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We discuss the phenomenological implications of an approximate SU(6))&SU(6)&&U(1) symmetry of hadron
physics which remains after dynamical symmetry breaking in the strong-coupling lattice gauge theory, This
symmetry is similar to but differs in an essential fashion from previous versions of SU(6))& SU(6) or SU(6)~. The
difference resolves some of the problems of the older schemes —for examp1e, a1though we obtain the "good"
result p~ /p„= —3!2, we avoid the "bad" result g„ /g~ = —5/3. We find that mesons are better approximated as
irreducible representations of an SU(6)~ than static SU(6). Vector mesons are pseudo-Goldstone bosons in our
scheme, which explains why the sum rules for their masses should be written in terms of mass squared, like
those of the pseudoscalars;

I. INTRODUCTION

Recently we showed that spontaneous breaking
of continuous chiral symmetries and the associ-
ated massless Goldstone bosons arise naturally
within the context of a confining lattice gauge
theory. ' In particular, we concluded that the usual
chiral symmetry of quantum chromodynamics
(QCD) with three flavors of massless quarks
must, in the strong-coupling regime, break spon-
taneously so that only the SU(3) symmetry of the
vector charges is realized in the "normal" or
Wigner mode. A renormalization-group argument
was offered to make the strong-coupling calcula-
tion relevant to the hadronic regime, This result
provides the theoretical basis for understanding,
within the framework of QCD, the success of pre-
dictions based upon the joint assumptions of cur-
rent algebra an.d partial conservation of axial-
vector current': relations such as the Adler-
Weisberger g„/gv sum rule, the Goldberger-
Treiman relation, and the Adler self-consistency
conditions. This paper is devoted to further dis-
cussion of features of hadron phenomenology which
emerge from this same analysis.

The focus of our earlier paper (hereafter de-
noted as paper I) was on the dynamical origins of
spontaneous symmetry breaking and on the itera-
tive block-spin techniques used to analyze this
phenomenon. As discussed there, the renorma-
lization of the effective Hamiltonian as the lattice
spacing is increased is conjectured to take us into
the strong-coupling regime when the lattice spac-
ing becomes of the order of a hadron radius. In
this regime, states containing gluon excitations
become energetically expensive and hence we
neglected them in our study of the low-lying spec-
trum. Thus we considered only color-singlet
fermion configurations at each site of the effective
lattice on this distance scale. We derived an ef-

fective Hamiltonian for this sector which was
found to have several properties important for
the discussion in this paper:

(1) The effective theory is that of a quantum
spin system with interactions occurring only be-
tween sites separated along any one lattice di-
rection; the interactions fall off rapidly, with the
cube of the separation of the two sites.

(2) For QCD with three flavors of quarks we
can identify an SU(12) of charges defined on the
lattice which commute with the part of the Hamil-
tonian describing just the interactions between
nearest-neighbor sites. In terms of the local
densities of these charges the nearest-neighbor
Hamiltonian is antiferromagnetic in character.
We find that the ground state is not invariant under
the full symmetry group, and infer that chiral
symmetry is spontaneously broken.

(3) These SU(12) charges also commute with
all those terms in the Hamiltonian which involve
sites separated by an odd number of links —these
terms reinforce the antiferromagnetic pattern.
We will write the Hamiltonian as H'" = Ho + V'",
where H is the la.rgest piece of H" which com-
mutes with the SU(12) and V'" is the remaining
part of H".

(4) The effects of including V'" may be under-
stood via perturbative analysis. In particular,
of the 72 Goldstone bosons which appear in the
spectrum of H',", 63 acquire masses, leaving
massless only the nonet originating in spontan-
eous breaking of the U(3) x U(3), under which V""
as well as H'0 is invariant. (We have speculated
in I on the fate of the ninth of these particles,
which is the old U(l) problem —we will not discuss
it further. ) We note that the situation here is quite
different from that in free-fermion field theory,
where a similar division of H = H, + V can be
made, again based on the SU(12) invariance of
nearest-neighbor terms. However, in the free-

