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The consistency of a postulated *P, resonance near E; =390 MeV with the experimentally determined nucleon-
nucleon phase shifts at E;, =325, 380, and 425 MeV is examined. It is found that the data require that the width
of such a resonance I $0.3 MeV. A similar restriction on the width of a postulated S, resonance near E; =300
MeV is implied by the accuracy of the data at E; =210, 325, and 380 MeV.

I. INTRODUCTION

Mac Gregor has recently noted® that the ob-
served proton-proton resonances fall on a trajec-
tory which would also pass through a 3P, resonance
at proton laboratory energy E, =390 MeV and a 'S,
resonance at E; =300 MeV. Such resonances of
some tens of MeV width or less are consistent
with the total-cross-section measurements® which
have gaps between 388.0 and 406.5 MeV and be-
tween 267.5 and 315.0 MeV.

This note reports on an examination of the con-
straints imposed by all the experimental informa-
tion in the energy range, through the phase shifts
determined by the data, and finds the constraints
to be much stronger than those of the total cross
sections alone. In particular it is found that a 3P,
dibaryon between E, =380 MeV and E, =425 MeV
would be required to have a width I < 0.3 MeV. A
1S, resonance near 300 MeV would be similarly
restricted as the phase shifts are as accurately
known as the 3P, phases, and fall on a smooth
curve.

The data which bear most directly on the postu-
lated ®p, resonance are those of Bugg e/ al.® at E,
=325, 380, and 425 MeV. Combined with older
angular-distribution and total-cross-section data,
these data have been independently analyzed at each
energy into the partial-wave phase shifts.®> The 'S,
and 3P, phase shifts are given in Table I. The
phases fit on smooth curves which also fit through
lower- and higher-energy data. The accuracy of
the phase shifts implies, as we will demonstrate
below, that the width of any resonance in the region
must be very much less than the 45-MeV gap (only
22.5 MeV in c.m.) between the bounding phase
shifts. A Breit-Wigner—type resonance must de-
cay many half-widths before it will not displace the
bordering phases from a smooth curve by more
than a standard deviation in opposite directions.
The phase shift at the lowest energy is required to
establish the slope in addition to the mean height
of the smooth background.

II. CONSTRUCTION OF THE RESONANT PHASES

Any model which can produce Breit-Wignerres-
onances of given widths superimposed on an ad-
justable smooth background would suffice in this
investigation. Here we apply a coupled-channel ap-
proach currently being used* in a study of the ex-
perimentally indicated nucleon-nucleon dibaryons
and all the phase shifts up to 1 GeV. In this way
we also learn the type of coupled-channel interac-
tions which could be consistent with the resonances
hypothesized by Mac Gregor! and with the data.®
In the limit of narrow width, the resonances pro-
duced by the model have a Breit-Wigner shape, as
one expects from any physical model. This is ver-
ified below for the case most relevant to the exper-
imental situation.

In order to produce a reasonable energy depen-
dence over a large range of energies it is advisable
to use a model which is both phenomenologically
and theoretically well founded. In the nucleon-nu-
cleon channel we use the Feshbach-Lomon interac-
tion® which satisfies these requirements for E,
<400 MeV.

The effect of inelastic thresholds is obtained*'®
by extending both the potential and the internal
boundary condition of the model to a matrix that
couples to nucleon-isobar and isobar-isobar chan-
nels. The most important channel for low-energy
isospin triplet states is the NA system. For the
purpose of this investigation the potential tail of the
transition interaction can be ignored (as it would
negligibly change the shape of a resonance) and the
simple off-diagonal boundary condition coupling to
the NA channel is employed.

