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We search for a systematic way to characterize the low-energy sensitivity of the minimal Weinberg-Salam model
to a heavy-Higgs-boson sector. We find that it is convenient to view this theory as the regulated version of a
nonlinear o model coupled to an SU(2)~ &U(1) Yang-Mills theory. Within this framework, M„acts as the
regulator. Using the symmetry properties of the nonlinear. theory, along with a power-counting analysis, we are
able to classify low-energy observables according to their sensitivity to MH. We find that, at one loop, the
greatest sensitivity is logarithmic. An illustration of these ideas is provided by a calculation of the one-loop, M„-
dependent corrections to the natural relation M~ iMz cos8 = l. Finally, we discuss other possible applications of
this technique.

I. INTRODUCTION

During the past decade, the trend in theoretical
physics has been to describe all the interactions
of elementary particles as manifestations of a
single underlying dynamical principle —local gauge
invariance. As products of this program, we have
a candidate theory of the strong interactions,
quantum chromodynamics, and the 7feiriberg-
Salam model, ' a rather successful unified theory
of the weak and electromagnetic interactions
[quantum flavor dynamics (QFD)].

Of course, despite any subjective prejudices
which we may entertain concerning the credibility
of this program, it will be experimental facts
which wit. 1 ultimately decide its fate. In particu-
lar, take the case of QFD as described by the
SU(2), x U(1) Weinberg-Salam model with a mini-
mal Higgs structure [i.e., the scalars are intro-
duced as a single complex SU(2)~ doublet]. In add-
ition to preserving the predictions of quantum
electrodynamics and accommodating existing
charged-current weak-interaction phenomenology,
it successfully predicted the existence of weak
neutral currents and the violation of parity in
deep- inelastic electron- nucleon scatter ing. ' An-
other experimentally verified prediction of the
minimal model is the relation M ~/M x cos 8 = 1,'
where M~ and M~ are the masses of the charged
and neutral vector mesons, respectively, and 8 is
the weak mixing angle.

Yet no existing experiment directly tests the
basic gauge-theory formalism, or the attendant
symmetry-breaking mechanism which provides
the gauge mesons of the Weinberg-Salam model
with their masses. The vector mesons have not
been observed; their self-interactions, which are
peculiar to this class of theory, have not been
verified; the Higgs particle, the residual scalar
of the mass-generation mechanism, has not been
found. 4 Since present-day accelerators operate at

energies below the masses expected for the vector
mesons (about 90 GeV), the first two objections
are probably premature, and might be resolved
in the not too distant future. On the other hand,
the problems presented by the scalar sector of
the theory warrant further discussion.

The fact that the mass of the Higgs scalar, MH,
is not predicted by the Weinberg-Salam model (it
has been estimated to lie anywhere between 4 GeV
and 1 TeV) is essentially a manifestation of our
ignorance of the dynamics triggering spontaneous
symmetry breakdown. In the standard formalism,
elementary scalar fields are coupled in a gauge-
invariant manner to the vector mesons, which are
described by a pure Yang-Mills Lagrangian. The
strength of the scalar self-coupling, A., is related
to the mass of the Higgs particle by M„'=v 2A/G~
= (350 GeV)'y, where G~ is the Fermi coupling
constant. If the self-coupling is weak (i.e., X«1),
as is usually assumed, M~«350 GeV, and the
Higgs particle can be relatively light. Presumably
it could be observed, thereby verifying the stan-
dard picture of symmetry breakdown. Once this
discovery is made, along with that of the vector
mesons, there might be essentially no new physics
until at least 10" GeV, where the new phenomenol-
ogy of grand-unified theories will begin to mani-
fest itself.

A more interesting scenario results when sym-
metry breakdown occurs dynamically. ' The mass-
less Goldstone bosons required to drive the Higgs
mechanism are assumed to be bound states of more
fundamental particles. The natural scale of the
Higgs sector is then given by (0

~

C (x) ~0)
= 1/(v 2G~)'~'= 250 GeV, where 4 (x) is an "effec-
tive" scalar field. If the force binding these new
quanta becomes strong at this mass scale, the
typical masses of physical particles will be a few
times (0 ~C (x) ~0) or about 1 TeV.

Within the standard formalism, a mass of 1 TeV
for the Higgs particle implies X=1. This suggests
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that we can use the minimal Weinberg-Salam
model with fundamental scalars as a phenomenolo-
gical, low-energy description of a dynamically
generated Higgs mechanism. (In this context, low
energies are much less than 1 TeV. ) In the limit
Ms 1 TeV (or X 1), we test the low-energy
sensitivity of the minimal Weinberg-Salam model
to strong 1-TeV Higgs-boson physics.

It is the purpose of this paper to study the impact
which a strongly interacting, heavy-Higgs-boson
sector has on the low-energy structure of the
minimal Weinberg-Salam model. ' We seek an
answer to the question of whether there are any
measurable low-energy quantities which are sen-
sitive to M~, and which can give us information
about the 1-TeV Higgs-boson sector and its strong
interactions.

In Sec. II, we review the conventional formula-
tion of the minimal Weinberg-Salam model and its
mass-generation mechanism (spontaneous sym-
metry breakdown). We also introduce an alternate
formulation which is convenient for the description
of the low-energy structure of the theory.