22 1190



APPROXIMATE DYNAMICAL SYMMETRY IN LATTICE. . . 1191

II. SYMMETRIES —FAMILIAR AND OTHERWISE

A. Basic formalism

The starting point of our discussion is the lat-
tice QCD Hamiltonian'

"n-
H~n =Hop +A Q —i5'(n)g o!p U(j +Ip) p)

A
p

j )&sjI

X4 j+nP ) (2.1)

where HGF stands for the pure gauge-field part of
the Hamiltonian; A is the lattice cutoff. g; is
a fermion field carrying color, Dirac, and flavor
indices. The vector j runs over the sites of a
three-dimensional spatial lattice, p runs over
the unit vectors in the x, y, ands directions, np
stands for the corresponding Dirac matrices, and
U(j, iI) is the gauge-field operator associated with
the link joining the sites j and j + P. The U(j, P)
are 3x 3 matrices of operators and act on the
color indices of f Finally, t.he function 5'(n) is

field case the breaking term can in no way be re-
garded as a perturbation. We will discuss this
contrast in more detail later.

In Sec. II we will construct the SU(12) of charges
and give explicitly the division of the strong-
coupling lattice Hamiltonian into H'0" + V'~. We
mill also discuss how these charges differ from
the algebra of current components introduced in
1965 by Bardakci et al. ,' and discussed by Dashen
and Gell-Mann, as a relativistic generalization
of the SU(6) scheme of Beg and Pais. ' (In par-
ticular, none of our charges are integrals over
spatial components of the currents. ) We will
then review the results of paper I as applied to
the study of H;" as well as Bo"+ V"'.

In Sec. III we will discuss the applications of
this symmetry structure, with the focus on the
differences with previous SU(6) or SU(6)~ treat-
ments' that arise because of the different form
of the generators of our algebra. In particular,
while we obtain successful predictions of the ear-
lier studies —for example, u~/u„= --,' for the
proton-to-neutron moment ratio —we avoid the
bad result g„/g» = —~3 for the ratio of the axial-
vector to vector charges. We also find that
mesons are better approximated as irreducible
representations of an SU(6)|» than the static SU(6).
Finally, our ana1ysis shows why sum rules for
the masses of the vector as well as the pseudo-
scalar mesons are best expressed in terms of
mass squared —all these mesons are pseudo-
Goldstone bosons' in our picture.

Q,'= Q g»M, g; .

The matrix M,' is one of the 18 matrices

1+ p5
a 2 ay

(2 3)

where y, is the usual Dirac matrix, and the A.,'s
are the nine 3&& 3 Hermitian generators of U(3).
We will now show that half of the fermion terms
in (2.1) commute with the larger symmetry group
U(12). The extra charges differ from the U(3)
x U(3) generators (2.3) in a crucial way: They
cannot be identified with continuum expressions
of the form J 'dx ((x) Mg(x). This point will be
discussed later in more detail.

Here me will first show how the additional
charges ari;se by considering the nearest-neighbor
terms in the fermionic part of (2.1)

H,'=Q —ig-;o.pU(j, P)(», p5'(I) . (2.4)

In addition to the U(3) x U(3) charges (2.3) there
are more general operators of the form

Q'= g 0-;M'(j)4-; (2.5)

which commute with H,'. Here M (j) stands for
a j-dependent 12&& 12 Hermitian matrix, acting
on the Dirac and flavor indices carried by g».
Q" commutes with H,' if the matrices M~(j) are
chosen to satisfy

M'(j + j) = a„M'(I )u, . (2.6)

The solution to (2.6) is

(2.7)

for any 12&&12 Hermitian matrix M . It is easy
to see that the operators (2.5) now form the Lie
algebra of U(12).

It. is convenient to choose a basis Q"' for this
set of charges, where n runs from 0 to 15 and a
runs from 0 to 8. The 144 charges Q

' are de-
fined via (2.5) and (2.7) by inserting M" =M"',
with M ' defined as tensor products

and is introduced, as discussed elsemhere, ' in
order to allow the treatment of fermion theories
mith continuous chiral symmetries. ' Dirac, color,
and flavor indices will be suppressed where no
confusion results.

