizations of well-known gauges in which the
characteristic initial-value problem has been
analyzed using more coordinate-dependent tech-
niques. In particular, if we set

b, =0, U=b =Oon Z0 p p

then we obtain the so-called light-cone gauge. "
If in addition we set, in case (a) q»= 0, q= I on 'Z„
we obtain the covariant formulation of the Sachs
double-null problem. ' In case (b) if we set Z, =8,
= J,= 0, we obtain a generalized Bondi gauge first
discussed by Gambini and Restuccia. ' In fact, in
this case y= (x')'f(x', x") in suitably adapted co-
ordinates, e, = 5, , and x "= constant along the
curves of 8,. In case (c), setting q= I yields the
Robinson-Trautman" or Newman-Penrose gauge. "

Integration schemes for all three cases can be
constructed quite straightforwardly, and they follow
in essence the schemes in their coordinate de-
pendent counterparts. In each case the initial data
required are

k ~ on ~ h.~ on'Z
Q ' 1 1 &

y, ho, 0, and h, [Cases (a) and (c)]

or q [Case (b)] on'S.

Giving@ ~Q and h ~, on Zp and'Z„respectively,
is entirely equivalent to specifying the conformal
two-structure on these initial surfaces. The out-
line of the integration scheme in case (a) is as
follows. On ZQ the subsidiary condition G"=0
is solved for y, which allows the other subsidiary
condition &G' =0 to be solved for 0, and this
determinesg bo The ma.in equations are solved
on successive 'Z„k =0, 1,2, . .... in the following
order: G"=0, &G' =0, G"=0, and ~G ~=0.
The first of these determines y on 'Z, and q
thereafter. The remaining equations determine
Q, h„and h ~„respectively. Q determines
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b", on any 'Z» h, and h ", on 'Z, determine y and

g on ""Z„respectively. Integration schemes
for cases (b) and (c) are similar, but rather more
complicated, and are outlined in Appendix A.

We shall now consider briefly the mixed initial-
value problem, where 'Zo is taken -to be a time-
like surface. We shall concentrate our attention
on a gauge which is a modification of case (b} dis-
cussed above. We drop (5.4) and now take as
gauge variables on 'Z0 the lapse (q»)'~' & 0, and
shift ba of '(Sj„ together with h„ the trace of the
extrinsic curvature of 0(Sj0 (considered as hyper-
surfaces in Z,). This is the generalization of the

Bondi gauge considered by Tamburino and Wini-
cour, ' in which they set happ 1y 50 h0 0 If we
adopt these latter conditions, then 0/Sj, are geo-
desically parallel and maximal with respect to the
inner geometry of 'Z, . In this gauge we see that
y is determined everywhere. The necessary ini-
tial data in this gauge are

h-80 onoZO h-ol on OZ~ n and n onos

The subsidiary conditions have a very complicated
explicit form, nevertheless we may write them
formally on each "S, i = 0, 1, . . . , as

G"=0~8„,@=f"[h '„h '„q,g„,q», 0, gauge variables],

&G'~=0~8„g =f'~[h~~, h ~„Q', q, g,„q,g„,q, g„,F00, gauge variables],

where f" and f' are some complicated functions
of their arguments. The occurrence of derivatives
of field variables out of Z, in the subsidiary con-
ditions means that they cannot be solved inde-
pendently of the main equations. The formal in-
tegration scheme is as follows: The main equa-
tions, in the order G."=0, &G' =0, G"=0, and
&G ~=0, are solved on Z, for g, 0', F00, h' „
respectively. The subsidiary equations can then

be solved on "S in the order G"=0, &G' =0, for
R„p and R„A, respectively. This enables the

n0 na
main equations to be solved again on 'Z, . In gen-
eral, solving the main equations on Z, allows the
subsidiary conditions to be solved on "S, which
then allows the main equations to be solved again
on 'Z„k =0, 1, . . . .