Since the predicted resonances are well below the
A production threshold we may use the zero-width
approximation for the A, for which the boundary
condition may be written*-®

ddZNN =fanUnn@0) + fyaU yao) (1a)

[0}

dgr =fuaUyw(70) +fanUya(,) - (1b)
o
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TABLE I. Experimental and model pp phases (degrees).
\ Res. position Res. width
Case\ Ep 325 MeV 380 MeV 425 MeV (MeV) (MeV)
5(1Sy) experimental (Ref. 3) -9.34+0.51  -13.76+0.66 —18.26+ 0.53
—33.82+0.56  —35.26+ 0.36
8CP,) experimental (Ref. 3) =30.20£0.52 ;401410 (144.74)2
8CP,) fyn=22.53, fya=3.9,
fa=5.0, Ty=115 MeV A —22.6 61.7 119.4 377 15
8GP,) fyy=22.53, fya=3.9, v
faa=5.0, Ta=0 B —23.0 44.7 117.0 383 15
8CPy) fyy=6.2, fya=0.53,
Fan= —1.665, Ta=0 c —26.6 -21.8 138.9 396.3 2.5
8CPy) fyun=17.7, fya=0.2,
fan=—1.695, Ta=0 D -29.8 -32.8 142.7 399.2 0.3
6CPy) fux=1.3, fya=0.1,
E -29.6 -33.1 143.6 398.1 0.08

Saa==1.7, Ty=0

2180° should be added to the quoted phase shifts if the partial wave is presumed to have passed through resonance.

The f;; (i,j=N, A) are the energy-independent com-
ponents of the f matrix, Uyy and Uy, are the re-
duced radial wave functions [~h{*(k¥) asymptotic-
ally] in the NNCP,) and the NACP, or °p,, I=1)
partial waves, respectively. The boundary radius
7,=0.51%/.c, as determined by the low-energy da-
ta,® agrees with the theoretical value related to the
onset of multiparticle exchange.” We use M,
=1232 MeV.

The boundary conditions are easily extended to
include the width of the isobars.®*® The effect of
the width will be presented for the case in which it
has the greatest effect, i.e., for the NN resonance
of largest width. In that case we use I' =115 MeV.

The smooth background behavior of the phase
shift is determined by the Feshbach-~-Lomon poten-
tial and by f,y, which represents the short-range
interaction in the NN channel. The effect of cou-
pling to the NA channel through f,, is to add an at-
traction which increases with energy up to the A
meson threshold.?*® In the absence of a long-range
transition potential the result is determined by the
effective f matrix f.; which acts in the NN channel
after elimination of the NA channel (i.e., the NN-
channel Schrodinger equation is solved with f 4 as
the internal boundary condition):

Fur = o~ L @)
o INN T [ fan+05,:(R"]

with
0, /(") = =7y [ B (k'7y)] dfo [ (k7)) ,

where L’ is the orbital angular momentum and
k'(k,M,) is the relative momentum in the NA chan-
‘nel. Below inelastic threshold, %’ is imaginary;
GL,(k’) is real and decreases monotonically from
its value at elastic threshold to L’ at the inelastic
threshold. Therefore f, < fyy, i.e., it is more at-
tractive and decreases with increasing energy up
to inelastic threshold (providing that fy, >~L'). If
fua is sufficiently large, f.x becomes small enough
at some energy to bring the phase shift through
resonance. The resonance first appears near the
inelastic threshold and then moves to lower ener-
gies as f, increases. We call this a coupled-
channel resonance of the general type because its
existence and position depend directly on the
strength of coupling. The width and inelasticity of
such resonances are insensitive to f,, and conse-
quently are determined by f,,, which in turn is de-
termined by the position. In fact, as we shall see
below, such a general coupled-channel resonance
at E; =400 MeV is always too broad to fit the near-
by phase shifts.

