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An investigation is made of the extent to which low-energy wN scattering is determined by the N and A
poles and the low-energy theorems. The on-shell amplitudes are expanded in (u,/My) at fixed (v/u,) and
(t/phy?), and it is assumed that M, — My =O0(u,), in contrast to M, — My =O(My) for all other
resonances. The invariant amplitudes are determined using fixed-t dispersion relations and are calculated to
second order in (u,/My). The crossing-odd amplitudes are fully determined by the N and A poles and the
low-energy theorems. The crossing-even amplitudes receive undetermined background contributions
described by three expansion coefficients. If they are fixed using the “experimental” scattering lengths, the
resulting model is in fairly good agreement with experiment.

I. INTRODUCTION

The aim of this paper is to investigate to what
extent the low-energy 7N scattering amplitudes
are determined by the N and A poles (via fixed-¢
dispersion relations) and the low-energy theo-
rems,!”®

We want to give an approximate description of
the low-energy amplitudes in terms of a few fund-
amental parameters (e.g., &yyr, fr, Or the ¢
term). We do not want to calculate the amplitudes
as accurately as possible by using the enormous
amount of experimenta.l data as an input; we shall
call the output of such a phase-shift—or ampli-
tude—analysis “experimental” scattering ampli-
tudes.

The low-energy theorems refer to the scatter-
ing of soft pions; they are exact statements for
the off-shell 7N amplitudes. The on-shell contin-
uation induces corrections whose magnitude can
be described in an expansion in u,/M, [see Eqs.
(2a) and (2b) in Sec. II].>""

We expand the on-shell amplitudes in u,/My,
keeping the ratios v/pu, and ¢t /u,2 fixed; i.e., we
consider the amplitudes for varying pion mass and
fixed relative distance to the lowest-lying branch-
point singularities. Since we want to treat the N
and A poles on the same footing and keep the A
contribution as an explicit pole, we must set

MA"MN=O(U~«) (1a)
in contrast to
M,,2=M,?>=0(1/a’)=0(M,? (1b)

for all other resonances. This is also very natur-
al since the physical threshold is equally close to
the A as to the N pole.

With the p,/M, expansion for fixed v/ji, and
t /i -2 we can avoid the following difficulties.

(1) satisfying a low-energy theorem in a fixed-¢
dispersion calculation necessitates a subtraction.
But the low-energy theorems determine the sub-
traction functions, e.g., A“’(v=0,¢), only at
t=2u,? and give no information for ¢+ 2u,2 If
one expands the subtraction function in ¢ (and
treats the expansion coefficients as free parame-
ters), the expansion diverges at t=4u,2 and, if
the expansion is done around {=0, also at =
-4p..% But since the discontinuity (of A’‘*’ say)
for t=4p..% t=0(u.?) is of O(u,*/M,?) (see the
Appendix), the ¢ expansion of the subtraction func-
tion for A’ ‘¥’ makes sense outside the ¢ interval
(—4p .2 +4u .2 up to O(nq2/M,?) for t /p,2 fixed.

(2) In the low-energy region the contribution of
the higher resonances is slowly varying in v.

-But again an expansion in v of the contributions

other than N and A diverges at threshold unless
one restricts oneself to O(u,2/M,? for v/p,
fixed (see the Appendix).

Instead of using subtracted dispersion relations
(at fixed ¢) we close the contour of an unsubtracted
dispersion relation (at fixed ¢) at || =N and ex-
pand the background term (contribution of the high-
er resonances, of the nonresonating background
and of the contour integral) in v and ¢ to second
order in p,/M, for v=0(u,), t=0(u,?). This
corresponds to an expansion up to quadratic terms
in the pion momenta. The two low-energy theo-
rems determine those two expansion parameters
which contribute to leading order in p, /M.

In lowest order (linear in p,/M,) the S waves
in the low-energy region (|v|s v,) are fully de-
termined by the low-energy theorems and repro-
duce Weinberg’s scattering lengths.? The P waves
are fully determined by the N and A poles with
static kinematics.

In the next higher order (quadratic in ./M,) the
pr/M, expansion allows us to obtain the following
exact results.
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(1) The correction terms of O (i1,%/M,?) in the
crossing-odd amplitudes are fully determined by
the N and A poles and by the low-energy theorem,
i.e., there are no undetermined background con-
tributions.

(2) The crossing-even amplitudes receive un-
determined background contributions described
by three expansion coefficients, which we fix by
experiment.

Including quadratic terms in p, /M, with the
assumptions (1a) and (1b) produces a description
for the low-energy amplitudes, which is in fairly
good agreement with experiment.

II. THE LOW-ENERGY THEOREMS

The low-energy theorems for nN-mN (e.g.,
Refs. 1-5) can be formulated as exact statements
only for the scattering of soft pions, ¢, -0, i.e.,
for off-shell amplitudes. The order of corrections
(in the u/M expansion) arising from the on-shell
continuation can be determined in the context of
chiral perturbation theory.®*” [The assumption of
an approximate chiral symmetry where perturba-
tion theory makes sense is technically equivalent
to the assumption of current algebra and PCAC
(partial conservation of axial-vector current).?]
The low-energy theorems for the on-shell am-
plitudes read (for C*? the corrections to the re-
lation of Cheng and Dashen® are indeed of higher
order as claimed by them)

2
lim c‘*’(u, VB=—§VM-; u"",uz)
v=>0
g 1 wi/M3 et 2
:#+A70(——-MA—M’ e In 1‘:‘42 , (2a)

lim lC("(V v =_-—V—2—--u2 pz)
v >0 . * "B 2M’ ?
JFew?) gy 312
27,2 2M° M,-M

1 2 Lt/ M?
am0(a raegr) @
where

C=A+vB, v=(s-u)/4M,
ve=(t —2p%)/4M, M=M,, u=p;.

A and B are the standard invariant amplitudes and
+ refers to I,=0,1. FY(¢) is the isovector form
factor of the nucleon and M, and go= gaur are the
mass and the coupling constant of the A pole. 0,y
=0 ,x(21%) is the nucleon matrix element of the
equal-time commutator of the axial-vector cur-
rent with its divergence at the momentum trans-
fer t =2u? it is of order p2/M:

(D' 103 0) ) = 86,0 iy ((B' =P (p" Yu(p),
[42(x), 8, A2(9) |yomyol= =0 @ =F)or, (3) .

