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The U(1,1oc) X SU(2,1oc) & G(loc)„„„,-invariant effective Lagrangian of quarks and leptons with electroweak
and strong gauge fields can be reduced to an SU(2', loc)-invariant Lagrangian involving only one basic noncanonical

SU(2)-doublet Weyl-type spinor field. A condensation of fermion pairs resulting from a self-interaction of the spinor
fields leads to a spontaneous breakdown of dilatation and SU(2) symmetry and causes different local dressings of the
basic field which can induce the larger variety of phenomenological fields. Hypercharge U(l, loc) reflects the

SU(2,1oc) (third component) property of the dressing. The strong-interaction gauge group

G(loc), t g
SO(3,1oc)—usually taken as SU(3,1oc),.„,—and the flavor group SU(2,1oc) are interpreted to arise from

the same basic SU(2,loc) similar to the manner in which orbital and spin rotations relate to the same rotation group.

Kith the ever-increasing proliferation of quarks
and leptons there is at present a certain readiness
to search for unification schemes where the num-
ber of basic dynamical degrees of freedom is
drastically reduced. ' The original flavor-triplet
scheme [SU(3)„,„„]merged into a fundamental
'electroweak SU(2)-doublet scheme with different
"generations. "' Strong interactions are generally
interpreted as a consequence of a color-SU(3, loc)-
invariant gauge-type interaction. ' To unify hadron
physics with lepton physics at least a fourfold
property with regard to strong interaction is re-
quired to distinguish between the three colored
quarks participating in the strong-color interac-
tion and the colorless leptons. Phenomenolog-
ically, there seems to exist a correlation between
the color and hypercharge properties: The color-
less leptons have half-integer and the colored
quarks sixths-integer hypercharge. (Hyper charge
is here defined as the average charge of an iso-
spin multiplet; i.e., @=I,+&. This differs by a,

factor —,
' from the more common definition. ) Fur-

thermore, the fermions can be grouped into gen-
erations for which the hypercharge & fulfills the
mysterious rule Z&=0 for the fermions in each
generation. ' Hypercharge, on the other hand, has
a strong affinity to the flavor properties because
it conspires with the third component of isospin
to give rise to the mixed combinations of neutral
weak and electromagnetic interaction. ' All this
strongly suggests that. color and flavor are not
really as uncorrelated as commonly assumed. In
the present letter we will propose that color and
flavor actually arise from one and the same funda-
mental SU(2, loc) symmetry group. Their effec-
tive distinction is a consequence of a structural
symmetry, ' analogous to the situation in atoms
where a, separate validity of an SO(3) =SU(2)/Z,
symmetry group connected with orbital angular
momentum and the SU(2) symmetry group connec-

ted with spin angular momentum results in the
limit of very weak spin-orbit coupling. In our
proposal color properties will relate, loosely
speaking, to orbital SU(2) and flavor properties
(isospin I, hypercharge &, charge Q) to intrinsic
SU(2).

The fundamental SU(2) symmetry group is as-
sumed to be spontaneously broken which forces
all asymptotic states (particles) to occur as sing-
lets. ' For the "intrinsic properties" (flavors),
this leads to the "freezing mechanism, " well known
as the appropriate interpretation' "of the spon-
taneous symmetry breakdown producing all as-
pects ol the usual spontaneously broken U(1)
x SU(2) models. "'" For the "orbital properties"
(colors), however, the singlet condition seems to
be established by a special combination with sim-
ilar consequences as the usual SU(3)„,„,-singlet
condition if, in addition, certain uniqueness con-
ditions implying integer charge are imposed on
the physical states.