Hocn possesses the full chiral U(3) x U(3) sym-
metry of the continuum theory with three flavors
of massless quarks. The lattice charges which
generate these symmetries are given by

(2 8)
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where I" are the 4&&4 Dirac matrices and X, are
the 3x 3 generators of U(3). [Our convention will
be that I', =I and A,,=I(—,')' '.] The 144 charges

Q
o q-u~x~"a zM 'n4 "y~ xy-

i

(2.9)

then generate the algebra of U(12). An alternative
way of writing Q" is

Q"'= QQ, =+$,M '4)s.,(j), (2.10)

where the sign s-, (j) is defined by

(2.11)

It is now a simple and straightforward exercise
to show that the U(12) of charges in (2.10) com-
mutes with the larger piece H, of H~D which in-
cludes all the terms in the fermionic Hamiltonian
which involve separation of g and gt by an odd
number of links, as well as HG„. The remaning
V is simply the sum over even values of n; every
term of V has a smaller coefficient than the cor-
responding term in Ho.

In summary, the only charges of the form (2.5)
which commute with HQm=H, +V are those cor-
responding to matrices M ' with s-, (j) = 1, i.e.,
which commute with all o.„'s. These are, of
course, nothing but the generators of ordinary
chiral U(3) x U(3) which are associated with the
matrices M~ = 1(3A., and M" = y, (3A,

B. A reprise of results in paper I

In the strong-coupling region, states involving
flux on any link have a large energy, proportional
to g'. We derived in I an effective Hamiltonian
for the flux-free sector of states, which is ob-
tained by doing second-order degenerate perturba-
tion theory in the fermionic terms in H~D. This
Hamiltonian has the form

H"=; Q —,Q; Q), „„-s.,((n+I)P)
g tl

(2.13)

and the effective Hamiltonian is antiferromagnetic
in character.

We can divide H" into two terms just as we did
for the original HQcD from which it is constructed:

H' =;P—,g(g, Mg;)(g;, „„M'$-,,-„„-)s„,(P)
-. „n na
jnj

(2.12)

and is applied for an effective lattice spacing
R„= I/A that corresponds to a distance on the
order of a typical hadron radius. The trivial
color dependence has been suppressed in (2.12)
for notational simplicity. In the notation of (2.10),

Heff —Heff+ V eff
0 (2.14)

where H'," commutes with all the 143 charges
Q

' forming the algebra of SU(12)." Again, H',"
couples all sites separated by an odd number of
lattice links, "and V'" contains the remaining
(symmetry-breaking) terms involving lattice
separations by even numbers of links.

In studying H'," we found that the SU(12) sym-
metry is spontaneously broken: An SU(6) x SU(6)
x U(1) subalgebra of charges which commute with
a flavor-invariant quark mass term is realized
in the normal fashion, leading to Wigner multi-
plets, but the remaining 72 charges are realized
in a Nambu-Goldstone mode —in acting on the
SU(6) x SU(6)-symmetric vacuum their densities
create massless particles. The SU(6) x SU(6)
x U(1) Wigner symmetry is generated by the 71
Q""s associated with

M '=1(3~, , y SA, , OSA, , yeA, ,
I

(2.15)

with 1S~, = 1(3 1 excluded.
In studying both H' and H', ' using iterative

block-spin methods we found that the effects of
the inclusion of V'" in H" can be understood well
if V'" is regarded as a relatively small symmetry-
breaking correction to H',". When V'" is added
to H;", the only subalgebra of the SU(6) x SU(6)
x U(l) of the Wigner-realized charges which sur-
vives as a good symmetry is the SU(3) generated
by the charges Q~ =18k.„' the only Goldstone
charges which stay conserved when the effects
of V'" are taken into account are the usual axial-
vector charges Q"=y,S',. Hence of the 72 parti-
cles which are massless in the theory defined by
Hp alone, 63 particles acquire masses due to
V'", leaving 8 Goldstone bosons to be identified
with the m, K, and g mesons, plus a ninth meson
that we could only conjecture as being "seized.""
Since SU(3) remains as a, good Wigner symmetry
it will be useful to classify the would-be Goldstone
bosons with respect to their SU(3) and angular
momentum properties, and we will do this in the
first part of Sec. III.