The point ¥=0, v, =0 is the Cheng-Dashen
point, which is the crossing point of the s- and
u-channel N poles for m, =m,. It is important
to specify the line along which this point is ap-
proached: It is the parabola

vg=—-v¥/2M

going through the Cheng-Dashen point and the
threshold. This parabola is approximately the
Ocm. =90° line (see Secs. VIA and VIIA).

This information of the low-energy theorems
has the following advantages.

(1) It refers to the full amplitudes, and not to
amplitudes where the N- and A -pole terms have
been subtracted. Therefore, there is no need to
specify which effective Lagrangian has to be used
for the N-and the A and which propagator for the
latter.

(2) It reads the same whether m, =m, or m,
#m,, i.e., it is irrelevant whether the nucleon
pole is right at or away from the Cheng-Dashen
point.

(3) It does not contain, to order u/Min C‘¥’,
any coupling constants which refer to specific
channels (such as g% or gyr).

For m, # m, the line of approach is of course ir-
relevant. If one used for m, =m, the line of ap-
proach of Cheng and Dashen,? first setting v, =0
and then v=0, the right-hand side of Eq. (2b) gets
an additional term - g,*(2M?*)™, g,= guwr. Using
instead the line of approach v, -0 for v=0 would
require a large additional term +g,2/M in Eq.
(2a) while the left-hand side of Eq. (2b) would be
infinite,

The corrections due to the A resonance® on the
right-hand side of Eqs. (2) cannot be neglected
(in contrast to Ref. 7) because we set M, —M
=0 (u).

To calculate the amplitude C =’ to second order
in u/M, i.e., modulo 1+o(u/M), it would not be
necessary to take the difference F}(2u?) -1
=0((u3/M?)1n(n2/M?) (Ref. 9) into account. But
since the charge radius of the nucleon is numeri-
cally so large that the correction (21,2 *[F}(2p?)
—1) is almost as large as the correction due to
the A pole® in Eq. (2b), we will at this very point
not systematically neglect all terms of O (u2/M?)
and not replace FY(2u2) by unity.

In the following we work with the amplitude

A'=A+v(l -t/4M? B

rather than with C. In order u2/M? one must dis-



tinguish between A’ and C. C* is directly con-
nected to the o term [see Eq. (2a)], while A’ has
a particularly simple partial-wave expansion in
this order (see Sec. III). In the limit v—0, vg
=—12/2M only the N pole contributes to A’
-C® | and to O(u2/M?) the only contribution to
1/v)(A’"~ ) comes from the A pole. There-
fore, the low-energy theorems can be formulated
for A’, From Egs. (2) follow

. V2
lim A’ <V,VB= -5 2, uz)

V=0

As the numerical value for f, we use
fr=0.66u .

As the o term cannot be reliably calculated
theoretically, we use an “experimental” value,
which has been computed from experimental data
via dispersion relations and a short extrapolation
from ¢ =0 to t=2u% We use the value of the
“compilation of coupling constants and low-energy
parameters”!®:

0,w=62%10 MeV .
With the A parameters of Sec. IV and the iso-
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vector charge radius of the nucleon'! 7,,=0.76 fm,
the first two terms of the right-hand side of Eq.
(3b) combine to (2f;2)"*(1+0.001), while taken sep-
arately the deviation of F}(2u?) from unity and the
A term represent each a 10% correction to 1/2f,2.
As a numerical statement Eq. (3b) becomes

s 1 1(=) = v 2 2
yllng -A VsVp=—gars BT

1 1 2 14/ M?
—_zfnz +M2 O(M2 ’(MA—M)Z) . (3c)

III. THE CONNECTION BETWEEN THE INVARIANT
AMPLITUDES AND THE PARTIAL-WAVE
AMPLITUDES TO ORDER u2/M 2

In the expansion in u/M for fixed v/u and ¢/p?
the partial-wave amplitudes are of order
o =MTo(/M),
(o+)’ ii) =M"'0(u/M),
M™o(p?/M?), 1=2
) {M”O (u3/M®), 123

4)
f(i)

where (x) stands for I,=0,1. The order of the
S waves is given by the low-energy theorems. The
order of the higher partial waves is determined by
the direct- and crossed-channel N and A poles and
the ¢t -channel discontinuity. For an estimate of the
latter see the Appendix. Note that the crossing-
odd S wave and the P waves are of the same order,
namely linear in u/M.

The partial-wave expansions of the invariant
amplitudes

A'=A+v(l -t/4M?™'B

and B become very simple to order u2/M2:

Al [f4n= (1+“-’/M)[fo+ +2(f1- +2f1+)‘*‘ (%22 —%)(2.7{ -+3f2+)][1+0(ﬁ2/M2)] s

B/4"=2M/¢12[(f1- "'f1+)+3z(f2- _f2+)][1+0(“-2/M2)]5

(5)

with w the laboratory energy of the pion, z =cosfcm. and g the c.m. momentum. The partial-wave projec-

tions are then given by
-1[A’(90°)
- 1
Jor= L+ w /M) [ 4r ( t/2) 41r>s

ap=q *f1-+2/,)=1+w/M)" (8(t/2) ?)

(e =fo) = 2 2O

(1+O(u2/M?)] .

Jrows e,

J1rour/m?)], (6)
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The unitarity-cusp effects of the partial-wave
amplitudes are of order

Imfz/Refz zézqule =O(IJ.2/M2), 1=0,1

and can be neglected in our approximation. Ex-
perimentally one has §,= 8°=0.14 for the S waves
below T =100 MeV.

IV. THE N AND A CONTRIBUTION TO THE FIXED-#
DISPERSION RELATION

The amplitudes A’‘* and B‘* are calculated by
Cauchy integrals in the v plane at fixed £:

_Z ¥ 7(4,02 2)=1 v ’
Fi(u,t)—"jo- av' (v'2 - 1?) V)ImFi(V,t)

+(21ri)'“ﬁ‘ | Ndv'(v' - V)RV, ),
nT ()

where F, stands for A’ and B,

The N and A contributions are calculated modulo
1+0(u2/M?) for fixed (v/u) and (¢ /n?). This im-
plies in particular that the A can be approximated
by a zero-width resonance, since

r'~g*=0(u®
and
Vpa=V=iMT/(2M) = (vo—-v)[1+0(pn?/M?)].
We obtain from Eq. (5)
v 2y

B 2
Al(i)l = ._A'_.g —_B
¥ \v/ 2M vg?-1?

v
W — gy 2
BW|, = y

B

(8)

2v
Al(t)l =92 & En ¥ 1+_VA._ L __.___A._t +29,
AT\ -v [ 2M M) 2M vi2-v? '’

2v 2
B = En 2
B |A"’ -V, oM VAZ—VZ ’

with vy =g 2, va=Vsoy,2 and ¢°=¢"s_y 2 .