As in our last Letter concerning the electroweak
interactions" we outline in the present paper es-
sentially only the formal decomposition of the ef-
fective local fields into a much smaller number
of fundamental fields, a procedure which will be
called deflation of dynamical degrees of freedom
The inverse procedure, the inflation of dynamical
degrees of freedom referring to a dynamical de-
duction of the phenomenologically established local
fields and their particular properties as effective
local compounds of the fundamental fields, of
course, constitutes an extremely complicated
problem. For the electroweak interaction, first
attempts on this have been initiated. " For the
present case the inflation procedure consists at
present in major parts only of a program which
still leaves many open questions and hence ultim-
ately may also fail. Except for a few preliminary
sketches at the end of this paper, it has to be de-
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ferred to future investigations.
To simplify matters we suppress in the present

note modifications and generalizations to account
for the generations and parity, features which
have been treated to some extent in earlier pa-
pers' "and probably could be incorporated in a
similar fashion. Therefore, we start with a sim-
plified version of a unified phenomenological Lag-
rangian based on three (in usual terminology
"colored" ) left-handed quark isodoublets Q(x) and
a left-handed lepton isodoublet I.(x) with the form-
er interacting strongly via (color) gauge fields
G, (x) and all electroweakly via (flavor) gauge
fields A'„"(x), 8;"( )xin a U(1), && U(1), && G(loc)„„,~
&& SU(2, loc)f & U(1, loc) r-invariant fashion:

g&» = Q*&f "(-,'i5. —G A"'+ -'a'")Q

+I.*V (-,'iB. A'„" .'Ii:")I—.—

Tr(G )2 T (Aeff)2 (Ileff)2

charge degree of freedom by shieMing this prop-
erty with a unitary dressing operator f«(x) (con-
structed from the Goldstone fields which arise in
consequence of the asymmetric ground state).
Since f«(x) varies as

so(x) - exp[2'i&2(x)+-,
' i«(x)]~(x),

9
«(x) =[Pf(x) cosy+P2(x) sing] tan —+P2(x),

the hypercharge variation is compensated at the
price of a nonlinear phase variation under isospin
transformations involving the SU(2) Goldstone
fields B,(x) =0(x)e"e'"'. For the redressed fields

q(x) =2& e'"(x)Q(x)

- exp[ i6, —-iy(x) —iP(x) —+~i &(&x)] &I( x),

l(x) =f«(x)I.(x)

- exp[-iB, —i&3(x) +-,' i«(x)]l (x),

G;"(x)=-8 f(x) —ice&,f«(x) —G;"(x)+B,«(x),

G „=B„G„-B G„—i[G, G„],
A"' = B A""' —B A"f —i[A'" A'"]

PV V II V V 4 & V

get f g jeff' g geff
V V V V V V

where the fields transform as

(2)

which transform nonlinearly under the isospin
group, we obtain the U(1)r deflated Lagrangian

g &» =q*o~(-2'iB G A "f &C"f)q
6

+l*&f "(—fB„-4' + —C' ')l

Q(X)-ezp[-i5, —iy(X) —ip(X)+ hei&2(X)]Q,

I.(x)-exp[-'5, —'P( )--,' '
( )]I.(x),

G. ( )-"'G.( )- [~(.), G.(.)].B„~(.),
A'„"(x) '"A.;"(x)—2[j(x),A, (x)]+B.p(x),

a'„"(x)-S;"(x)+B„~(x),

(3)

(4)
It will be our goal now to reconstruct this Lag-

rangian involving the fields q, /, G„A'„",C'„"
solely in terms of one basic left-handed SU(2),-
doublet X(x) (2 && 2 complex components) and one
SU(2)f-triplet gauge field A„(x}with the transfor-
mation properties {fermion number E = 2)

(i =1,2„, 3) . (6)

Usually G(loc}„„„,is chosen to be the

SU(3, loc)„„,in which case the G, refer to the
eight gluon fields

A

y= —*y,, G (x)= ~ G, ,(x), G„„(x)=—*'

G,.„(x)y,

(i =1, . . . , 8) [SU(3) case] (6)

with X; the eight 3 &3 Gell-Mann matrices.
We imagine now the Lagrangian (1) to be aug-

mented by appropriate terms —conventionally con-
structed with the scalar Higgs field' —such that the
global SU(2)f x U(1}„flavor symmetry gets spon-
taneously broken including U(1)r. As shown ear-
lier, ""this allows the elimination of the hyper-

X(x) —exp[ 2i6 —iP(x)]X(x),

A, (x) = — A„(x)&"A.(x) -i[j( ),A. (x)]+B„j(x).

