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The MIT bag model for a meson composed of a heavy quark and a heavy antiquark is solved using the Born-
Oppenheimer approximation. For fixed qq separations the color-electric fields and bag shapes are determined by
solving numerically the Yang-Mills equations with bag boundary conditions to lowest order in the quark-gluon
coupling constant. Spin effects are not included. The resulting bag energy is used as a potential energy in the
Schrodinger equation for the relative motion of the quarks. Good agreement with the experimental P and X' spectra
and leptonic decay widths is found. When the same potential is applied to strange-quark systems, a consistent
picture of the masses of the P and F* mesons emerges. The relation between spectroscopy and the variation of the
coupling constant with distance is explored.

INTRODUCTION

The physical picture which emerged from the
MIT bag-model' description of the light hadrons
is that of light quarks u, d, and s moving relativ-
istically throughout the entire bag volume. The
quarks are allowed to occupy the lowest mode for
the free Dirac field in a spherical cavity. The
zeroth-order (in the color coupling constant) con-
tribution to the hadron energy is the sum of the
eigenvalues of these quarks, the bag volume en-
ergy, and the zero-point energies. To this is
added the interaction of the quarks with the color
electric and magnetic fields, calculated in. second-
order perturbation theory. '

In this paper we apply the bag model to heavy
mesons composed of b and c quarks. Here a very
different description, in which the gluon field ad-
justs rapidly with respect to the motion of the
heavy quarks, is appropriate. Our treatment is
based on a Born-Oppenheimer approximation with
the quark-antiquark separation treated as an adia-
batic variable. "We first solve, to lowest order
in the coupling constant, the Yang-Mills equations
for the gluon field generated by static sources. In
order to satisfy the bag boundary conditions, both
the bag surface and the color-electric field must
be determined simultaneously. The resulting bag
energy is then regarded as a potential for describ-
ing the relative motion of the quarks. Since we
neglect the color spin, only the central part of the
potential is obtained. We find the lowest eigen-
values and eigenfunctions for this potential by
solving the Schrodinger equation. Apart from the
quark masses, the only adjustable parameters in
this treatment are the two that describe the varia-
tion of the running coupling constant with distance.

Our work is presented as follows. In Sec. I we
discuss the parameters of the MIT bag model and
the expected variation of the coupling constant with

distance. Our method of solving the bag problem
for two fixed sources is described. We present
numerical results in Sec. II, including the quark-
antiquark potential as a function of separation, the
bag shape, and the configuration of the color fieMs.
In Sec. III we use this potential to generate syectra
and ieptonic decay widths for the g and T systems.
%e also treat intermediate mass mesons having
one or more strange quarks. In the concluding
section we compare the adiabatic and "fixed-
bag""' approximations to the MIT bag model,
and discuss some previous phenomenological treat-
ments of the q-q potential.

I. THE STATIC-BAG PROBLEM

There are four parameters in the MIT bag-model
calculation of the light hadrons: the bag volume
constant 8, the color coupling constant n, a zero-
point energy coefficient Zo, and the mass m, of
the strange quark. The numerical values of these
parameters were fixed' by fitting to the masses of
four particles co, N, 6, and Q . Additional prop-
erties of these particles and the characteristics
of other light hadrons were then predicted. The
typical size of bag radii and interquark separa--
tions in these calculations is 1 fm.

In applying this model to the cc and b5 systems,
in which the quark separations are much smaller,
we must ask whether these parameters are ex-
pected to have the values determined from the
light hadrons. Since the bag constant 8 describes
properties of the vacuum, its value should be in-
dependent of the quark configuration, so we adopt
the MIT value B'~ = 0.145 GeV. The light-hadron
zero-point energy was represented by a phenomen-
ological term of the form -Z, /R„with R, the
spherical bag radius and with Z, = 1.84. This pic-
ture of the zero-point energy of the quantum fields
confined in a bag now appears to be incomplete. '
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However, lacking a better prescription, we will
use the same form for the zero-point energy, with

Ao the r adius of the be st sphe ri cal approxi mation
to our more complicated bags. We will fix the
strange quark mass in Sec. III when we discuss the

Q and E~ mesons.
We expect the remaining parameter, a, to have

a strong dependence on the q-q separation, since
asymptotic freedom predicts a weakening of the
color coupling constant at small distances accord-
ing to'

= (y'/2)P(x) can then be obtained in which Pois-
son's equation

V'y(x}= -g(r)[n'(x —r, }—5'(x —r, )]-=-p(x)

(4)