However, there is another type of coupled-chan-
nel resonance when f,,<-L’, arising from the
Dalitz-Tuan mechanism.’ This special type of
resonance is present under the condition that the
diagonal NA-channel interaction, represented here
by Vaa and fa,, is attractive enough to cause a
bound state in the uncoupled NA system. Coupling
to the NN channel allows the bound state to leak in-
to that channel so that it appears as a resonance in
the NN channel, the width being narrow if the cou-
pling is weak. In f this mechanism is evidenced
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by the pole it develops below the inelastic thres-
hold when f,,<-L’. If in addition f,, is small, the
resonance energy is very near the energy at which
Fan+ 0, (R)=0. For these special coupled-channel
resonances the position is determined by f,, and
the width by f,,. Such a resonance can be made
arbitrarily narrow and we can use it as our guide
to the maximum width compatible with the known
phase shifts, Although we will neglect the long-
range transition potential and NA diagonal poten-
tial, V,, and V,,, the achievable Breit-Wigner
plus smooth background curves will not be affected
over a moderate energy range.

III. RESULTS

A. Coupled-channel resonances of the general type

A coupled-channel resonance of the general type
was induced in the P, channel, which is coupled to
the NA P-wave channel, by keeping f,,>-1 and in-
creasing f,, until a resonance was obtained in the
vicinity of £, =390 MeV. The resonance so ob-
tained has a width of 15 MeV for f,,=0 or 5 (rep-
resenting moderate attraction to strong repulsion
in the NA channel). Such a width may possibly be
compatible with the total cross-section measure-
ments? given the limited accuracy and fluctuations
in those values. However, as shown in cases A
and B of Table I, 6 (325 MeV) and 6 (380 MeV) are
much too large and § (425 MeV) is much too small
compared with the experimental values. Including
the effect of a A width (case A) worsens the agree-
ment, For the tabulated phase, case A and B, the
f-matrix choice puts the resonance near E; =380
MeV and provides a background that matches the
210 MeV phase shift., At the same time, the aver-
age value of the phase shifts between 325 and 425
MeV is correct, a consequence of the suitable NN-
channel behavior of the Feshbach-Lomon interac-
tion.® Increasing the energy of the resonance from
380 MeV towards 425 MeV would certainly improve
its fit to the phase shift at 380 MeV but would also
considerably worsen its already very bad fit at
425 MeV.

It is noteworthy that, although the physical value
of I' , (case A) introduces inelasticity below the A
threshold, the minimum value of n= 0.97 near E;
=380 MeV. In contrast the large inelasticity of the
'p, state for E, >500 MeV (Ref. 10) is well repro-
duced by this general coupled-channel mechanism.
This illustrates that, as one would expect, the in-
elasticity achievable in this model decreases rap-
idly for E, < E,—3T,, where E, is the threshold
for production of the central mass of the A. The
good fits obtained by this model to the ‘D, and °F,
resonances'® provide a reason for confidence in the

predictions obtained here by its application to the
3p, state at somewhat lower energies.

B. Coupled-channel resonance of the Dalitz-Tuan type

Switching to the Dalitz-Tuan-type coupled-chan-

. nel resonance, one chooses f,,<—-1, so as to pro-

duce a pole in f at E; ~400 MeV. This corres-
ponds to fy,~-1.7. The width obtained is propor-
tional to (fy,)? for small f,,. Several choices of
fya Were compared with the data. For each f,, a
value of f,, was found which gave the correct 210-
MeV phase shifts. The mean value of the phase
shifts between 325 and 425 MeV is simultaneously
fitted as before.

As shown in Table I, case C, corresponding to
Sxa=0.53, induces a resonance only 2.5 MeV wide.
Nevertheless, the phase shifts at 325 and 380 MeV
are 7 and 21 standard deviations too high, respec-
tively, and the 425-MeV phase shift is 17 standard
deviations too low. When f,,=0.2, case D, a width
of 0.3 MeV is obtained. The phase shifts at 325 and
380 MeV are in this case, 1 and 2 standard devia-
tions too high, respectively, and the 425 MeV
phase shift is 6 standard deviations too low. Fin-
ally for f,,=0.1, case E, a width of only 0.08 MeV
is obtained. The 325 and 380-MeV phase shifts are
each about 1 standard deviation high and the 425-
MeV phase shift is 3 standard deviations low.
Cases A-E are depicted in Fig. 1 together with the
experimental data.