VI. DERIVATION OF THE FIELD EQUATIONS
FROM A LAGRANGIAN

We start by assuming that we have a bare mani-
fold with some fixed foliation (Sj and fibrations
e„defined by n' and e, , respectively (as dis-
cussed in Sec. II). We now impose a metric "'g ~

on this manifold, given by

l

Hence 5 ~, by, f(, , 5'~ are ten independent variations
of the field variables. We can write

5"'g"=y '5" g"-y—'by+-n. n', 5"+2q"n& 08&

(6.3)

The action function I is defined by

I = Zd'x,

where

Z = v'-g &4&a

is the Lagrangian density. Replacing 2 with

(6 4)

where T is a vector functional of "'g ~ and

8,"',g ~, leads to an action function I . As de-
fined in (6.4), 8 has the same tensorial character
as 2, namely a scalar density. Variation with
respect to "'g ~ of I is identical to the variation
of I and leads to the same field equations. We
obtain

(4)g&s y lgl + q+b(ea -be)(e8 bB) (6.1)
eI'= SC'de

Then (4j—= (y, g ~, q'", b, j are the ten independent
field variables. We shall only consider variations
in 4~ for which the resulting metric can be written
in the same form (6.1). We define

5g ~=-5" 5q"=5" 5b:=bn. -=y':. (6.2)

af[Z 5"'g '+ v':g"'v' Z ]d'x,

where Z are linear in 5"'g ~ and 8„6"'g ~.

Hence,

5I = 0~g~ ~
—= v' -g G ~

= 0 .

(6.5)

(6.6)
Then we obtain the following:

5(g"n'. ) = 0~5 "n:= O,

5(g ~@g~)= o~g z5 ~ = 0,
5(n'.n, ) = O~n'. y'„= O.

We would expect independent variations of I with
respect to the different @~to give rise to differ-
ent subsets of the field equations. In fact, substi-
tuting (6.3) in (6.5}, and remembering the defini-
tion of 2 ~ in (6.6), we see that
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0= g-op I = Q Np g d g = -g-LQ~gQ + V'-g p~g~ d g~LQ~~= o, (6.7a)

0ll„l =f II„Zd'x . f (-=d-gxGy 'ilyxyl-0"'0 Z')d'x IG=0,

0=5„de I = Jt 5„o0 I dx= Jl (V -gG, 5' + v'-g' V~Ss)d x~G, ), =0,

(6.7b)

(6.7c)

0 dg I == Jl II,. 0 d'x =f (gd gXG -0"0.,,x d 'g"'X-Z;)d'x, C X=0. '„ (6.71)

The above results allow us to obtain explicit expressions for the various projections of the Einstein ten-
sor. We first obtain an expression for 8 in terms of 4)~and their derivatives. From (2.45b) and (2.45e)
we see that

"'R = -(~+G ')

and hence from (2.46b) and (2.46e) we get

g= v'-g(2'V, h'+ 2V, l' &h h' ——l, l' —h,e,h'e' —l«, l«' —A«, Q«'+ 'R+R) .

From this we can write down an equivalent Lagrangian density

where

= V'-
g( 2,hhg+l, P - h, (),hg ' —l«, l'~0 —Q«, Q«0+ 'R+ R),

2 —2 = 2&-g")V,(l'+n'P') .

We can now perform the variation of Z term by term. We first note that, since variation and ordinary
differentiation commute, we have the operator equivalence

5S„=, „+R„5 for any vector v

We then obtain, quite straightforwardly,

5))'-g= 5()7y) = v'-gy '5y —~ v'-g 5,',
5(~h,h') = ('Vp' h,h')y '—6y+ ,h,h&50 ——(V,h'+ l,h')fig+ "'V, [n',h'y '5y+ h'll0]

5(l, l') = -l, l'y '5y+ T[l,l,)5"+ (l, l' —V, l')5, '+ "'V, [l,5,'],
5(-l«gl' ') = l«, l' 'y '6y —T[l«~l' ]6' —(V,l«'+ l«, l'+ 21,"gl~d, )6« —"'V,(l«'5«)

—2(v h'()'-l h' ')f( —"'v, [nP '5 "-2hge'$ ]

6(-n 0 ')= -ll 0' 'y '5y+ T(n Q«]6 ge20 0 '5 ~

+ 2('V 0« —0' h )f(~0 —2 'V', [n,'A'
$y ],

O'R = 'R,f5'f+ g' O'R f,
5R= -Ry '5y+g' 5R,~.

'The variations g'O'ER, ~ and lj' O'R,f are rather more difficult to calculate and the procedure is outlined in
Appendix B. Eventually, we get

)7' O'R«= (h,h' —'
hV')5~ + ('V(,h~) —h,h~)5' + 2(l,h' —h l~', + 'V'l, —'V~l'~, )50

+ 'V, [n,'('V'5 ~ —'V 5' + hg5 ~ -h 5«+ 2l y'e' —2P~ y'e]f f f f 8 tI) f

g 5R „=[V,l' —l, l']y '5y+ T [V,l, —l, l, ]5"

—"'V [V (y '50~)+ V'(y '5y)+ Py "5y+ l y '5"]

(6.6)

(6 9)
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Putting these results together, we finally obtain