(5a)

must be solved subject to the bag boundary condi-
tions

A

~ E'=0

1 Ef2 2 (5b)
4~

' „,ll --', n, in(1/A'0) '

with r the separation of the quark and antiquark.
Here A is a scale constant and n& is the number
of quark flavors. (We choose n& 3since th——e
Compton wavelengths of the heavier qq pairs are
appreciably smaller than the size of the systems
we are considering. ') The limiting behavior as
r-0 is not sufficient to specify n(r); indeed, Eq.
(1) becomes infinite when r = A '. A constraint at
a finite value of r is available from the bag-model
calculations of the light hadrons, ' which yielded a
value a = 2.2. Consequently we intended to as-
sume a form for the running coupling constant
n(r) which is consistent with the limiting behavior
of Eq. (1) and for which a(1 fm) =2.2. A simple
function obeying these constraints is

4n 1

11 ——',n& in(y+ 1/A'r') ' (2)

where, for a given value of the scale constant, y
is fixed so that c.(1 fm) =2.2. However, as we

will discuss in more detail later, we could only
obtain a fair representation of the cc spectrum with

this approach. Relaxing the constraint at r= 1 fm,
we found excellent agreement with experimental
spectra could be obtained for smaller values of
a(1 fm). Effectively, then, we have employed
Eq. (2) with both y and A independent parameters.

With the bag-model parameters so fixed, we

proceed to the first stage of the Born-Oppenheimer
approximation described in the Introduction, solv-
ing the Yang-Mills equations in the interior of the
bag for a quark color charge density

p'(x) =g(r)[E'(1)5 ~ (x —r, )+E'(2)5'"(x - r2)] (3)

and no current density. E'(1)=X'/2 is the SU(3)-
color generator for a quark and F'(2) the genera-
tor for an antiquark. Following Ref. 4 we find to
relative order g that E'= -Vp' and that the equa-
tions for the different color components uncouple.
Since the transverse degrees of freedom of the
gluon field are assumed to be unexcited, the quark
and antiquark state is a color singlet, for which
E'(2) = -E'(1). A solution of the form P'(x)

The magnetic contribution to Eq. (5b) is of relative
order g and thus has been ignored.

To solve the problem posed by Eqs. (4) and (5)
we must determine simultaneously the bag surface
and the field p. Matters are complicated by the
fact, following from the boundary conditions, that
the surface contains two singular points. ' Al-
though the two-dimensional analog of this problem
can be solved analytically by conformal mapping, '
the present case must be treated numerically.
Our approach is to assume a set of trial surfaces,
given by an analytic form having several adjustable
parameters and the required cusps, and to solve
Eq. (4) exactly and satisfy the boundary conditions
approximately by a technique based on Green's
theorem. The parameters specifying that surface
which allows us to best satisfy Eqs. (5) are then
determined by a minimization procedure. An al-
ternative, and equivalent, procedure would be to
satisfy Eqs. (4) and (5a) exactly on a trial surface,
and then vary that surface to minimize the sum of
the electric and volume energies. We believe this
second approach would be less advantageous nu-
merically.

Our starting point is a formal expression for the
potential at an arbitrary interior point x in terms
of volume and surface integrals

4 my(x} = d V' p(x')

+ dS' n' v' x'
~a

—y(x')n' ~ i', . (5)
e

For the correct surface, n' V'P is zero by Eq.
(5a). Equation (5b) requires

2B
(v4) =g (~./2)2

=-G

on the surface. Note that Q, (Z'/2)'=-'. We adopt
a spherical coordinate system with origin at the
midpoint of the two quarks and with the axis along
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the line determined by the quarks, and look for an
axially symmetric solution of Eq. (6). Equation
(7), when combined with Eq. {5a), then allows us
to write

y(x) = GS(8) (6)

and minimize this quantity as a function of the pa-
rameters determining the surface. If A can be
forced to zero, then an exact solution has been
found. This minimization procedure is not totally
satisfactory, of course, since computationally
only local minima are determined. We have re-
peated this minimization for many starting values
of the surface parameters, however, to gain a
more global view of the parameter space.