' The basic field y is assumed to interact with itself
in such a way as to produce a pair condensation of
its SU(2) down components reflected by the asym-
metric ground-state condition""

(n~X2r(x)c, X2(x) ~Q) vo, X= "', c, =io„(12)
,X2

which effects a breakdown of SU(2}f && U(1)~ (&
=fermion number) up to a U(1)~ (E, =number of

1
up components). The fermion-pair condensation
(12) allows"" the construction of unitary I„ I2,
&2 dressing operators s(x) and u(x) involving the
corresponding Goldstone fields
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the Lagrangian (10) obtains the form

Z "'=e*o'(-,'ia, —0, -i;")e
+ gg&v (&&$ jeff)tp

(Ceff ti )(1@govy ~ gw&u y)

U, (x) =iua, u*(x) —U, (x) + a„K(x) .
(»)
(15)

Also the gauge fields A;",C',"will be rearranged
with the dressing operators u(x), s(x) and their
derivatives (16) and

B,(x) =is*7 a„s(x) -[1+P(x)x]B,(x)+ a,P(x) (17)

to reduce to the basic gauge field A, (x) (P', P"
= rearrangement parameters)

s(x) —exp[-,'i 5—ip(x)]s(x),

u(x) —exp[- —' i0 + —' iv (x)]u(x),

where ~(x) is constructed like (7), however, now

with the explicit stipulation that the Goldstone
fields 8, (x) involved are produced by the fermion-
pair condensate (12) and not by any other mech-
anism as, e.g. , by the conventional Higgs-field
condensate which hence will be unnecessary. The
dressing operator u(x) can be used to transmute
the cumbersome (nonlinear) SU(2) transformation
property into a Goldstone-field deflated global
fermion-number property. With the u(x)-redressed
fields

4 (x) =u' '(x)q(x) - exp[-ia, —,' i 5 —iy(x)—-ip(x)]4 (x),

(14)

y(x) =u*(x)l(x) - exp[-ia, +-,' i6 —ip(x)]it (x),

g (21) p«rt [ I y gog@

+ P'(K —SK ) 4' *o' —4 + ')*a' —g
2 2

[S(K && K )]'
4g 2 V

——(a„z, —a.z.)'. (22)

The constants g, N are related to P", P' and g, g'
as

P"' P'(2+ P')
Zru (1 +Pi,)2 1 +r2 + 2 (23)

0

y(x)=t p(x)= ip,

-ip, ip,

0 jp,

The &"" (22) should be considered to be exactly
canceled by the rearrangement of the self-inter-
action term of the basic spinor field X(x) in
consequence of the broken symmetry as shown ear-
lier"'" and essentially deter~inc p", p', and g '.
Derivatives of A„should only arise in the curva-
ture form A„„which requires X =0. Hence, g and
g' will be given as

ff2
g'/g '=(1+P')', "/g'=,(,)

-tan'y .

(24)

Up to now we have proceeded very much along the
lines of the last Letter" deflating Weinberg's mo-
del. Now we make a first dramatic step: We as-
sume the triplet 4, usually taken as an SU(3)„„„
triplet, to be an SU(2)/Z, = SO(3) triplet of the
same basic SU(2, 1oc), i.e., we consider the 3 && 3
matrix y in transformations (14) and earlier to
depend only on the three isospin Lie parameters
p

A;" =A, —P'(K„—SK,),
Cef f U P»g

-iP, iP, 0

(ij)„s=i~„,.s [SO(3) case],
(25)

Here the gauge-invariant operators

K, (x) = B„(x)—A, (x) '"'[1+P(x)x]K„(x),

K (x)=S(x)K„(x)-K (x), S(x)=s*Ts(x)

g (1) g (2) g (21)

with the gauge-invariant kinetic terms

Z "'=4*a "(&ia, —G -A„)4+/*a "(,'ia, —A, )—g

(20)

were used. The Lagrangian (15) then can be writ-
ten as

(26)

This deflates the Lagrangian (21) to

2"'=4 *o "[—,'ia, —(t + —,
'

T) ~ A, ]4

+g*o "[2ia, ——,7 ~ A, ]g

which constitute the purely imaginary SU(3) X

matrices.
The color group in this reduced form looks like

an orbital part of isospin. There are only three
gluon fields which are identical to the basic A, :

G„( )=t A. (x), G.„(x)=t A.,(x).