5peg = 4-g('V, h, &&'+ 2h, „,h~"'- h, &&P'+ T[V,le —l,~, l'fe —Q,~,Q'~~]) 5' + v -g"&V,Z', ,

5„Z = v'-g j'v,h'-~hh'+ v, l'-l, ie-h&&h' '-2II ~Q' '+ 'B)y '5y+ v'-g"'vg', ,

6&ef 2 = v'-g('v &eh'&
—2h~ hy —heath &+ 7~lzy + 2l~ l~~~ —l~~ l + 'B

&

(6.10a)

(6.10b)

&I,-~(~'B+ ~B+ 'v~h + v, l' —',h~h" —-gl, l' + —'h h' ——' l l "+—'0 Q~")l5'~+ v'-g"'V Z'2 68d 2 dye ~ dc' 3, 6 3~

(6.10c)

gD 2g g(ig gfe h fife g h8 e+ & g PP+ &vel sggie ~ l h&& e l ~ hf+ & hei )f&'6+ g g&4&P, Za

(6.1M)

Comparing (6.10a)-(6.10d) with (6.7a)-(6.7d), re-
spectively, gives us explicit expressions for the
various projections of G ~. It is a simple matter
to check that these expressions are identical to
the corresponding ones for the projections of G~
given by (2.46a)- (2.46d). Explicit expressions can
also be calculated for the Z from the above.

VII. CONCLUSION

The Cauchy problem is one of the central issues
of general relativity. The theory itself gives rise
to a set of nonlinear partial differential equations,
and consideration of the Cauchy problem throws
light on the internal structure of these equations,
indicates what information may be used to char-
acterize a solution of the equations, and allows
one to formulate what initial data can be freely
specified such that a unique, stable solution can
be generated from it. At one level then, it gives
insight into the role and function of the equations.
At a computational level it allows one in principle
to generate solutions (numerically and perhaps
even analytically) from given initial data. And
perhaps more importantly, it provides a possible
route towards the quantization of the theory.

To date, most work on the Cauchy problem has
been focused on the usual Cauchy spacelike prob-
lem. Here the 3+1 approach first suggested by
Lichnerowicz and extensively investigated by York
and others has resulted in some significant ad-
vances. In contrast, most of the work on char-
acteristic and mixed initial-valug problems which
was pioneered by Bondi (and from which much of
our current understanding of gravitational radi-
ation has stemmed) has suffered from the disad-
vantage of it being couched in a rather ad hoc co-
ordinate-dependent form. Part of the purpose of
this paper is to remove this limitation. The 2+2
formalism provides a framework which is.firstly
manifestly covariant or, put another way, is
couched directly in geometrically meaningful
language. Secondly, it attempts to unify all the

l

possible initial-value problems in suggesting in
each case that the conformal two-structure may
be used to embody the gravitational degrees of
freedom of the theory. Next, it makes clear the
geometrical significance of the various gauge or
coordinate conditions which may and have been
employed, and moreover allows one to investi-
gate what happens if various gauge conditions are
dropped or altered. Finally, in separating out
the conformal two-structure as the unconstrained
initial data, and data whose geometrical signifi-
cance is immediately clear at that, it offers one
a starting point for a quantization program.

However, the work is still largely in its early
stages. The basic question as to whether the
Cauchy problem is properly set with this choice
of data is as yet open, although Seifert and Muller
Zum Hagen" have shown that the problem is well
posed in the double-null case. The next task is
clearly to determine whether the same is true for
the other cases considered here. Of course, the
prescription works in the very limited case of an-
alytic solutions, and the probability is that, patho-
logies aside, it will prove to work in the more
realistic case of smooth (C") solutions. If this is
indeed so, then the iterative schemes which we
have described here may well be of direct use in
allowing one. to actually compute solutions from
given initial data. There are a number of other
questions (for example, boundary conditions and
the existence of killing fields and the nature of thd
resulting solutions) which this formalism might
be usefully employed to investigate. Our opinion
is that conformal two-structure may be a powerful
concept and the 2+ 2 formalism a useful tool for
probing a number of central problems in general
relativity.

APPENDIX A: REMAINING INTEGRATION SCHEMES

Case (b). The subsidiary condition G"=0 is
solved for y on 'Z„at which stage the gauge con-
ditions (5.6) determine y everywhere. The equa-
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tions iG' = 0 and G" = 0 then determine 0 and

g on 'Z, as follows. On each S, i =0, 1, . . . , we
solve J.G"=0 for 8„II' and Go'=0 for 8„q. [In
fact, we solve the latter for s„q» and then (5.5)
determines g„q.] Solution of Go'=iG' =0 on
"Sallows us to solve the equations again on "'S.
At this stage, y is known everywhere and g, 0
are known on 'Z, . The main equations are then
solved on successive 'Z„k =0, 1, . . . in the order
G-=p, G-=p G-=p G-'=p, forn, n. , -d
h ~p, respectively.