Generally we have restricted our surfaces to
three- and four-parameter forms. Our most suc-
cessful guesses in terms of minimizing 4 are

R, 8)=, , (11a)[1+(tan'8, —l)cos'8]~~2

R(1+P sin~ 8e ""~~"'~0)
R (8 = [1+(tan'8, —1)cos'8]~&' ' 11b)

with the parameters to be varied being R, 8O, P,
and p. R2(8) is the better choice for q-q separa-
tions greater than 1.2 fm. Each of these surfaces

for all points on the bag boundary. Here S(8) is
the arc length along the surface, which, in order
to preserve reQection symmetry about the equa-
torial plane, we choose so that S(8)= -S(v —8).
Equation (6) can now be written as

~p

4vy(x) fd='v', —G ds's(e'}n')x'-x) )x' -x)
(9)

Using the charge density of Eq. (4), the volume
integral can be evaluated analytically, while the
azimuthal part of the surface integral can be writ-
ten in terms of the elliptic integrals E and D. Sub-
sequent differentiation of this expression yields a
corresponding, though more complicated, formula
for VP. These results are presented in the Ap-
pendix.

For any bag boundary Eq. (9) will yield a func-
tion P(x) obeying Poisson s equation. Using the
analogous expression for VP (x), we can let x ap-
proach the surface to check the boundary condi-
tions [Eqs. (5)], neither of which, in general, will
be satisfied. Thus, to determine an optimal sur-
face, we define a positive-definite measure of the
degree to which Eqs. (5) are not satisfied, "

4:——2
fdS([n ' Vp(x)]'+ [1V&(x)I

—G]']
, (10)

dS

can go to spherical and cylindrical limits. The
values determined for 4 range from approximate-
ly 3.5x 10 ' at small separations to 2.4x 10 at
x= 2. 5 fm. For comparison, optimal spherical
bags yield values between 0.008 and 0.12.

Following this minimization the bag energy can
be determined as a function of x

(12)

The infinite self-energy terms are removed from
Eq. (12) analytically; these are, of course, inde-
pendent of r E.(r) is regarded, in the second part
of the Born-Oppenheimer approximation, as a po-
tential energy for the relative motion of the q-q
pair. The effective Hamiltonian for this motion is

R(~)=m +m + —+V(~)
2 )ted

9 (13)

with m, and m, the masses of the quark and anti-
quark, g the reduced mass, and V(y) equal to the
sum of E(r) and the zero-point energy. The Schro-
dinger equation is solved for this Hamiltonian,
yielding the eigenvalues and eigenfunctions of the
qq system.

. In the next section we will give our numerical
results for E(x), explain the accuracy checks we
pave performed, and show bag surfaces and field
configurations for selected q-q separations.

II. NUMERICAL RESULTS FOR E(r)

As we mentioned earlier, asymptotic freedom
implies a quenching of the color coupling constant
n as r-0. Using the constraint n(1 fm)=2. 2

from the MIT bag calculation of the light hadrons
and the phenomenological form for n(r) given by
Eq. (2), E(r) can be calculated once the scale con-
stant A is fixed. Although we will postpone our
discussion of bb and cc spectroscopy until Sec.
III, A has been determined by comparing our pre-
dictions for the 2s-1s and 1p-1s splittings in char-
monium to the experimental values. We have
tested values of A between 0.2 and 0.8 GeV. Al-
though the choice A= 0.375 GeV nicely reproduces
these two splittings, serious discrepancies occur
for the higher states in charmonium. " (This will
be shown in Sec. III~ ) However, on relaxing the
constraint that n (1 fm) = 2. 2, we found marked
improvement could be obtained with weaker cou-
pling constants. Most of the results of this section
will be given for n(1 fm) = 1.0 and A = 0.240 GeV
(thus y= 3.364). This running coupling constant is
compared to that obtained with n(1 fm)=2. 2 and
A = 0.375 (thus y = 1.609) in Fig. 1.

Using this running coupling constant we have fol-
lowed the numerical program described in the pre-
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FIG. 1. Comparison of the running coupling constant of
Eq. (2) for the constraints G, (1 fm) = 2.2 and Q. (1 fm) = 1.0.
The scale constants A were determined by fitting the 1p
—1s splittings in charmonium. The dotted curves are the
simple asymptotic freedom forms fKq. (1)]for these same
scale constants.

IV/ I = Constant

0.7

1.0

4 ct(t) 32mBn(t) '~s-3 r'. 3
r+ q(r) . (14)

The first two terms are the Coulomb and "linear"
confining terms which we know to be appropriate
in the r- 0 and r- ~ infinite cylinder limits, re-
spectively. In Fig. 5 we decompose E(r) in the
manner of Eq. (14) in order to show the bag-model
prediction for the function which interpolates be-
tween these limits, Q(r). Though growing almost

vious section for quark separations ranging from
0.01 to 2.5 fm. Our results for a q-q separation
of 0.3 fm, which is approximately the location of
the peak of the $(3095) relative wave function, is
given in Fig. 2. Here the bag shape, the color
field P, and the electric field -VP are shown

graphically. We also describe, in Fig. 3, the
evolution of the shape of the bag as the quark sepa-
ration increases. For separations r a 1.5 fm the
singular behavior of the cusps [i.e., for the sur-
faces given in Eqs. (11), the parameter P being
less than unity] has been lost. Though this implies
some error in enforcing the boundary conditions
near the cusps, this result is not unexpected due
to the limitations of the trial surfaces we have em-
ployed. Figure 3 illustrates that, even for large
separations, the bag is far from the asymptotic
cylindrical limit.