Note that in our approximation, Eq. (5), the
residues of the P-wave poles of A’ are linear in
t and vanish at 90° i.e., they are proportional to
(t+2¢s?). Inthe case of the nucleon this gives
t+2q,°=t —2u%=2v, 2M.

For the NN coupling constant g,?/4r we use the
value 14.5. For the A parameters g,*> and M, we
use the values of H8hler et al.'?:

g,2/4r=5.3, M,=1220 MeV .

They obtained these values by considering

Yo
Xy, ) =57 [ av (v - ) Mm B (v, 1)
n
where Im B, is the contribution of the 3-3 P
wave to ImB‘~’., Comparison of X, calculated
with the experimental phase shifts and the zero-
width approximation for X,

s _8p° 1

X5 —Elf)l_ Vpa—V
in the region 0= v=< u determines g,* and M,. The
analogous procedure with the amplitude A ¢’ in-
stead of B yields somewhat different values for
g,% amd M,. Furthermore they are slightly de-
pendent on the ¢ value, at which the comparison
is done. The quoted values are averaged values.
This AN~ coupling constant is 30% smaller than
the one calculated from I', in the narrow reso-
nance approximation.

V. THE BACKGROUND CONTRIBUTION

We expand the contribution of the higher reson-
ances, the nonresonating background, and contour
integral to the invariant amplitudes in power ser-
ies in v and vy The assumption M, — M =0(M)
together with PCAC and current algebra imply
that it is sufficient to consider the following terms,
since we want to go just one order beyond the low-
est order in u/M [see Appendix, Eq. (A5)]:

A’ “)/4'”|BG=0!2*) +(I}(,+)[VB+V2/2M]+O£;+)V2 ,
A" an|go=ag v,

B“/4n|4=0,

B(.)/4"IBG=B<->»'

The expansion coefficients are of order O(1). Re-
member that the N and A contribution to the in-
variant amplitudes are of order

A’(*): M'J‘O(LL/M),
“BY: MPO[(u/M)*].

9)

To lowest order only a;*’ contribute.

The background contributions a *’ are deter-
mined by the low-energy theorems and are there-

fore not free parameters:

) o 1 oyy M

(10)
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where
E,=(1+w,/M)/(1+2w,/M).

Since [vy+ 12/ (2M)]5e =MO(u*/M?), a’ contrib-

utes only to the P wave a%; and not to the S wave

s, a%’) on the other hand, contributes only to
the S wave f§). We shall later determine the free
parameters a'’, a%’, and 8’ by a fit to the “ex-
perimental” scattering lengths a¥’, a%) (w=p),
and a$’ (w=p).

It should be noted that there is no one-to-one
relation between the rate, with which the disper-
sion integrals of the invariant amplitudes con-
verge, and their number of background para-
meters: The dispersion integral of (d/dt)A’*’
and of B “’ converge with the same rate, and
(d/dt)A’ © has no background term while B “’ has
one.

V1. THE 7N AMPLITUDES IN LOWEST ORDER:
O(u/M)

Kinematics in lowest order is static kinematics,
where the kinetic energy of the nucleon is neg-
lected, the laboratory and center-of-mass sys-
tems are identical, and v=w,

A. The S waves (linear model)

In lowest order the S waves are given by
fo,=A(90°)/4n

and we need not distinguish between A’ and C nor
between the 90° line and the parabola

vp==12/(2M) = —w?/(2M) .

The S waves in lowest order have no left-hand
singularities from the u-channel resonances, the
S’ wave is constant and the S “’ wave is linear
in w.

-Inthe S’ wave the N contribution is zero,
while the A contribution is of O(v,/M) and there-
fore in-qualitative disagreement with the low-en-
ergy theorem, which reads, neglecting order
o(p*/M?),

fo.) =0 (11)

since 0,,/f,2=M"10(u?/M?). Therefore, the A
contribution must be canceled by the background
(higher resonances, nonresonating background,
contour integral).

In the S “’ wave the N and A give linear contri-
butions of the correct order O(u/M). The back-
ground also gives a linear contribution of o(u/M)
and is sizable. The sum of the slopes is fixed by
current algebra and PCAC:

- 1 w
fo(w) =7~ 577 - (12)

Equations (11) and (12) reproduce Weinberg’s
scattering lengths® up to the factor (1+ u/M),
which is negligible in this order.

B. The P waves

In lowest order, the contribution of the higher
resonances, the nonresonating background, and
the contour integral vanishes, and the P waves
are given by the N and A poles alone (with static
kinematics):

PR S V" R SR
339 wptw Wa=w 9 wutw '’
2 2y, 4 2
= [ J— 4+ - A
ay,35=0s,1 9 wotw 9 wotw ’ (13)
oAy 1o, 16 A,
a"_w—w+§w+w 9 w,tw ’
B B A
where ay; ,,=q"% frl,)hx and A; = (3/4M *)g,*/4x.
Since in this order w,=0, we have
a,, =4a, ;=4a, . (14)

For the linear combinations of P waves defined in
Eq. (6) we have

a\=gls) = Ay 2w _a 2w
A B 3 wi-w? 3 wol-a?’
(15)
(D ogg) mpq N 2w,
ap =4ag =+ R
A

The N contribution to a';’ and a';’ is proportional

to 2w,/ (w,z? = w?) and therefore zero in this order.