Case(c) . On 'I:„ the subsidiary conditions G"
=0 and iG' =0 determine y and 0, respectively.

I

We next solve G" =0 on 'Z, for h, (using the rela-
tionships„h, =k„h, —2V,II'). The integration

ng p np

scheme for the main questions is rather involved.
We first solve G"=0 on 'Z, for y, and then &G'
=0 on Z, for 0 . We now solve ~G ~=0 on 'S
for k„h ~p, which determines g ~ on '"S. We can
then solve G =0 on "Sfor R„h„which deter-
mines y on "S. Next we can solve G" =0 on "S
for k„,happ which determines

happ on "S. This al-
lows us to solve &G ~=0 agaig. on "S. Continuing
in this way, we solve &G ~=G" =0 on 'Z& and
G = 0 on Zy We can summarize the above pro-
cess as follows:

LG =0 on 'S-G =p n "S-G =0 on '" S-zG =0 on "' S i =0 . . . .

We repeat the integration scheme for the main
equations on each successive pair of hypersurfaces

'Z„k=1,2, .. . , starting by solving iG
=0 on 'Z, .

APPENDIX B: CALCULATION OF g PM'
AND q'b6'R

b

ge o5R =g&B5R

Now R» has its usual definition in terms of IBC,
namely

R„=,r„-e,r,', r,„r„-r„r"„.
We can calculate the variation in r~B and we ob-
tain

In order to calculate g ~5R ~, it is convenient
to introduce an arbitrary coordinate basis into

(S) which we denote s/s'xA, with reciprocal basis
d'x". Then, following Schouten, ' we introduce the
connecting quantities B~, B"defined by

5FA —V ( gAE5g )

( gAE5g ) V ( gAE5g )

Note in particular that 5I'CAB is a tensor in (S).
ther. obtain

(B2)

8 =Be a dx~ =B"dx
gixA A exe & e (Bl) m„=~ gr~„- v,sr~„ (B3)

from which it follows that
from which it follows, using (B2) and (B3), that

BeBA-Be BeBA gA
A 8 8&. B e B g 5R =VV(g 5g ) —VVbg (B4)

Any tensor 7 "Bin (S) has components in the adapted
basis given by

However, we can now write this in terms of the
basis of V and we obtain

T& =B»Te ~Te =BeBT~
B eB 8 8 AB B' gnB5R B= V,V'(g B5gnB) —V VB5gnB, (B5)

Moreover,

C 8 C B CB 2 CB y g

for any p in (S), where I'cAB are the usual Chris-
toffel symbols build out of g„B. From (Bl) we see
that we may write

ex
A grxA

from which (6.9) follows straightforwardly.
In order to calculate g' O'R„, we first note that

and hence it is dependent both on g„and b, . Let
us calculate the variation with respect to g" first.
To start, we calculate orb, . From the definition
(2.18), we can easily show that

and so clearly B~ is independent of any variations
in 4~ since it depends only upon some arbitrary
choice of coordinate basis s/s'x" and s/&x in

(Sf and V, respectively. Hence

5gnB —5(Bn8 gAB) —Rn8 5gAB ~ 5gAB —RAB 5gn8

and it then follows that

hence 5r, b is a "tensor" with respect to '7', .
Then

e'R ='v sr~ —'v sr~cb e cb c eh

~cbgtR —Ig lgcgb t~ Ig gcb
cb c b c b

(B5)
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To calculate the variation with respect to b, , we
first calculate gl';b and obtain

$1';b= —,
' g"(Cq q„8q q„-gq q, )

= —P,'l', —$'l', „+$6™l,„,, (B'I)

so again pI";b is a tensor with respect to 'V, . Next,
we can show that

V,g„-R„V =2~~@

=2)„'l" I, l(, q (8„ l,. +e„l„g
and hence

Substituting (B7) and (B9) into (B8) gives

(B9)

(B8)

In order to proceed we need an expression for
Cz F' . We use the result that for the commutator

hg cb'
of V and „acting on a scalar:

~cbyR 2(fa(I~bl rgclb ) + 2igb(gl gP )

(B10)

Then (B6) and (B10) lead straightforward]y to (6.8).
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