, Tr(G, „)'—,Trg, „)',

and a part involving the dressing operators

(21)

1
(A„„)

g'0

1 1 1

(27)

(28)
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i.e., withg„g, P', P" given the effective gauge
coupling constants g, (color), g and g' (flavor) can
be in principle derived.

Relating the color gauge field to the same basic
isospin gauge field to which the flavor gauge fields
were deflated requires that the color index A
= I, 2, 3 of the 4 ~ triplet connects to the same
isospin degrees of freedom which are labeled by
the other index n =1,2. To make this connection
manifest we assume in a second dramatic step that
the fermion fields 4' (quarks) and P (lepton) are
local compounds of the fundamental spinor field

By definition, X is an anticommuting operator
quantized w ith anticommutator conditions. Pauli's
principle allows maximally four X's and four y*'s
at each space-time point x. Composite fields with
half-integer spins can be locally formed (besides
the trivial case with one) with three, five, or
seven y, X*'s. By reasons to be offered below we
concentrate on the possible three-field compounds

XXX, X*X*X* spin, isospin=(-„-, ),
spin, isospin = (-,', —,'), (-,', —,'); (-,', —,'),

p(x) - e~[--.'i5-ip( )] p(x). (34)

The antisymmetry of three spinor operators of
the same sort forces the isospin vector Z in (30)
to antialign its isospin (and spin) to x which simu-
lates a strong "spin-orbit coupling. " This situ-
ation is quite different for the remaining 2 && 3 spin-
~ fields XX*X* (and their antifields X*XX) in (29)
because here the dressing is composed of the anti-
fields and therefore is free in its alignment.
Hence, there is no spin-orbit coupling arising
from the Pauli principle. It is therefore reason-
able to identify the isovector-isospinor fields with

the 4'-triplet-doublet (with n, some normalization

and here only on the spin- —,
' combinations. The

compound X'(x) [and the antifield X*'{x)]leads to
an SU(2), doublet which will be used to construct
g (with n, some normalization constant, 1 =lepton):

g(x) =n, 7 Z(x)X (x), (3o)

&(x) =X*TX(x)—exp[-i5 —iy(x)]&(x),

Z*(x) =X*v'X(x)- d*(x) exp[i5+iy(x)],

X(x) =e.e,x"'{x), c, = -io„e,= iv„-.
where T indicates transposition. The fermion
number I" (related to 5) has to be identified with
half the fermion number I", (related to 5,):

F =2F

to secure the same variation 6=5,/2. Hence, one
obtains from (14) for the variation of the lepton
field under the basic U(1)z x SU(2, loc), group

constant, q =quarks)

e( ) =n,T*(x)x(x)

—exp[-', i5 —iy (x) —ip (x)]e(x),

where one identified

F, =-—,F =-—', E,
to secure 6,=-—,5.

With representation (30) and (35) the Lagrangian
(27) gets deflated to

& &*=(x*o.x)(x*o"x),

—i4 x 6 *=(X*o„vx)(x*o"X),
(38)

&'s.~*= (x*o„x)(x*o"s.x),
—i& x S» &*= (X*og'X)(x*o"~»x)

+ (x*o,x) (x'o"&&„x) ~

(39)

The quark and lepton fields 4 and g are treated as
canonical fields obeying Qi(x), (*(x )},; -5(x —x )
which characterizes them as (mass) dimension-2
fields under dilatation:

4(x)- exp(~X)4 {e ~x),

g(x) - exp(—,'X)g(e 'x) . (4o)

If simple additivity of dimension is valid, the
basic field x(x) with our constructions (30) and

(35) has to be assumed to have dimension ~ (it is
what we earlier called a spinor potential' ' ),
i.e., it varies under dilatation as

X(x) -. exp(2X)x(e 'x) . (41)

The dimension 2 of X(x) is reflected by a c-number
part in the bilinear bilocal product (with a conven-
ient normalization}

x, =x+$/2, $-0. (42)

In this case 6, d* can be regarded as a combined

&"'= (n, '+n, ')Z '2*[x*a"(2i9„—»T'A„)x]

—n( 14x'Q+'[X+(7"(2if»r apA»)x]

+ {n.'-n ')[&'(-'is. —t '".)&*](x'o"x)

+n, '[i&&& (2i& —t A„)Z*]'(X*o "2vX) —',A„„' .
4g 2 gv

(37)

Since 6, 6* are constructed from X and X*, all
6, b~ terms can be expressed in terms of y, g*
as
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by which simultaneously a direction in isospace
and a mass scale M is selected.