Equation (13) can also be written down directly
by noting that (in this order) the spin—-orbital-angu-
lar momentum structure is the same as the iso-
spin structure [compare Eq. (6)]:

q-z(fhx/z,x:i "fJ=3/2,x=1)=(2M)-lB/47T; (16a)
F(l,=3)-F(,=3)=3F", (16b)

which are both odd under s-u crossing, and

A/
q-z(fJ=1/2,1=l+2fJ=3/2,l=1)=<_5(ta/—2) —) , (17a)

in /,
F(I,=3)+2F(,=3)=3F", (17b)

which are both even under s-u« crossingl. These
crossing relations determine the SU(2) crossing
matrix, whose elements appear as factors in Eq.
(13).

VIL. THE N AMPLITUDES IN NEXT HIGHER
ORDER: O(u?/M?)

Here we go one order beyond Weinberg’s treat-
ment of S-wave scattering lengths and the static
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treatment of the P waves and calculate the partial
waves including O(u2/M?2). The subscript 90 (e.g.,
V geo) denotes “value on the 90° line”:

Vpoo=Vp(w,z2=0).

A. The S waves

In this order the difference between the 90° line
and the parabola of Sec. VIA is not negligible,

Vpeo ¥ 2/ (2M) = MO(p3/M?) ,

and the S waves show left-hand singularities,
which are, as a result of the expansion, poles and
not cuts. The other corrections to the lowest-or-
der expressions for the S waves [Egs. (11) and
(12)] are an overall factor (1+w/M)™?, a factor
£,=(1+w,/M)/(1+2w,/M) in the A residue, the
additional background term a'*’v? in f§, and the
terms d ‘¢’ that eliminate the D-wave contribution
to A’(90°) [see Eqgs. (5) and (6)]:

@)= 38 (@48 ,=S)+d ), (18a)

{
(+)( ) = Yo )
for(w)= 1+ w0/ M (af+ ol vy

+V pooS y 2V g8 o) +d e
(18b)

where

1
(-,) =(1+ -1 -
=L+ w/b) [4M2 a7 v 2P 4M?% 47

gﬂz_ 2v 2 g:z

B. The P waves

The calculation of the P waves modulo
1+ O(u?/M?) gives the following corrections to the
lowest-order expressions [Eq. (15)]: (i) The re-
placement of w, wg, and w, by vy, Vg, and

V a00» (ii) the nucleon contribution to a';’ and a\;’,

(iii) the background contribution to a'y’, a';’, and
a$’, (iv) additional terms which appear from tak-
ing the derivative of the denominators of the u-
channel poles in the calculation of af;,’, since in

this order

(Gi7m). i),

(v) a factor 1+ w,/M inthe A residue in a'’, and
(vi) a factor (1+w/M)™ in every leading term of
af:,). We obtain

_&) 2v
M] v =02 g

. l‘iﬁ 2v, _ 1 g 2 t/2+q2 af’
M2 4 (vp+v) |g 4M2 4n M (v,+v)® |, 2M °

- 2 2
a(&)_ 1 gﬂ v

BT 4M? 4n v - 0R |y, 4AMZ 4m v 2-v

N 2v,

7 - 4 2 w 2v
a(A*,)=(1+w/M) 1W—2~A_g47r (1+—A-) ” 2_AV2

2 2 2

2 2 2
00 4M?® 41 v i-v

90

(+)

1 gl 2V, _ g2 2 t/2+q)” @p
AM?® 4r (vt v) | 4MZ 4m M (v, tv)? |y, 2M
at)= 1 g,° 2v, 1 g2  2v, +B(')
B AM?® 4m vgi-0® |y, 4M? 41 v 2 2M

For the nonresonating P waves we obtain
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1 (p8a _&x®\_of’
S Vel Cr iy ey a T
2 1 2 1 4 1 2 1 1
=_2 N 2 B gn ) «) «
%3 3 4M? 4n (VB+V)90 * 3 4M? 4n¢ (VA+V)90 * aM3 4 6M (Ol +2al’ - 28 )’ (20)
e -l g 8 1 1 g2 1 16 1 gF 1
Ll 4M2 4q wB— 3 4M? 41 (vg+V)y, T3 IMT dn (Wa+V)go
1 g4t . ) )
+—_4M3“L41r +6M (ap’+2a5’+48%) .

In O(u2/M?) three of the six S and P waves,
namely 15, a4, and a$’, are still fully deter-
mined by the N and A poles and the low-energy
theorem. In particular, the S’ wave is deter-
mined beyond the linear model. The other three
partial waves each acquire one background para-
meter. For the two P waves a"’ and a ), they de-
scribe a constant background contrlbutlon, so that
the energy dependence of all four P waves is pre-
dicted without free parameter.

VIII. COMPARISON WITH EXPERIMENT

A. The crossing-odd amplitudes: Parameter-free
predictions

We make parameter-free predictions for the
amplitudes A’ <’ and B“’. In Table I we test our
predictions at threshold by comparing the S-wave
scattering 1ength ag “) and the two P-wave scatter-
ing lengths a%) (w= p,) and a3’ (w=p) with the ex-
perimental values from Ref 10, The agreement
is good.

The correction of 0(;1"’/M %) to a$’ improves the
O(n/M) prediction. The net correctlon is small,

r

although the corrections to the individual contribu-
tions of the N, A, and background are rather large
(up to 40% of the “experimental” scattering length).
The background contribution, which is fixed by

the low-energy theorem, is not the same in O(u/M)
and O(u2/M?2) because the A contribution to C “”/v
at the Cheng-Dashen point is different in the two -
approximations.

The net correction of O(u?/M?) to the P-wave scat-
tering length a‘;,’ is practically vanishing because
the corrections to the individual contributions of
the N and A are rather small and have opposite
sign and the background contribution to a‘j,,’ is
only 1%. The prediction for the P-wave scatter-
ing length a;’ (w= p) is identical in O(p/M) and
o(u?*/M?).