The bag-volume energy Evo„(r) and the electric-
field energy E«(r) contributions to E(r) [see Eq.
(12)] are given in Fig. 4. The zero-point energy
E ( )o=I-1.84/Bo(r), where Ro is the radius of the
best spherical approximation to the bag, is also
shown. The electric energy has the expected Cou-
lomb behavior at small separations, while at
large separations both contributions to E(r ) are
growing nearly linearly. To illustrate this we
write

2.0
\j H ~

—-40-——
1

I / r 20~- Io

1
I I'/ 100
I f I f. ')

% I l ~ ~ e )

-V$ Field Lines

I I I I I . I I I I I I I

-0.6 -0.4 -0.2

linearly for small q-ij separations, Q(t ) fiattens
out at large r. A finite-cylinder approximation to
the bag for large separations predicts

Q,„,(I ) = C[Bo.'(I )]'~' (15)

~t C=-O, 9O." For o.(2. 5 fm)=1. 12, g„,(2.5

fm) = -0.142 GeV, which can be compared to our
result of Q(2. 5 fm) = -0.158 GeV.

Our solutions to the problem formulated in the
previous section are not exact, owing to the small
number of parameters describing our trial bags,

0 0.2 04 0.6
x (fm)

FIG. 2. The bag shape, equipotential surfaces (jn fm" ),
surfaces where the magnitude of the electric field is con-
stant (in fm ), and the direction of the electric field are
shown for a q-q separation of 0.3 fm. The coupling con-
stant is u(0.3 fm)= 0.585.
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I.5

I.O

-I.6 -0.8 0
x (fm)

0.8 I.6 0.5

FIG. 3. The bag shapes corresponding to q-q separa-
tions of 0.01, 0.5, 1.0, 1.5, 2.0, and 2.5 fm are shown.
The coupling-constant parameters [Eq. (2)] are A= 0.24
GeV and n(1 fm)= 1.0.

0
LIJ

although systematic improvements to these results
are numerically straightforward. Thus we need
methods of estimating the discrepancy between our
results and an exact solution. One check is pro-
vided by a generalization of the energy scaling
relation of Ref. 15 for the ease of a running cou-
pling constant. For couplings such that n(0) = 0,
this relation can be written

-0.5—

- I.O

-I.5 ' I

0.5
I

I.O
r (frn)

I

l.5
I

2.0 2.5

+ — dr'x'E«(r'), inn(r'), (16)

where E~c(r)=Ev»(r)+E«(w) for the exact solu-
tion. A comparison of E(x) and E (r) is made in
Table I, where differences are shown to be of the
order of 0. 1/p. We stress that Eq. (16) is only a
consistency check; however, the simple spherical-
bag approximation fails this test badly for q-q
separations greater than 1 fm.

A second test is provided by partially integrating
Eq (12), .using Poisson's equation, and then as-

1.0

FIG. 5. Decomposition of the sum of the electric and
volume energies according to Eq. (14), showing the
Coulomb term, the "linear" confining term, and the re-
mainder Q(r). The straight line segment indicates the
asymptotic slope of the linear term.

suming boundary condition Eq. (5a) is satisfied
exactly. We find

z"(~)=af dv+ —', g(r)[y (1) —y(a)),
'

(17)

where P(1) and P(2) are the potentials at the posi-
tions of the quark and antiquark. The infinite self-
energy subtraction made here is identical to that
made in Eq. (12). A comparison of Eec(r) and
E(x) also is given in Table I. While agreement is

0
IJJ

a(l frn)= l.O
TABLE I. The bag energy E(r) calculated for & (1 fm)

=1.0 and A = 0.240 GeV is compared to E (r) of Eq. (16),
to E~c(r) of Eq. (17), and to E (r) corresponding to the
best spherical approximation to the bag. Also shown is
A(r), defined in Eq. (10), which measures the degree to
which the boundary conditions have not been satisfied.
All energies are given in GeU.

r (fm) E(r) E"(r) E"(r) E' "(r) S(r)
-05—

-I.O 0.5 I.O I.5 2.0 2.5
r (fm)

FIG. 4. Decomposition of the bag energy E(r) into its
volume EvoL{r) and electric Ezz, (r) components. The
zero-point energy for Zo= 1.84 is also shown.