The symmetry-breaking effects of V'" will be
treated to first order. Two factors provide the
basis for considering this as a reasonable ap-
proximation:

(1) The factor I/n' in (2.13) means that the
leading term in V" is only —,' as strong as the
leading term in H'o", and that term by term in a
rapidly decreasing series, each contribution to
V" is multiplied by a coefficient c relative to the
corresponding ™"";"with ~c( & 1.

(2) The "antiferromagnetic" character of H", '
and its solutions suggests that, as in the analogous
solid-state problems, " the impact of the long-
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range terms in V' ' is greatly weakened when
studying the low-lying states of the theory, which
are formed by bound fermion configurations that
form color singlets on each site of the effective
lattice. These features are very different from
the circumstances that apply in the study of free
fermion theory where it is not a valid approxima-
tion to treat the long-range terms in a simple
perturbative procedure, since there is no remnant
of an approximate multiplet structure in the
theory obtained by studying the full H =H, + V.
Our calculations with (2.6) in paper l showed that
the rapid convergence with lattice separation al-
lows us to simplify further by retaining only the
nearest-neighbor terms, n= 1, in H', and only
the next-nearest terms, n=2, in V' . The cor-
rections that we shall find in comparing our pre-
dictions with experiment may be as large as
30-50'%, indicating that the symmetry breaking
as formulated in our approach is not quantita-
tively small, but that nevertheless important
residual effects of the SU(6)x SU(6) symmetry in
hadron physics can be understood.

ponding to those M ' which do not commute with

y, . Table I gives a list of these 72 particles clas-
sified by their "spin" and SU(3) properties, since
these properties are preserved by the entire
Hamiltonian. (By "spin" we refer to the trans-
formation properties under 90' rotations. . We
find that particles corresponding to y, ~, are
spin singlets and that those corresponding to
y S A., transform as a triplet. )

The salient feature of our analysis is that vec-
tor as well as pseudoscalar mesons emerge as
Goldstone bosons of an approximate symmetry. "
That the p meson is a would-be Goldstone boson
of an approximate symmetry has been suggested
previously by Caldi and Pagels. " The attractive
consequence of this classification is that the equa-
tions for vector-meson masses arising from the
usual treatment of partially conserved quantities
naturally involve mass squared, which is well
known to give a good understanding of splittings
in the vector octet. The masses in Table I are
obtained using this formalism for partially con-
served currents, that is, from

III. PHENOMENOLOGICAL CONSEQUENCES
(f'I')"'=&0l[@",[0"',&"ill», (3.1)

In this section we present some of the most
readily derived phenomenological consequences
of the approximate symmetry of lattice QCD.

A. Pseudoscalar- and vector-meson masses
(the Goldstone bosons)

I

We begin by examining the effect of the sym-.

metry-breaking part of the Hamiltonian on the
masses of the particles which are the Goldstone
bosons of H; . According to the results of paper
I, summarized in the preceding section, the
spectrum of H', includes 72 Goldstone bosons,
related to the 72 generators of SU(12) corres-

where the f"' are defined like the pion decay con-
stant f„. Since the vacuum is SU(6) x SU(6) sym-
metric in this approximation, the right side of
(3.1) clearly gives effects of first order in the
breaking. The f"' are all equal in the zeroth
order in V'" and hence differences in the f's enter
only as higher-order corrections to M'. Using
the formula (3.1) we obtain the values displayed
in Table I where the unknown quantities X and Y

contain combinations of reduced matrix elements.
The effects of quark masses can also be in-

cluded to first order by adding the usual quark
mass term to V'

TABLE I. Goldstone bosons of H& . Mass squared, due to V', is shown in terms of two
combinations of reduced matrix elements, X and F. &, X, p, . .. possess the usual flavor
SU(3) classification, and &, E, p, . .. form identical, heavier multiplets. u& and u& are
flavor-singlet bosons and N~ is presumed to "seize."