B. The crossing-even amplitudes

Parameter-free predictions of the crossing-
even amplitudes can only be made in O(u/M).
The comparison at threshold with the “experimen-
tal” scattering lengths'® is shown in Table II. The
O(u/M) prediction for the S wave is in good agree-

TABLE I. Comparison of the parameter—free predictions for the S-wave scattering length
afs) and the two P-wave scathermg lengths a§? (w=p) and af’) (w=p) with the “experimental”
values (Ref. 10). @, =q 2(2f,, +f 1-)> ag=q" (fl_ ~f1+). The background is determined by the
low-energy theorem (LET). O(u/M) denotes leading order, 0(¢¥/M? includes next-order cor-

rections.
Background
from LET Experiment
N A (@) Total (Ref. 10)
ral? o(u/M)  +0.162 —0.118 +0.048 (4m~p/f
=+0.092
+0.087 +0.002
oWl/MD  +0.141 —0.082 +0.027 +0.086
3 (=)¢ . - - -
Balw=w oWw/M 0.161 0.030 0 0.191 —0.177£0.004
owt/M?) -0.152 —0.038 +0.002 —0.188
3, Gy
wagl@=m OWM 161 o030 0 —0.191  —0.1900.004

=042 /m?)
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TABLE II. Comparison of the leading-order predictions, O(u/M), for the S-wave scattering length a<§) and the P-wave
scattering lengths af{), (w=y) and aS) (w=p) with the “experimental” values (Ref. 10). O(u?/M? includes next-order cor-
rections. Brackets indicate fitted values. The error of the background contribution determined by the low-energy theo-

rem (LET) comes from the error of oyy.

Background
from LET Background Experiment
N A (o) (other) Total (Ref. 10)
pa $ o(u/M) 0 +0.526  —0.526 0 @ =0 0 005£0.002
o2/M»  —0.010  +0.366  —0.356%0.011  (=0.005%0.011)  (—0.005%0.002)
3a P (w= + 0 0 +
Baflw=w o/M) 0 0.133 0.133 10.219£0.005
o2 /P +0.024  +0.148 0 (+0.047 +0.005) (+0.219+0.005)
Baf =1 ou/m 0 +0.033 0 0 +0.033 40,068 40.003
ow/m? +0.012  +0.033 0 (+0.023 £ 0.003) (+0.068£0.003)

ment with experiment at threshold (but not at all
away from threshold), which is a well known re-
sult. The predictions for the P-wave scattering
lengths are off by a factor 2.

The net correction of O(u?/M?) to the crossing-
even S wave in the low-energy region is large.
For example, the ¢ term, which is an O(u2/M 2)
effect, is numerically almost equal to the cross-
ing-odd amplitude at threshold, which is of O(u/M):

@) _ 3 = Oy ~ K
C *’(Cheng-Dashen point) IR

~C “’(threshold) .

Neglecting O(u2/M?) effects in the S’ wave at
low energy (w s i) means neglecting 100% effects
(compared to the dominant S’ wave). Since the
scattering length is small, these large effects
must cancel right at threshold.

The background term determined by the low-en-
ergy theorem (a%’) is corrected by the o term and
by the very large change of the A contribution to
C “’ at the Cheng-Dashen point. The background
contributes to the S “’ wave with an additional en-
ergy-dependent term, a w?% We fix o’ using
the experimental scattering length and obtain

@$=-0.006 £0.013 p~* from a%’.

Since this background term turns out to be com-
patible with zero, the S wave is given numerically
by the low-energy theorem and the N and A singu-
larities, which contribute strongly energy-depen-
dent correction terms.

For the P waves the O(u?/M ?) corrections to the
N and A contributions are quite large (30%), but
the background contributions are essential. We
fix them using the experimental scattering lengths:

@$’/2M =+0.047+0.005 p"3 from a$/,
B’/2M =+0.023 +0.003 p-° from af’.

C. The nonresonating partial waves above threshold

We compare the predictions for the nonresonat-
ing partial-wave amplitudes between threshold and
T =200 MeV with the absolute value of the experi-
mental amplitudes.'®!® Figure 1 shows the S
waves f,,(I, =}, 2) and Fig. 2 the P waves a, ,, a,,
and a,,, where ay;,,,=¢% .., (D).

Unitarity corrections to the nonresonating am-
plitudes are expected to be of the magnitude

(If,] -Ref)/|f,|=5,2/2 4% (T <200 MeV).

At T=200 MeV kinematic errors in the O(u2/M?)
approximation can be estimated by w?/M2=14%.

The agreement between prediction and experi-
ment is good for the amplitudes S;,, P,,, and P,,,
and fair for S;, and P,,.

The prediction for the S waves is shown with the
uncertainty due to the error of the energy-depen-
dent background term (a%’), which reflects the
uncertainty in the o term. The predictions for
the P waves is shown with the uncertainty due to
the “experimental error” of the P-wave scattering
lengths a% and a§’. That background contribution
which is not determined by the low-energy the-
orems is numerically essential for the P waves
a%) and a’, but negligible for a, , and a,,, (<1%
of the scattering lengths). The variation with
energy of the P-wave amplitudes is a parameter-
free prediction, which is in good agreement with
experiment. The agreement in the case of a, ;
is somewhat surprising, since the Roper reson-
ance is not so far away.

‘We did not compare our predictions for the
subthreshold region with the “experimental” ex-
pansion coefficients, because such a comparison
is equivalent to the experimental tests given here:
The lowest coefficients either are determined by



22 LOW-ENERGY 7N SCATTERING FROM N AND A POLES AND... 129

[£55'] sign 8,

[m7r'1] x x

[SSEma~-
o1’ ST~ -

. * x X, X
010 \.\. ~ f(()13=1/2)
N,
\-
\.
005
1.5 2 25 w [m-n']
) _1 ! !
I ] [ I
50 100 150 200 T [Mev]
-0.05
-0.10
-045
-0.20

(Ig=3/2)
foi

FIG. 1. Comparison of the predictions for the S-wave
amplitudes with data of Ref. 13 (), Ref. 14 (}), Ref. 15
(}), and Ref. 16 (X). The scattering lengths are taken
from Ref. 10 (f). The solid lines give the predictions
with the background parameter a‘s‘) fitted in Sec. VIII B.
The dashed and dot-dashed lines reflect the uncertainty
of ag) coming predominantly from the error of oyy.

the low-energy theorems or fitted to “experiment”
and the higher ones are practically given by the

A contribution (see Ref. 23). The only exceptions
are (d/dt)A’ “’/v and (d/dt)B “’. The former gives
a constant contribution to the P wave a%’ and an
energy-dependent one to the S’ wave; the corres-
ponding tests are given in Table I. The coefficient
(d@/dt)B©’ is direcily related to the energy depen-
dence of the P wave a,‘;’, and the corresponding
tests are given in Fig. 2.