0.01
0.1
0.3
0.5
1.0
1.5
2.0
2.5

-4.163
-0.833
-0.396
-0.181

0.264
0.648
1.008
1.357

-0.396
-0.181

0.264
0.649
1.008
1.358

-4.163
-0.833
—0.397
-0.184

0.257
0.637
0.992
1.336

-4.163
-0.832
-0.396
-0.184

0.271
0.747
l.360
2.199

4.16x10 5

3.63x10 &

4.04x10 &

4.36 x 10
6.02 x 10
1.01x10 4

1.49x10 4

2.40 x 10
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4.5—
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2d ———.—

E I.O

O
K

4.0—

Id ——-——
0.5
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0.5 I.O l.5 2.0 2.5
r (tm)

FIG. 6. The radius Ro of the optimal spherical bag, in
terms of minimizing 6(r), is given as a function of r.
Separations where the spherical-bag energy differs from
the full calculation by more than 0.01 GeV and 0.1 GeV
are denoted by dashed and dotted lines, respectively.

5.0—
Is

Exp a(l fm)=1.0
P = 0.240 GeV
E =-I.84/R
m, = I, 87GeV

,(1 fm)=2. 2
A= 0.375 GeV

Eo = —I.84/ Ro
rnc= I.98 GeV

extremely good at small q-q separations, this de-
teriorates somewhat at larger x, correlating with
the growing value of S, (r). However, even for
such r, the discrepancies are on the order of 2%.
This, and the energy scaling relation results, have
led us to the conclusion that little improvement in
E(r}would result from using trial bag surfaces
more complicated than those of Eqs. (11).

Also shown in Table I are energies E P"(r) g'en-

erated by the best spherical approximation to the
bag boundary. In Fig. 6 the radii of these bags,
needed in calculations of the zero-point energy,
are given, and q-q separations where Es~"(r)
-E(r) exceeds 0.01 and 0.1 GeV are indicated.
The analytic expression for this radius in the limit
of sma11 ~ is~

(16)

Equation (18) underestimates the numerical result
shown in Fig. 6 by approximately 5g at r = 1.0 fm
and 14% at r = 2.0 fm.

In the next section we will present our results
for the spectra, wave functions, and leptonic de-
cay widths of the cc and bb systems. We also ex-
tend this work to the bc, cs, ss, and bs systems
and consider the appropriateness of a static-poten-
tial description for those mesons which contain a
strange quark,

III. SPECTROSCOPY

The bag-model prediction for the charmonium
spectrum has been determined by numerically
solving Schrodinger's equation with the Hamilton-
ian of Eq. (13). We have previously described the
procedure for determining the form of the running
coupling constant. The only remaining parameter
is the charmed-quark mass m, =m, = m„which

FIG. 7. The experimental spectrum for charmonium is
compared to our bag calculation prediction (second col-
umn). Also shown are the results of the analogous cal-
culation for 0.(1 fm) = 2.2. The experimental p-state en-
ergy is the spin-orbit average of the J= 0, 1, and 2 lev-
els. Solid, dashed, and dash-dotted lines are used for
s-, p-, and d-state levels, respectively.

we adjust so that the mass of the lowest 1s state
agrees with experiment, 6

m~&~
—3.095 GeV. We

find m, = 1.874 GeV. The known excited cc levels
are reproduced quite nicely, with the largest dis-
crepancy being the prediction for the g", 0.06 GeV
too high. These results are given in Fkg. 7. Also
shown is the best spectrum we were able to obtain
under the constraint that n(1 fm) = 2. 2. One should
bear in mind that these spectra depend on the zero-
point energy -Zo/Ro(r). Removing that contribu-
tion to the potential energy results in a compres-
sion of the energy levels shown in Fig. 7. Thus if
Z, is changed, or if a different approximation to
the zero-point energy is used, we would need dif-
ferent values for A and y in order to reproduce the
experimental masses.

The analogous results for bb are given in H.g.
8. We find a b-quark mass of 5.265 GeV places
the Y meson at the proper mass, 9.460 GeV. The
predicted 2s and Ss states are in reasonable agree-
ment with experiment.