One may try to minimize y* by changing the po-
sition of the resonance. However, decreasing the
position of the 0.3-MeV-wide resonance to 391
MeV improves the fit at 425 MeV by only 0.5 stand-
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FIG. 1. The 3P, experimental and resonant model
phase shifts. The circles represent the data values
and errors (Ref. 3). The curves are labeled by letters
that correspond to the cases in Table I.



1220 JANE WAINER AND EARLE L. LOMON 22

ard deviations. We estimate that, for that case,
¥® = 25; while for the 0.16-MeV-width case, x*= 8
for any position of the resonance between 380 and
425 MeV.

We can compare these results with those of add-
ing Breit-Wigner resonant phases &, to the
smooth background phases 6 obtained by setting
fya=0. For a standard Breit-Wigner shape one has

ta‘n(éBW - 6BG) = rres /(EL _Eres ) (3)

(the absence of a familiar factor of 3 is due to the
use of laboratory rather than c.m. energies). We
compare this with case D which provides an upper
limit on the width of the suggested ®P, resonance.
At 425 MeV (86 half-widths from the resonance)
both the left- and right-hand sides of Eq. (3) are
1.2x1072, while at 325 MeV (248 half-widths from
resonance) the left-hand side is 3.3x107% and the
right-hand side is 4.0x1073, Therefore the reson-
ance shape is of Breit-Wigner form to a very high
degree. In spite of the special model used here the
results can be considered to be very general.

Because little inelasticity is expected at such low
energies, we have not examined the case of a very
inelastic resonance in detail. But 7(P,) cannot be
much less than unity, by comparison with the total
inelastic cross section. An energy-dependent ana-
lysis of elastic and inelastic data!! indicates that
the total inelastic cross section at E; =400 MeV is
about 1.5 mb. If all the inelasticity were due to the
3p, channel then

3K72[1-12(P,)] =0.15 fm™

which requires n(P,) 2 0.96. In fact much of the
inelasticity is expected to be in the 'D, channel.
This is in accord with the phase-shift analysis of
Arndt,” who finds that n~0.98 for 's,, °P,, °P,,
and 'D, states. But the 'D, has a statistical weight
five times that of 'S, and *P, and £ that of °P,, so
that it alone accounts for half the inelasticity.

To modify our results for the real phase shift
substantially, it would require that 6 not pass

through 90°, This requires that I'(elastic) <3

T (total), which in turn implies that n < 1 at the
resonance peak, Even for models which emphasize
inelasticity, such as case A, 1 >0.97 near 400
MeV. In addition to the theoretical difficulty of
producing such a small 5, the resonance would
again have to be separated by many half-widths
from the energies of the known phase shifts and the
data determining the inelastic cross section of Ref.
11 in order to be consistent with =1 at those en-
ergies. The Breit-Wigner resonance form re-

. quires that I'(total) ~ (1 - ?)V2(E, - Ej) for inelastic

resonances., Using the above limit, established by
Ref. 11, for E, =380 MeV (but allowing n < 1 at E,
=400 MeV), we obtain I'(total) < 6 MeV. The more
likely limit at 380 MeV of n(*P,)= 0.98 indicated by
the phase-shift analyses, which apportion a share
of inelasticity to the D, partial wave, implies
T'(total) < 4 MeV.

We conclude that an elastic resonance of width
greater than 0.1 MeV is difficult to reconcile with
the data. We doubt that a width greater than 0.3
MeV could be reconciled even after a more com-
plicated, but reasonable, background variation is
permitted and one allows for systematic experi-
mental errors, etc. Very large inelasticity of the
resonance (5 ,,< 0.5) would allow a width as large
as 6 MeV but is difficult to reconcile with theory.
The small 'S, phase-shift errors (see Table I) im-
ply very similar restrictions on the width of a S,
resonance near 300 MeV. It follows that a search
for the dibaryons postulated by Mac Gregor' must
be designed to observe resonances of width less
than, perhaps a good deal less than, 0.5 MeV, or,
if the resonance is very inelastic, less than 6 MeV.
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