IX. COMPARISON WITH MODELS ON LOW-ENERGY
nN SCATTERING

The low-energy theorems (LET’s) are a conse-
quence of the Ward identity3-:
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FIG. 2. Comparison of the predictions for the non-
resonating P waves ay,3, a3,1 and ay,1 with data of Ref.
13 (§), Ref. 14 (§), Ref. 15 (3), and Ref. 16 (X). apz sy
Eq'sz,-{)m. The scattering lengths are taken from Ref.
10 (*). The solid lines give the predictions with the
background parameters a$’ and g~ fitted in Sec. VIII B.
The dashed, dot-dashed, and dotted lines reflect the

errors of the P-wave scattering lengths a$? and a§”.
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. 1 L
T8 (paip'a) = 7 aia [ d'e e p’ | TCALDALON]p)

1 2 72
ti (‘Z? +i‘i"‘ 1)<p’lo‘,.(o) |p)+

Our treatment of 7N scattering at low energies
is based on dispersion relations for the two in-
variant 7N amplitudes A’ and B. We use Eq. (21)
only at the special point on the Mandelstam plane
(Cheng-Dashen point) where the contribution of
the first term on the right-hand side (after sub-
tracting the N and a well defined A contribution)
is suppressed by order uz/M2 and numerically
negligible with respect to the second and the
third terms.

In contrast most models which fulfill the low-
energy theorems (we know of no model for which
the following is not true) use Eq. (21) in the whole
low-energy region as a starting point. The as-
sumptions and approximations which distinguish
the models do not refer to the 7N amplitudes but
to the first term in Eq. (21), the axial-vector—
nucleon amplitudes. The models separate into
two classes:

(a) One class in which the invariant A” N-
A"N amplitudes (after subtracting the N contribu-
tion) are calculated by fixed-¢ dispéersion relations
and are usually saturated by the A pole.!""

(b) The other class®-? in which the first term
on the right-hand side of Eq. (21) is calculated
within field theory using effective Lagrangians.
Usually N, A, p, and o exchange is considered.

In Ref. (23) an additional diffractive term is added.
All these models have the difficulty that the A
contribution (even in the narrow-width approxima-
tion) depends on assumptions on the AN7 ((A [A* INY)
coupling and (in the field-theoretic class) on the
A propagator. Therefore, the A contribution to
mN scattering differs quite strongly from model
to model, especially in the amplitude B [com-

pare discussion in Ref. (12) and the remark in
Ref. (18) after Eq. (30)].

The simultaneous use of exchange terms in all
three channels in the field-theoretic models raises
the question of double counting. If one assumes
that the p pole is much closer than the higher s-
and #-channel resonances, double counting is
avoided in A’®’ because of the LET.* For the
B’ amplitude analogous statements cannot be madel?

In most models the amplitudes are approximated
just by those contributions which the authors ex-
pect to be sizable. In contrast to that, our ampli-
tudes are exact in O(u?/M?): The contribution of
the higher resonances, the nonresonating contribu-
tion, and the contour integral in Eq. (7) are com-
pletely parametrized by the u/M expansion. For

17-19

21’

(@ +q") i€l | VEO) ). 1)

|
example, we obtain in a natural way a cv? term in

A’ which is numerically important but which is
missing in most other models.

To O(p®/M®) the crossing-odd amplitudes A"
and B of all models must be identical to ours.
Models can only differ with respect to the three
background parameters in the crossing-even amp-
litudes A’ and B®). Either they are also free
parameters which must be fitted to experiment,
or corresponding terms are missing, or the
values of some parameters are determined theo-
retically from fundamental entities.

The last and physically most interesting case
occurs only in B in some models,* % while B*?
in other models?'?? contains a free parameter
corresponding to our 8. In the former models
B*) is approximated just by the A contribution
and the current-commutator term Gy/2f,2. But
as shown by Ref. 5, the LET make no constraints
on B?, so that these models are based on the
(ad hoc) assumption, that the axial-vector—nucleon
amplitude can be approximated by the N and A
contribution alone. .

An additional difficulty for predicting B? is
the fact that this amplitude depends very sensi-
tively on the assumptions on the A-nonpole con-
tributions (e.g., the values of the parameters
Z, ¢). [While in Refs. 19 and 23 the A nonpole
contributes to B~ only 12% of G}/2f,?, its con-
tribution is in Ref. 12 about as large as the cur-
rent-commutator term, so that an equally large
background (=2B‘") is needed to cancel it and get
agreement with experiment.] The fit of the A
parameter Z in Ref. 23 is mostly influenced by
B and corresponds to our determination of 8¢,

Reference 19 contains no free parameter for the
A, but they make assumptions by ignoring some
terms in the matrix element (a|A* |N).  Con-
cerning the approximation of the A’N-A*N ampli-
tude by the N and certain A contributions alone,
they refer to Ref. 18 where this assumption is
numerically tested. This is equivalent to a fit
of a discrete parameter.

The conclusion for B'” is that no parameter-
free prediction (in the sense discussed above)
can be made from the N and A poles and the LET.

Our amplitude A’ contains two free parame-
ters. Comparing it with those of other models
we note that the corresponding terms are either
missing or also contain free parameters.

A contribution to A’*" corresponding to our
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background c? appears (with a free parameter)

'in most of the models.!®"?!"% In Ref. 23 this term
is interpreted as the ¢ dependence of the ¢ term
and of the o exchange and is determined by the fit.

A background term of the form cv® in A" ap-
pears in Ref. 23, where it also contains a free
parameter and is labeled “diffractive.” Most
other models!™ 222 do not contain such a v*
term; the predictions for the S-wave scattering
length of Refs. 19 and 21 are bad, while the pre-
diction of Ref. 22 agrees with experiment. This
agreement can be explained by the much larger
A contribution of Ref. 22.

In higher order than O(u®/M?) other models
show the most important difference in A’‘” having
a t-dependent background term, which is assumed
to be dominated by the ¢ dependence of the cur-

rent-commutator term. It corresponds to an
8% effect in the S-wave scattering length a$” and
a 6% correction of the P-wave scattering length
a([.’. Such a term would improve our prediction
for a4 but spoil the one for af’. This shows
most clearly the limitations of the u/M expan-
sion to second order. [In our approach such a
term could consistently be introduced as an
O(u?/M?) effect, if one assumes m,?=MO(p).]