From the Van Royen-Weisskopf formula ' one
can calculate the leptonic decay widths for these
vector mesons. As discussed by Richardson, "
the large corrections in order e to this zeroth-
order formula suggest, however, that only the
ratios of decay widths can be calculated reliably.
Such ratios can be written

r'(V'-e'e-) ~ M, |I~(0) '
1"(V e'e ) Mr, II&(0)
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I I.O—

I.O

0.5
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l.5—
g(l fm)= l.O
h, = 0.240 Gev

Ep l 84/ Rp

I.O—

9.5—
Is 4s—

(I fm)= l.o
A = 0.240 GeV
E =-l.84/1
mb= 5.26 Ge'7

a(l fm)= 2.2
A= 0.575 GeV

Ep I 84/Rp
m = 5.35GeV

Exp

b

FIG. 8. As in Fig. 7, only for the b-b system.
E (GQV)

0.5—

where p~(0) is the vector-meson wave function at
the origin. Vfe find using the wave functions we
have generated

+(g e+e ) 0 436
I (T e+e )

1((-e'e )
' ' &(T- e'e )

while the corresponding experimental values are
0.4+0. 1 and 0.3+0.2. ' ~

The &1 transition rates for g'- y'Pz can be
computed from

(u ~i" ~~ = nk —"(2J+ 1)27

-0.5—

—I.O—

Id—

2s
5s—

Is—

ls-

x —j —-j, —u r ps&

with u~ and Qp the p- and s -state radial wave func-
tions. The resulting widths are 49. 0, 43.0, and
33.5 keV for the J=O, 1, and 2 states, respec-
tively. The corresponding experimental widths
are 16+9, 16+8, and 16+9 keV. The origin of
the discrepancy between theory and experiment is
unclear.

In Fig. 9 the wave functions for some of those
cc and bb states whose experimental analogs are
known are superimposed on the potential V(r).
The corresponding eigenvalues (without the quark
masses) are indicated. This figure shows the sen-
sitivity of these states to various ranges of the
q -q potential.

The concept of a static potential requires that
the quark motion be nonrelativistic. A check of
this for the systems under considerations is pro-
vided by calculating the expectation value of
(P'/m'). The results for the T and ( mesons,
0.072 and 0.178, are suitably small. %e have
extended our calculations to the ss system, fitting

—I.5—
2.0

m, =0.641 GeV to the observed meson mass M~
= 1.02 GeV. Here (p'/m') = 0. 563, so that a sta-
tic-potential approach is on somewhat shakier
ground. " The predicted ss spectrum is given in
Fig. 10. Experimental candidates for excited
states of the s7 system have masses 1.4VO, 1.812,
and 2. 130 Gev."

%ith the 5, c, ,and s quark masses determined
we can predict the masses of new vector mesons,
such as cb, bs, and cs (the M meson). The M
mass, 2. 11 GeV, is corisistent with the experi-
mental value of 2.15+0.05 GeV. Other results

0 0.5 I.O l.5
y (fm)

FIG. 9. Calculated wave functions and eigenvalues for
several states in the cc (solid lines) and bb (dashed lines)
systems are overlaid on the potential V(x) of Eq. (13). In
the top part of the graph the positions of the peaks of the
1s wave functions for the cb, bs, cs, and ss systems are
shown relative to o,'(y).
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l.5—
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a(l fm)=I. O
h, = 0.240 GeV
EO= —l.84/ Ro
m, = 0.64 GeV

FIG. 10. The calculated spectrum for the ss system.
Only the ground-state mass, 1.02 GeU, is firmly identi-
fied experimentally.

are given in Table II.
It is interesting to compare the present adiabatic

approximation to the MIT bag model with the ori-
ginal "fixed-bag" approximation, "where in lowest
order the quarks in the light hadrons are treated
as free Dirac fields. Our calculation of &p /m )
provides direct evidence, in the adiabatic approxi-
mation, for the breakdown of the concept of a sta-
tic potential for small quark masses. There is
also circumstantial evidence of a similar break-
down in the fixed-bag approach when that approxi-
tnation is applied to heavier quarks: The g'-(
splitting comes out much too small in the work of
Ref. 5. Thus possibly the strange-qu8rk mass
marks a borderline area for both approaches.

In Table II we also show various contributions
to the masses of the vector mesons, some of which
have been treated in both the adiabatic and fixed-
bag approximations. W'e note that, despite the
larger mass of the strange quark in our calcula-
tion, both approaches yield essentially identical
values for the mass of the M meson. Comparing
the expectation values for the zero-point energies
E, and volume energies E«L, we find our treat-
ment leads to somewhat smaller bags, and conse-
quently larger zero-point energies. The bag elec-
tric energies are very different, however. In the
fixed-bag approximation, if the quark and anti-
quark have identical masses, then their zeroth-
order wave functions within the bag have the same
distribution, so that the electric energy, calcu-
lated in second-order perturbation theory, is zero.
Even for the cs system, EEL is very small. In
contrast, our approach, which builds in color sep-
aration, yields significant values for E« for all
the mesons in Table II. This, of course, is the
origin of the quark mass difference mentioned pre-
viously.