Particles Spin
SU(3)

representation Parity
Mass

squared

&,X, g
p ~g y(o)
~(o)

p ~+ ~(O)

F,&, ™g

Qg

Qg

y5 A,

ySA,
'y

yoy Sg
7oV

y5yo A

75

V57o

0
X

X+ Y
2X
2X
3X
0
3X
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H =
) Epyp~p+&gp~s+e8'Yp~a

= P (m„uu+m, dd+m, ss) . (3.2)

This introduces the splittings of the SU(3) multi-
plets, the quark mass contribution to the meson
masses being identical for all four meson nonets.
This leads immediately to the result"

mr*'-m p'=m~'-m, '+O(ev), (3 3)

where v denotes the order of magnitude of SU(6)
x SU(6) breaking and e is of the order of SU(3)
breaking. Experimentally we find

m~*2 —m~2=0. 19+ 0.01 GeV =O(e),

m~' -m, '=0.23 GeV
(3.4)

so that (3.3) is correct to 16%%uo.

Some discussion of the states p and m, etc. , is
in order at this point. Since we have not yet
learned how to calculate widths, we do not know
whether these states could be expected to have
been observed in usual hadronic experiments. For
example, the question arises whether the p should
be identified with the p', or whether it is a broader
structure. Furthermore, SU(6) x SU(6) -symmetry-
breaking corrections are involved here and are
much larger than SU(3) corrections as considered
in (3.4). Using the p and m masses to fix relevant
unknown parameters and making first-order esti-
mates we arrive at a prediction

m~'= 1.2+ 0.2 GeV'+O(v', ev), (3.5)

considerably lighter than the p' [m~ '= (2.6~0.5)
GeV']. However, the SU(6) x SU(6) symmetry
breaking is quite large, so that a correction of
loo%%uo in (3.5) from the terms of O(v') is not un-
reasonable. Note that such corrections in this
formula arise from three separate sources: cor-
rections to the p mass formula, corrections to the
p mass formula, and corrections to the equality
of f~ and f~. If these corrections accumulate
additively then we have, crudely speaking,

m p' = 2m p'(1+ 3v) .
Thus an SU(6) x SU(6) breaking of order 30%%up could
give a 100% error in the estimate of m~'. Typi-
cally, experimental evidence suggests something
like 30%%uo to 60%%uo SU(6) breaking, so that we do not
consider it impossible that our p is in fact a p'.
The 8 state cannot be identified with any known
particle, but a heavy pseudoscalar resonance de-
caying into multiple pions might be quite broad
and thus difficult to detect. In summary, our cal-
culations are too crude for reliable indications
of SU(6) x SU(6) breaking, although they seem

qualitatively useful for SU(3)-breaking predic-
tions.

Another point of interest in the mass formulas
of Table I is the question' of SU(6)~ versus static
SU(6) as a symmetry of the hadron spectrum. We
can write the symmetry-breaking part of H" as

V'«=V„+V, +V„ (3.6)

where the individual terms connect sites separated
in the x, y, and z directions respectively. We
can define three different SU(6)~, , each of which
commutes with

H =H" +V.pi p i (3.7)

(3.9)

where Q"' corresponds to M"' = n„S A., and Q"
corresponds to M"=cri8~, . The Q"' are Gold-
stone generators and the Q" are generators of
the SU(6) x SU(6); we know of no symmetry reason
why the quantity Y should vanish.