The dimension-& property of the basic field X

now allows us to make a third dramatic step,
namely, to consider even the basic" gauge fields
to be compounds as suggested earlier and to be
represented as the tetrad-averaged finite part
of the bilinear product" "

A„(x)=-16~'. g*o„&X: (x),

A„(x)"'A„(x)- i[0 (x), A„(x)]+S„P(x),
(45)

which reflects the second term in the expansion
of the bilocal product (42)

, ~ [1 i&"A„—(x)+. . . ] .
8m'

(46)

Actually, one may also turn the argument around

by postulating the fundamental field y(x) according
to (45) as the square root" of the gauge field

1
which then fixes naively its dimension to a. Can-

dimension and SU(2) dressing operator"

Z(x)- exp(X) Z(e 'x) .
The symmetry-breaking condition (12) reveals it-
self as an isospin and dilatation breaking condition

(n~Z(x) ~n)=MR ~0, - 1, (44)
(0 iZ*(x) iA) =MY. V0, 0.

onical fermion fields then have to be constructed
as local products of three such fields" which
would explain the preference of the three con-
structions (29).

With the insertion of (45) into (37) one obtains
a gauge-invariant Lagrangian which only contains
y, X* and their first derivatives in a fashion which
does not involve any scale parameter. We content
ourselves giving its general structure"

~ "'=Is(x*x)s(x*x), (x*x)'s(x*x), (x*x)'(x*sx), (x*x)'j .
(47)

This Lagrangian is dilatation invariant and hence
formally renormalizable. Because of the anomal-
ous (subcanonical) dimension of y, the theory re-
quires an indefinite metric in the quantum-mech-
anical state space" which is clearly reflected by
(42) and is the price to be paid for constructing
gauge fields from spinor fields. The local for-
mulation of gauge theories in any case requires
an indefinite metric (scalar modes, Faddeev-
Popov ghosts) but the indefinite metric involved
here seems to be more severe. The y(x) in the
simplest case, however, is a dipole ghost field
relating only to zero-norm states, "similar as
the plus and minus combinations of the longitudinal
and scalar photons in QED which therefore do not
correspond to asymptotic states (particles). This
may eventually help to secure unitarity. "'"

Digging for an even deeper level the Lagrangian
(47) can be further simplified by regarding it as
the local tetrad-averaged limit of a bilocal Lag-
rangian represented by the determinant

g+ 0
Z(x)=lim det[y(x, )y*(x )]=~lim [e "'y. yap, x,(x,)ca~„~yn y&~*"y*'(x)], x,=x+$/2,

0
(48)

where n, . . . n, . . .= 1, 2, 3, 4 now combines
both the SL(2, C) Lorentz and SU(2) isospin index.
With dimension-2 fields 1! the Lagrangian (48) is
obviously dilatation invariant but also invariant
under the large local group SL(4, C, loc). The
condition

X(x,)X*(» ) = 8„.

n n
&"&" X*o &~ — 8 X(x)n! n vp

describes the contiriuum limit. It fixes the dimeri-
sion and reduces the local group to SL(2, C)
x SU(2, loc.). The continuum limit procedure will

essentially lead to a Lagrangian (47) but also in-
volves terms up to three derivatives. Since the
product X*X* and Xg have no singular terms for
$-0, these operators can be taken at the same
space-time point. Their antisymmetry is ex-
plicitly taken into account by the ansatz (48).
This ansatz appears interesting in many re-
spect —in a certain approximation it corresponds
to Heisenberg's nonlinear spinor theory" —and
will be discussed in more detail elsewhere. "
In a certain way it is the spinor counterpart of
the pure scale-invariant, renormalizable non-
Abelian SU(2, loc) gauge theory which involves
A' as highest nonderivative terms where the gauge
field A, of dimension one is replaced by bilinear
forms of a spinor field of dimension 2.