TABLE II. Predictions of the present work t~(1 fm) =1.0, A =0.240 GeV, E0=-1.84/Ro] for
the masses M;,g of heavy vector mesons are compared to experimental values M,„z. The
zero-point, volume, and electric contributions to these masses and the expectation values of

&P /m ) are given. Results of the fixed-bag calculations of Refs. 2 and 5 are also shown. All

masses are in GeV.

Approximation qq system &g„,) &E„) &P'/m')

Adiabatic
(present work)

~r(m, =5.26)
c5
bs
cc(m, =1.87)
cs
ss(m~ = 0.64)

Y(9.460)

~(3.095)
Z *(2.150)
Q(l.020)

9.460
6.339
5.431'
3.095
2.106
1.020

-0.816
-0.669
-0.539
-0.604
-0.519
-0.480

0.034
0.056
0.100
0.073
0.110
0.137

-0.668
-0.528
-0.373
-0.456
—0.343
-0.279

0.072

0.178

0.563

Fixed bag
(Befs. 2, 5)

cc(m, =1.55)
cs
ss(ms = 0

3.095 -0.520 0.082
2.099 -0.446 0.131
1.068 -0.399 0.183

0.0
0.015
0.0
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IV. DISCUSSION

From Fig. 9 we see that the wave functions of
the various P and T states are concentrated at
quite different values of the q-q separation, and

consequently are sensitive to appreciably different
values of the running coupling constant. Thus, in
principle, the spectroscopy and leptonic decay
widths of these states provide an ideal test of the
variation of the coupling constant with distance,

However, in interpreting experimental data, one
must be sure to take into account all the important
physics. Of particular relevance to the present
bag-model calculations is the increased impor-
tance of couplings to decay channels at higher ex-
citation energies. Such couplings, which will both
shift the energies of these states and give them
widths, have been ignored in our work. If the
states in charmonium above 4 GeV are omitted
from our calculations, then choosing A= 0.375
GeV in Eq. (2) and fixing y so that a(1 fm) = 2. 2

yields a, reasonable fit to the remaining cc and b$
states, provided the c- and b-quark masses are
chosen appropriately (see Figs. 7 and 8). In ad-
dition, the corresponding ratios of leptonic decay
widths I'(g'- e'e )/I'(f- e'e ) = 0. 544 and I'(T'
e'e )/I'(T- e'e ) =0.489 are not in serious dis-
agreement with experiment, 0.4+0.1 and 0.3+ 0.2,
re spectively.

In view of this we must evaluate our decision to
use c.(1 fm)=1. 0 rather thanthe value 2. 2 em-
ployed in the original fixed-bag fit to the light had-
rons. ' (In that work c. is a constant and the char-
acteristic size of bag radii and interquark separa-
tions is 1 fm. ) Three points should be stressed.
First, it is unclear from the work of Ref. 2 how

uncertain the value of 2.2 is, or how o. is corre-
lated with the other bag parameters. Second, we
have found that the choice o. (1 fm)=1. 0 not only
removes the large discrepancies in the masses of
the 3s, 2d, and 4s states in charmonium, but also
improves the agreement with the masses and lep-
tonic decay rates of the lower states. (The masses
of the 2s and 3s states of the b-b system are pre-
dicted well in both cases.) The final point is an
apparent problem with the slope of the Regge tra-
jectories for light hadrons if our asymptotic value
for e of 1.1 is taken at face value. For a rotat-
ing tube of flux, 23 @=1.1 leads to a Regge slope
of 1.2 GeV ', which is larger than the accepted
value. However, it is apparent from Fig. 10 that
known cc and bb states provide little information
on the behavior of a(r) above 1.5 fm. Thus we
have the freedom to rectify the apparent difficulty
with the Regge slope, while changing our present
results only slightly, by gradually increasing &(r)
in order that a more suitable asymptotic value be

0
OP

C9
0—

1e

iJ

0
I

0.5
l

1.0 1.5
& (&m)

I

2.0 2.5

FIG. 11. Potentials derived in the present work for
o.'(1 fm) = 1.0 and o.'(1 fm) = 2.2 are compared with phen-
omenological treatments by Richardson (Ref. 18) and by
the Cornell group (Ref. 24).