B, Wigner symmetries and their consequences
I

As shown in Sec. II, the generators of our
SU(6) x SU(6) [or any of the SU(6)~. subgroups
thereof] are not the integrals over loca.l densities
which appear in current algebra, with the ex-
ception of the generators of the flavor SU(3),

and hence each is a symmetry of a larger part of
the full Hamiltonian than is SU(6) x SU(6). Any one
SU(6)~, has degenerate multiplets

I„v; P, , g~i;P, 'I,
(3 8)

(7r j p, ,j4i; p;],
where indices i and j indicate helicity states; m

and p here stand for the full SU(3) pseudoscalar-
and vector-meson octets. The term V; gives
equal mass to all particles in the second of these
two multiplets, but leaves the first multiplet mass-
less. Hence the ratios mp".mp'. m-, '= 1:2:3in
Table I a.rise simply from the fact that rn-, ' gets
a contribution from all three of the V s, whereas
each p, gets contributions from the two V; with
icj and each p, gets mass only from V, . Static
SU(6) would place the w and all spin components
of the P in a degenerate multiplet [see Table I:
static SU(6) contains v a.mong its charges], which
is clearly a considerably worse symmetry than
any one of the SU(6)~,

The contribution of the reduced-matrix-element
combination Y which splits the SU(3) octet and
singlet in only the p multiplet is an anomaly in
this respect. We remark that "magic mixing"
for the physical ~ and Q mesons indicates that Y
must be small on the scale of quark mass terms.
We find
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which are the usual quantities. We will now dis-
cuss how this difference affects the derivation
of certain well-known SU(6) results.

DE=/&H= B dx u A B (3.10)

where, for example, A, =A. ,=O, A.,=x,H; here
Q=+(X, +&,/&3). The SU(6) ratio of moments is
obtained provided (a) the proton and neutron are
assumed to be members of a 56 of baryons under
the SU(6), and (b) the operators )to.„QQ transform
as a 35 under SU(6). The ratio --,' is then simply
a ratio of SU(6) Clebsch-Gordan coefficients, and
the common reduced matrix element cancels.

If we consider the equivalent lattice calculation
of the energy shift, we obtain a very similar
formula. The lattice field which creates a mag-
netic field H in the z direction is given by

A, (j) =Hj, , A, =A, =O.

The energy shift in such a field is

I) lt

Xi/�(j

+llP) 8) .
n

(3.11)

Expanding to lowest order in H to identify the
magnetic moment we find

p~= B —-1 j a, Q j+ny

(3.12)

The operators which appear in this matrix ele-
ment each transform as a 35 of our SU(6), so
that if the baryons are assumed to lie in a 56
we reproduce the usual result for p~/g„.

In usual SU(6) treatments one obtains g~/g»

3 because both the charge ope rat or,
Jd'x PtQp, which measures g», and the spatial
component of the axial current

E;= d3x ~x ay, x, (3.13)

which measures g&, are assumed to be generators
of the SU(6) under which the baryon states are
classified. Hence the reduced matrix elements
in both the numerator and the denominator are
determined to be unity, and the ratio is just a
ratio of Clebsch-Gordan coefficients. This re-

l. j(L /p
3

P ff 2

The magnetic moment of a particle is measured
by the energy shift in an applied magnetic field:

suit persists in relativistic SU(6) && SU(6) schemes.
In our case, however, although the charge is

indeed a generator, the numerator quantity

/lattice

3

(3.14)

differs from the corresponding generator by the
absence of the sign factors s,(j). Hence, although
it transforms like a generator (i.e., as a member
of a 35), it has a reduced matrix element X& 1, so
that we find

3. Mass sp/ittings

In SU(6) treatments the baryons are assumed to
fall into a 56. A quark mass term such as (3.2)
transforms as a 35. An old problem for SU(6) is
that, since there is only one 56 in the product of
a 35 with a 56, one cannot reproduce the Gell-
Mann-Okubo octet mass formula for baryons using
these assumptions (although the spin-',—decuplet
masses are correctly given). The relatively large
symmetry-breaking term V has the form of a
singlet under either SU(3) or SU(2) rotations, but
breaks the SU(6). Hence, it introduces a mixing
of the octet spin- —,

' components of the 56 with a
similar states in the 70 representation of SU(6).
If the baryon is a mixture of SU(6) representations
then the usual SU(3) Gell-Mann-Okubo formula
can be obtained by inserting a quark mass term
between baryon states. This amounts to keeping
terms of order ev as well as those of leading order
in evaluating baryon mass splittings. Since the
spin- —', decuplet appears only once in the product of
three SU(6) sextets, it is not mixed with anything
by the V term and hence the naive SU(6) result is
unaltered for this multiplet. In this respect our
results are not different from usual SU(6) treat-
ments. '

This is all we can say from symmetry considera-
tions but since PCAC is a property of the theory,
the usual Adler-%eisberger method can be used
to obtain the correct value for g„/g».