A much less important difference of higher order
is the t dependence of the A-nonpole term which
induces a correction to a4 up to 2%, depending
on the assumptions.

In B other models show very small differ-
ences from our amplitude, necessarily of higher
order. B in all models listed above is.approxi-
mated by the N and A contribution alone, except
for the one of Ref. 23, which contains a diffrac-~
tive term, contributing 1% to the P-wave scat-
tering length Y. The N contribution is the same
in all models, the A contribution in the field-
theoretic models has a negligible nonpole term of
1% of a3

This comparison with other models shows the
following:

(i) Up to O(u?/M? all models contain the same
number of free parameters (for B> in the sense
discussed above) or the corresponding terms are
missing. In contrast to other models we used no
other dynamical input than the N and A poles and
the LET and made no other assumptions on the
background than Egs. (1a) and (1b).

(ii) The limitation of the u/M expansion to se-
cond order, that means the specific limitation of

our approach, shows up most clearly in two points:

(a) The t dependence of the current-commutator
term in A" is numerically not negligible (8% of
a$?). (b) The w/M expansion of the purely kine-
matical factors induces errors which we expect
to be of order 15%. This is the price we pay for

writing explicit and relatively “simple” formulas
for the scattering amplitudes. Of course, the
kinematics could be calculated exactly; the alge-
braic effort would just be much larger.

The limitation of all these models comes from
neglecting higher-order background terms and
unitarity-cusp effects. The latter are most im-
portant in the S waves (~10%) and much smaller
in the P waves.

At the present time the uncertainties in the “ex-
perimental” amplitudes (from amplitude analy-
sis) are also of order 10%, and the models are in
fairly good agreement with “experiment”. At
some future time, when the “experimental” ampli-
tudes will be known to much better accuracy
(say 3%), all these models will fail in a detailed
comparison with “experiment”. Still they will
be valuable as a simple explanation of the main
features. Incorporating unitarity and higher-
order background terms would get us farther and
farther away from a simple model determined by
a few basic parameters (e.g., gy, ga, f, and oyy)
and closer to a precise fit to the experimental
data at all energies (amplitude analysis).

It is very difficult to compare the different mo-
dels by their success in predicting “experimen-
tal” numbers, since all authors use different
values for the fundamental parameters (e.g.,
f.»&4) and fit their free parameters to different
experiments. In our opinion, our approach makes
predictions of the same quality as other models
(if compared with the number of free parameters)
with less dynamical input and approximations and
and—given the result of the Appendix—with less
effort. )

X. ‘CONCLUSIONS

We have investigated to what extent the low-
energy theorems and the N and A poles determine
low-energy 7N scattering. The low-energy
theorems determine only the amplitudes A’‘®) at
the Cheng-Dashen point and only up to unknown
corrections which are suppressed by order ¥/l
with respect to the current-commutator terms.

We have expanded the 7N amplitudes in u/M to
second order, keeping v/u and ¢/u’ fixed and as-
suming

My=M=0(u)
and
M, — M= 0(M)
for all other resonances.
We have calculated the invariant amplitudes A’

and B using Cauchy integrals in the complex v
plane at fixed f. This induces a well-defined de-
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composition of the amplitudes in N, A, and back-
ground contribution. In the Appendix we have
shown that the branch-point singularities of A’
and p’B at t=4u° and |v|=u+t/4M are of
O(u®/M®) (up to logarithms) and that the back-
ground contribution in O(1?/M?) can be des-
cribed by five parameters, two of which are de-
termined by the low-energy theorems. The re-
maining three parameters only contribute to the
crossing-even amplitudes.

By using the constraints of the low-energy
theorems, by incorporating the contribution of
higher resonances and nonresonating background,
and by systematically expanding in u/M we have
gone beyond the dispersive model of Chew, Gold-
berger, Low, and Nambu.?

The amplitudes in leading order, O(u/M), are
fully determined by the low-energy theorems and
the N and A singularities. In particular, the S
waves are given by the low-energy theorems and
reproduce Weinberg’s scattering lengths, and the
P waves are given by the N and A poles with sta-
tic kinematics. Numerically the O(u/M) predic-
tions for the crossing-even amplitudes badly dis-
agree with experiment (see Sec. VIII B), except for
the S wave right at threshold.

In next order, O(pz/Mz), the crossing-odd amp-
litudes are still fully determined by the low-
energy theorems and the N and A poles; the para-
meter-free predictions agree well with experi-
ment. On the other hand, the crossing-even amp-
litudes get undetermined background contributions
parametrized by three constants. We have fixed
them using three “experimental” scattering
lengths. With the three background parameters
fixed at threshold, we get predictions for the amp-
litudes above threshold which are in fairly good
agreement with experiment.

A comparison with models on low-energy nN
scattering has shown the following:

(i) Up to O(u?/M? differences can occur only
with respect to the three background parameters
in the crossing-even amplitudes. In all models
A" either also contains two unknown parameters
or the corresponding terms are just missing. In
some models B'” also contains a free background
parameter. In other models it is approximated
just by the N, A, and current-commutator terms,
an approximation which cannot be justified theo-
re;ti)cally (there exists no low-energy theorem for
BY)).

(ii) In higher order than O(u’/M?) the main dif-
ference, apart from kinematical effects, is a ¢-
dependent background in A’*™, " In all models it
is assumed to be dominated by the ¢ dependence of
the current-commutator term, giving an 8% (6%)
correction to a$” (a$).

(iii) Although it is very difficult to compare dif-
ferent models by their success in predicting
“experimental” data, we think that our approach
makes predictions of the same quality as other
models with less dynamical input and approxima-
tions and with less effort.

(iv) All models neglect unitarity-cusp effects,
which are more important in the S wave (~10%)
than in the P waves.

We did not go beyond O(u?/M?) because of the
following reasons:

(a) The on-shell continuation of the low-energy
theorems involves additional and unknown cor-
rections: There are no low-energy theorems in
higher order.

(b) Unitarity effects must be considered: The
amplitudes have threshold singularities, and the
background can no longer be expanded in v, { be-
yond threshold. The zero-width approximation
for the A resonance is no longer valid.

(c) The partial-wave expansion can no longer
be truncated after a few terms.

Parametrizing the background to higher order in
w/M than O(u?/M?) one gets farther away from a
simple and predictive model and closer to a fit
to the experimental data (amplitude analysis).