v(~)= -+—+ v„ (20)

where g, a, and V, are constants. This can be
contrasted with Eq. (14). In Fig. 11 one such po-
tential, from the Cornell group, ' is shown where
the constants have the values ~ =0.52, a=2.34

reached.
We should also compare phenomenological treat-

ments of the q-g potential to our potentials. In

Fig. 11 we show V(r) for o. (1 fm)=1. 0 and o.(1 fm)
= 2.2 along with the potential of Richardson, "
which smoothly interpolates between a linear con-
fining potential at large distances and a form con-
sistent with asymptotic freedom at small distances.
(The interpolation was actually performed in mo-
mentum space and then Fourier transformed. )
Richardson's success in reproducing the cc and
bb spectra and leptonic decay widths is comparable
to ours. Indeed, from Fig. 11 we see that beyond
q-q separations of 0.2 fm, Richardson's potential
is remarkably similar to ours with o. (1 fm}= 1.0,
with the difference approximately a constant 0.68
GeV. This difference is largely absorbed into his
quark masses, m, =1.49 GeV and m, =4.88 GeV,
so that his mass contributions to meson energies
are smaller than ours by approximately 0.77 GeV,
At small separations our treatment differs from
Richardson's due to his scale parameter (A
= 0.398 GeV) and to our inclusion of a zero-point
energy -Z,/R, (r) ~

There have also been a number of studies of
heavy mesons using a very simple phenomenologi-
cal potential of the form
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GeV ', and VD — 0 84 GeV This potential is re-
markably similar to one we have derived. This
value of Vo corresponds to the Cornell treatment
of charmonium; for the bb system the value of Vo

was arbitrarily changed ta -0.71 in Ref. 24.
In summary, the quark-antiquark potential which

we have determined from an adiabatic approxima-
tion to the MIT bag model has proved quite suc-
cessful in reproducing the masses and leptonic de-
cay widths of heavy vector mesons. This approach
nicely complements the earlier fixed-bag approxi-
mation which, while quite successful in describing
the light hadrons, failed to predict the spectrum of
charmonium. We believe that heavy meson spectra
can provide a great deal of information on the var-
iation of the running coupling constant with dis-
tance. To demonstrate that we have a quantitative

understanding of this variation, however, would
require a set of parameters in the bag model cap-
able of simultaneously describing heavy-quark
systems and light-quark systems. Thus the need
for a weaker coupling constant at x= 1.0 fm than
in the light-hadron calculations and the effects of
the opening of decay channels on our analysis re-
main important questions for further study.
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APPENDIX

In this appendix we present expressions for p and V(((2, and discuss some numerical difficulties in eval-
uating these expressions for interior points very near the bag surface.

Completing the azimuthal integral in Eq, (9) we find

4.P(x) =
x[(cose -d/x)'. + sin'8]'~' x[(cose+d/x)'+ sin'8]'~'

where

(A2)

A=x'+R(8')'-2xR(8')cosecos8', B=2xR {8')sin8sin8',

C=R(8')'-xR(8')cosecose'-x, cose sin8', H= -x R( 8)sin8 isn '8+x, sine cose',dR(e'), , , dR(e )

E(z)= Jl dy(1-z'sin y)' ', D(z)= . dy {0
0

The q-q separation is 2d and the radius of the bag is R(8).
The corresponding expression for Vp is

g (x+d cose) - g(x -d cos8)
4vVy(x =r,'.[{xcos8+ d)'+ x'sin'8]'~' [(xcos8 —d)'+ x'sin'8]'~' '

I 1 1
~elf

—80gd sin& +
[(xcos 8 —d)'+ x'sin'8]"' [(xcose+d)'+ x'»n'8]"'

+ &, S(e')sine'R(e')-2G . . . 1 1

[R(8 ) '][3{A~+B+Aff+B~] 2R 8
( A+B ] A' —B'

A+B (A+B & A+B

+ e, S(e')sine'R(e')

(( 2B "H~ 3A 3(AC+HB)+AH+BC 3C 3B 3(BC+AH}+BH+AC)
~

+'ae'Be+,Di
I

~(Aa+Bg ——(BB+AC)2B )'~'l gA aa
ae ae
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Some care must be taken in evaluating these ex-
pressions for points near the surface since the
integrand in Eqs. (Al) and (A2) become very
sharply peaked. We have treated this by evaluat-
ing analytically the most singular term in Eq. (Al)
and the two most singular terms in Eq. (A2). Al-

though the resulting expressions are too compli-
cated to reproduce here, they can be obtained from
us on request. The numerical integration scheme
employed is an adaptive Newton-Cotes method
yielding a maximum relative error of 0.1%.
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