The spontaneous breakdown of the global SU(2)
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symmetry usually effected by a nonlinear Higgs-
field Lagrangian involving a scale-invariant term
p' and a scale-breaking term M, 'y' is supposed
to arise in our case automatically from the non-
linear interaction term with (X~&„X)' essentially
playi. ng the role of (t)'.

If; is also interesting to note that (X*o„X)(X*o„X)
constitutes a. symmetric tensor of rank two of
dimension two [(X*o„X)(X*o„X)dx"dx" is dimension-
less] which may be eventually related to the me-
tric tensor and gravitation. ""Also, the occur-
rence of a local canonical spin-& field in (29)
may be of importance in this context. 'This,
however, requires more thorough investigations.

The field-deflation scheme is summarized in
Fig. 1. It proceeds essentially in four steps.
With the number of the step we have indicated the
corresponding rearrangement of the Lagrangian,
the tools (operator, etc. ) which effect this re-
arrangement and the 'properties" one loses in
this step. In the first step local hypercharge is
eliminated; steps 2a-2c reduce the gauge groups
to SU(2, loc); step 3 introduces an indefinite metric
to deflate the canonical quark and lepton fields to
the basic field; and step 4 finally destroys even
the continuous space-time description and the
basic gauge fields.

In closing, let us shortly comment on the in-
verse procedure, the inflation procedure This.
would mean to start from the fundamental U(1)z
x D(1)x SL(4, Cloc)-invariant Lagrangian (48)

involving only a basic complex noncanonical 2 && 2
component SV(2) && SL(2, C) isospinor operator"
occupying each space-time point maximally (X
and X* at alternating neighboring points). Bridg-
ing the distance between neighboring points by
a Laurent expansion (49), with the quantization
condition related to the leading c-number singular
term, a Lagrangian of type (47) or (37) may evolve
where the original SU(2) invariance at each point
will give rise to effective SU(2) gauge fields A„(x)
with certain normalizations by taking appropriate

plaquette limits. ""
'The canonical rearrangement with the isospin-

covariant dilatation dressing operators Z (x) and

Z*(x) establishes the canonical spin-2 fields )l)(x)
and 0'(x) where the leptondoublet ((x) is constructed
only from strongly correlated X(x) of the same
point whereas the quark sextet 4(x) contains un-
correlated X(x) and X)'(x) of neighboring points
which suggest treating it on a triplet-doubletfoot-
ing. The nonlinear interaction is supposed to
lead to a condensation of LL(x), Z*(x) which violates
D(1) and U(1)z x SU(2)z invariance with the latter
leading to dressing operators M(x), s(x) constructed
from the corresponding Goldstone fields. The
gauge-invariant dynamical rearrangement of the
nonlinear term'"" is supposed to generate terms
of the formZ ""in (22) involving parameters P"
and P . In particular, '2 a pure Goldstone-field
term -[S (K„xK„)]' with parameter y according
to the decomposition

Q, L

"eff eff "
4e4)4

U(1) x SU(2)xG

O( (1) —()o)
w(x); hypercharge

~(la) -(tS)
u(x); ray properties of ferrnion

q, l

Aeff C
eff

G4' 4' 4

SU«&(2) x G,

(15) (21)

A'f C'ff G
u„(x),84"'" ygaug

4 1 4 t 4

SU(2) x Gs

A„,G„

SU(2) x Gs

(21)-(27)
Gs= SU{2)/Z2,

strong vs. weak gauge fields A„-

SU(2)

(27) (37)
h(x); canonical fermions

A„

SU(2)

O&(37) —(a7.~e)
quantization; gauge bosons,

local interaction

SU(2)

FIG. 1. DeQation scheme.
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, (A,„'+y'[S (K, x K„)]'}
4g 2

I 1 I
4+ 2 Pv 4

~ Qv i2 Pv

in connection with the extractions, will trigger
a proliferation of the gauge fields

A -pA Ref' c"'}

where the parameters g„P, P', and y will de-
termine the coupling constants g, g, and g:

2 2
2/ 2

gO gg Pj(2+PL) i g0 s (i +Pe )2PL (2+PL)

112
I2

P'(2+P') ' (52)

4(x) - q(x) =u*"'(x)@(x)

=n, x(X*~K)u* (x)

=n.(u"X)[(u"'X)*&(u"X)'](x), (54)

which in comparison to (53) suggests that (u'I~X)
acts as an effective building block. The fermion
number E = —2 with this dressing gets decreased
by —', to E= ——, to generate a hyperchange 1 =+—', .
Kith these arguments, therefore, the change

At this point some argument has to be produced
why the left-over" part 'A„of the gauge field
couples only to the triplet degree freedom in 4
( orbital' isospin). This constitutes a first bar-
rier in inflation procedure. If it can be success-
fully cleared we reach the point where 4, g, A'„",
C'„f', G„are effectively established.