These two results are typical —many of the prob-
lems of SU(6) arise because the +, are assumed to
be generators of the algebra under which the states
are classified, whereas the good results depend
only on knowing the transformation properties of
certain operators under the algebra. In fact, the
work of Melosh" and others" who introduce "cur-
rent quarks" and "constituent quarks" involves
this realization, and by introducing the transforma-
tions between the different quark types they, too,
relax the property that the &; are generators.
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C. Pionic decays and radiative decays

A well-known problem for current algebra with
SU(6)~ is presented by meson and baryon decays
involving either pion or photon emission. The
data are not well reproduced by the theory. Much
better fits have been obtained" using Melosh's
notion of a transformation between current quarks
and constituent quarks, which effectively intro-
duces additional. operators in the matrix elements
over and-above those which would appear in a
straightforward current-algebra treatment. It is
found in several cases that the best fit to data is
obtained when the additional operators give the
dominant contribution. Our analysis reproduces
in zeroth order the usual poor current-algebra
results, rather than the improved fits of the cur-
rent-constituent-quark analysis. However, the
additional operators will appear if first-order
terms in the symmetry breaking are included.
Thus, once again, ignoring hi gher- order correc-
tions to SU(6)~ symmetry does not give good quant-
itative results.

IV. DISCUSSION

The new feature of our lattice approach is the
U(12) of charges (2.9), among which only the chiral

I

—~ 4 4I~2x ~3 y ~fgq (4.1)

in terms of which

(continuum) ~ + X ~ X ~ (4.2)

We can also rewrite H;f' in (2.14) as an antiferro-
magnetic lattice Hamiltonian in terms of these
local charge densities:

A 1 ~ &a (xg
JIG - ~ 3 Z j @)"p.

jP + aa
oddn

(4.3)

There is no corresponding simple form for the
original lattice Hamiltonian in the new basis by
(4.1), even if we ignore all but the nearest-neigh-
bor interactions. Specifically, due to the algebra
of the n„,

generators (2.3) exhibit a simple continuum limit
in terms of charge densities. However, all 144
charges Q

' can be brought to this form by a local
unitary transformation

(4.4)

and there is no way to avoid the sign alternations
which were paired away in the strong-coupling H;",
as in (4.3).

These observations raise the intriguing question
of the physical significance of the transformation
(4.1). It is immediately clear that (4.1) expresses
a lattice periodicity which is explicit when rewrit-
ten

&i/~ i(m/~) &xjx&t(mj2)nyjy j(m/2)nzjz, ~,
V'j

with a redefined phase factor

(4.5)

This suggests that in the continuum theory a trans-
formation of the form (4.1) or (4.5) will be useful
if there is a confinement length in the physical
problem that can be separated from other slowly
varying features of the structure. Such a confine-
ment length presumably occurs in QCD and cor-
responds to the size of a physical hadron within
which color is confined.

Our lattice strong-coupling effective Hamiltonian
has allowed us to extract certain physics of a con-
fining theory, without investigating in detail the

I

passage to the continuum limit. We find it remark-
able that a well-known approximate dynamical
symmetry should emerge from this analysis. In
summary, we can say that the SU(6) results which
follow from our lattice symmetry are for the most
part the well-known results of previous studies.
One important difference is that the generators of
our symmetry are not the usual integrals over the
spatial components of axial-vector currents. Thus
we get a different result wherever the old analysis
explicitly used the form of the generators, but
the same result wherever the analysis merely
used the transformation properties of bilinear
quark operators. Finally, we remark that the fact
that the vector mesons are pseudo-Goldstone bos-
ons in this analysis allows an understanding of
why quadratic mass formulas are correct for them
as well as for pseudoscalars.
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