APPENDIX: THE ORDER OF THE BACKGROUND
TERMS IN THE u/M EXPANSION

The background contribution to the invariant
amplitudes (i.e., the contribution of the higher
resonances, the nonresonating background, and
the contour integral to a Cauchy integral in the
complex v plane at fixed ¢) has branch-point singu-
larities at t=4p® and t=4M (xv - p).

F(v, t)|pe =Zc,,mv2"t"‘ R (A1)

where F stands for A’ , A’"/y, B, and
B™/y, converges for |¢t|< 4p2 and 12< p3(1 - p/M)2.
This implies that most of the coefficients diverge
in 4 as p—~0. In this appendix we answer the fol -
lowing questions: Which coefficients are regular
in pu as u -0 and what is the order in pu/M of
those coefficients that diverge for p~0?

We estimate the order of the coefficients using
Cauchy integrals in the complex ¢ plane at fixed
v (as well as Cauchy integrals in the complex v
plane at fixed ¢) with the N and A contribution
subtracted. (We choose the radius of the contour
integral such that no other resonance contributes
to the integral along the cut.) Since the contribu-
tion of the contour integral at |¢| ~ M2 (|v|~ M)
does not diverge in y as u—0, the coefficients are
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given by truncated fixed-v (fixed-¢) dispersion re-
lations up to corrections which are regular in p
as u—-0.

PCAC permits the approximate calculation of
the discontinuities of the invariant amplitudes by
two-particle unitarity,? i.e., by elastic unitarity
in the s and # channel and with 77 intermediate
states in the ¢ channel.

1. Expansion in ¢ at fixed v
We consider first the series

F(v,t)|pg =Co(¥)+C (¥t +2+ +C, (¥t "+ +, (A2)

whose coefficients are given by truncated fixed-v
dispersion relations.

To estimate the discontinuity across the right-
hand cut we approximate on the right-hand side of
the £-channel unitarity equation the NN-mm ampli-
tude by the nucleon Born term and the 77-7mr am-
plitude by a linear low-energy amplitude® plus a
typical correction (which contains a D wave)

Tyrenn =0 (1)(V/M)?In[(4 2 + 1)/ @M*+ 1)] .

Such a correction is obtained from a simple-mind-
ed unitarization of the linear mr-m7 amplitude.
Considering a D-wave contribution to 77-m7 on
the right-hand side of the unitarity equation for
NN-77 is necessary since S and P waves do not
contribute to B*’, The contribution of this cor-
rection term to the expansion coefficients of A’
is less singular in p for p — 0 than the contribu-
tion from the linear nm-77 amplitude.

The discontinuity across the left-hand cut of
F(v,t) in the complex ¢ plane is given by the s-
and # -channel discontinuities. We estimate them
by approximating the nN-7N amplitudes on the
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right-hand side of the s- (-) channel unitarity
equation by the nucleon Born term alone.

The resulting order of the terms in (A2) is
shown in part (a) of Table III. The contribution of
the background to the invariant amplitudes can be
described up to order (u12/M?3) by

]MA/(H \BG =a(g)(vz) +a<1+)(vz)(t /“2) +O([.L3/M3),

BMA/v| o =a$ (1?) + O (u3/M3)In(p /M),

(A3)
KB e =007) +0 (/1)

p3B™® /vl =0 (13/MIn(u/M) .

As a second result of this estimate of the ¢ -chan-
nel discontinuity we get the order of the 7N -7N
partial -wave amplitudes in the p/M expansion
(1#0): f;,=M"'0(p3/M?®)+contributions from N and
A poles.

2. Expansion in vtatr=0

We expand the coefficients in (A3) in power ser-
ies in 1?, i.e., we consider the expansion in v? of
MA'® |5, u2M(d/dt)A" ) |y, pMA'T /]y, and
p2BS? 56 at £=0.

To estimate the imaginary part of these ampli-
tudes by elastic unitarity it is sufficient to con-
sidar S and P waves only. This follows from the
order of the partial-wave amplitudes

fo+’f1i=M-IO(“/M),

for  =MTOW/MY), (A4)

fi.  =MTo(ud/MP), 1=3.

TABLE III. Order in u/M of the background contribution to the invariant amplitudes. (a)
Expansion in ¢ at fixed v. (b) Expansion in v2 at £=0. The terms to the right of the line can
be neglected in our approximation. See Appendix for details.

(a)

Colvh Cy (vt CA, nz2
MA’® o(1) o2/m? j o (u3/m?)
pMA’ Oy o(u/M) o (/M) In(u/M) o(ud /M)
2B 0 (u2/M o /M) o3 /M
u3B® fv fo(L¥/0 n(u/m) o(u/nrh 0 (W3/MP) In(p/M)
(b)
co civ2 eV, n=2
MA'® 0(1) oW2/mP l o (/M
w2M(d/dapA’® o(2/md o3 /Mm% o(ud/M3)
uMA'O fv O(p/M) 03 /M®) In(p/m) o3/
u2BO oW /M? o /M o3 /M
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We make the following approximations on the
right-hand side of the unitarity equation: (a) The
S waves are given by the low-energy amplitudes
[Egs. (11) and (12)]; and (b) The P waves are
estimated by the nucleon Born term alone [see
Eq. (13)], since the crossed-channel A gives con-
tributions of the same magnitude, and since the
direct-channel A is absent in the background.
The resulting order of the terms in the expan-
sion in 1? of MA’™|,;, u2M(d/dt)A" |y,
UMA? /v |56, and p?B|,, are given in part (b)
of Table III. The contribution of the background
to the invariant amplitudes can be described by

MA"*’I =a$+ a2 (w/M>P+a Pt /M2 0 (/M)
MA" [go=a ) v+0 (W3 /M)n(u/M) ,
2By =850 (u3/ M),

;.LZB(+ )|BG =O(p3/M3)ln(u/M) ,

(A5)

with @#'=0(1) and 8 $’ =0 (u2/M?). The singular
background contributions (branchpoints at =42,
etc.)are of order (4*/M?), apart from logarithms. In
the paper we have calculated the amplitudes (MA’)
and (12B) including order (12/M?). If one wantsto go
beyond (12/M?), one cannot expand the background

in v and fnear and beyond the branch points.
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