Now the correct u(x) dressings have to be mo-
tivated which effectively convert fermion number
into isospin property I, and phenomenologically
show up as hypercharge. For the leptons the
decoupling of the massless neutrino from the
massless gauge field (photon) enforces tbe dress-
ing

~()- l()= ( )y( )

= nPx(x*rx)u(x)

=n, ~(u"' )X[( 'u 'x)'*~(u' 'X)](x),
(53)

where the superscript 1' indicates transpose. By
this dressing the fermion number F = —', of ((x) is
lifted by ~a to F = 2 [which, according to (33), cor-
responds to lepton number F, =+ l] connected with
the generation of a hypercharge Y= —3~ (I, property
of the dressing). For the quarks we do not have
an argument for a particular u dressing but ap-
parently we have to demand

shift (hypercharge) would ultimately be deter-
mined by the neutrality of the neutrino and the

universality ' of the local building blocks.
Clearly, the latter requirement is still rather
unsatisfactory.

Up to now we have concentrated only on the
dynamical rearrangement of the local structure
triggered by the fermion condensate of the ground
state and have disregarded questions concerning
the structure of the asymptotic states which man-
ifest themselves as physical particles. Since
SU(2) is broken effectively, only SU(2) singlets
can arise as physical states. For the flavor
properties, this is accomplished by the local
freezing of the corresponding degrees of freedom
or by a subsequent gauge-field dressing.
For the orbital" SU(2), which was connected to
the color property, another mechanism appears
to be at work: The singlet condition can be es-
tablished by constructing isoscalar combinations
of the isospin vectors such as

q. q, (qx q). q, (qx q) ~ q*, etc. , (55)

~ ~ —+2n7t n=integer .P Pg

2 = 2 (57)

If one requires the physical states to be unique2~
this would eliminate the second and fourth com-
bination in (55). For physical states, therefore,
only the combinations

q) ' q= &~scVA'sQ (58)

survive. These are exactly the combinations
which constitute the physical states also in the
conventional quark model. In contrast to the us-
ual quark-confinement condition, however, the
selection of singlets in the asymptotic region
would be, in our case, a direct consequence of
the spontaneous breakdown of the basic SU(2)
symmetry.

which according to (54) have the u(x) dressings

u*' ', g, ~*' ', etc. ,

respectively. One may even turn the argument
around by stating that this new type of isospin
shielding (55) is the main reason for tbe pbeno-
menologically separate character of color and
flavor.

Tbe possible isoscalar combinations (55) can
be further restricted by the observation that u(x)
contained in these expressions as (56) has a non-
trivial phase-transformation property under
global SU(2) transformations which, on the basis
of the topological structure of the group, demands
certain periodicity conditions, in particular,
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The interpretation of the color group as an So(3)
rather than an SU(3) does not invalidate the ultra-
violet asymptotic-freedom property" of such a
theory. The relevant function

for the present case of SU(2) [C,(SU(2)) =2; T(R)
=2nz] we obtain

3

P(g.) = 2-4'. [» -4~,] .

3

P(g,)=- '
~ [—'l C.(G)--', T(&)]

in this context which for SU(3) with nz fermion
triplets (nz= number of flavors) yields [C,(S'U(3))
=3, T(R)= an~] the well-known

3

P(g,) = —, , [II——;n„]

Since P(g,) has to be negative to secure asymptotic
freedom only maximally two flavors (nz ~ 2) can
be admitted which is completely exhausted by our
assumption of a single SU(2) flavor doublet. As
a consequence, the various observed generations
cannot be accommodated on the basic level which
would be an indication that they also should be in-
terpreted as (soft) proliferations. ' "
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