In Sec. III, we show that a convenient way of
searching for low-energy sensitivity of the mini-
mal Weinberg-Salam model to a heavy-Higgs-
boson sector is to formally take the M~ ~ limit
at the outset. The resulting theory is the nonlinear
o model coupled to a pure SU(2)1, x U(l) Yang-
Mills theory, and is nonrenormalizable within the
context of perturbation theory. In this sense, the
parameter M~ plays the role of a regulator when
the linear theory is used beyond the tree approxi-
mation.

In Sec. IV we present a power-counting analysis
which, when used in conjunction with the symme-
try properties of the nonlinear Lagrangian, allows
us to locate all the new cutoff dependence of the
nonlinear theory. By interpreting this cutoff de-
pendence as the M~ dependence of the linear the-
ory, we are able to systematically isolate those
low-energy observables which are most sensitive
to the regulator M~. VYe find that, at one loop,
the greatest sensitivity is logarithmic.

As an illustration of these ideas, we calculate
the one-loop, heavy-Higgs-boson corrections to
the natural relation M~/Mx cos8= 1 of the minimal
steinberg-Salam model in Sec. V. A natural re-
lation is a constraint between coupling constants
and masses, for example, which results from the
symmetry structure of the Lagrangian before
spontaneous breakdown. The eounterterms needed
to renormalize these parameters have the symme-
try of this Lagrangian, and, consequently, not all
of the counterterms are independent. This re-
sults in the fact that the radiative corrections to
a natural relation are finite. This example is

particularly interesting since it has been experi-
mentally determined that (M~/Mxcos8)'=0. 981
+0.037.' As expected on the basis of the general
analysis of Sec. IV, we find that the M~ depen-
dence of these corrections is logarithmic, so that
it will. be rather difficult to learn anything about
the strongly interacting 1-TeV sector described
above by doing low-energy experiments.

The results of our analysis are summarized and
discussed in Sec. VI, where we also comment on
other possible low-energy Higgs-boson effects.

II. FORMALISM OF THE WEINBERG-SALAM

MOnEL

In the standard description of the minimal
Weinberg-Salam model, the. elementary scalar
fields are introduced as a weak-isospin complex
doublet

y'(x) 1 y, (x) —iy, (x)

.y'(x). .o(x)+ iy(x)
(2.1)

The fields y, (x), &f&,,(x), v(x), and y(x) are all
Hermitian. Under a local SU(2)z, x U(1) gauge
transformation,

e(x) —e'(x) = e'"o&"i"&*&'"~'e(x),

where v'=-(7'„r„r,) are the usual Pauli matrices.
The covariant derivative

(2.2)

D„e(x)= [8„+zigA (x) r+kig'B, (x)]e(x)

(2.3)

obeys a similar transformation law

D„e(x) [D„e(x)]' = e'"'&"&'~&"&'"~'D„e(x), (2.4)

V(e'(x)e(x)) = ~[e'(x)C (x)+ p'/2~]' (2.5b)

and X measures the strength of the scalar self-
coupling. In order to make the global SU(2)~
x U(1) gauge symmetry of Zo(x) a local symmetry,
the substitution 8„e(x) D„C (x) is made in E&I.

(2.5a), where D„ is the covariant derivative de-
fined in E&I. (2.3). Adding in the kinetic terms for
the gauge mesons, we arrive at the Weinberg-
Salam (WS) Lagrangian, minus fermions, and be-

foree

symmetry breakdown has occurred

where the gauge field B"(x) and coupling constant
g' are associated with the weak-hypercharge
group [U(l)], and the triplet gauge field A" (x)
-=(A",(x),A,"(x),A,"(x)) and coupling constant g are
associated with the weak-isospin group [SU(2)z].

The scalar sector of the theory is described by
the Lagrangian

8 (x) =[8„e(x)]t[8"e(x)]—V'(e"(x)e(x)), (2.5a)

where
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S~s (x) = —cB„,B""—~2 Tr(+„„E"")
+ [D„c(x)]'[D"c (x)]

—) [C'(x)C (x)+ )),'/2)(]', (2.6a)

where

B„„=(),B„(x) ()„B„(x), (2.6b)

E„„=()+„(x}—()„A„(x)+ig[A„(x),A„(x)],

(2.6c)
and A„(x)=-'r A„(x).

The Lagrangian of Eqs. (2.5a) and (2.5b) posses-
ses an additional symmetry which can be made
manifest by a change in notation. Instead of in-
troducing the sca1.ar fields as a complex doubl. et,
as in Eq. (2.1), we can represent them by the
2x 2 matrix field

M(x)=a(x)+6 v(x). (2.7)

The field a(x) is identical to that appearing in Eq.
(2.1), whereas the triplet v(x) =-(7(,(x), m, (x), m, (x))
=(-((),(x), P, (x), -X(x)). The connection between
these two representations of the scalars can be
made more explicit if, in addition to the isospin
2, hypercharge +1 field C (x), we introduce the
isospin 2, hypercharge -1 field C (x) =is,C *(x).
Equation (2.2) indicates that under a local SU(2)~
&& U(l) gauge transformation

C (x)- C '(x) = e' 'p(")"(")"/'C (x) . (2.8)

Writing M(x) in terms of p, (x), y, (x), )((x) by
using the correspondence

(7(,(x), v, (x), 7),(x)}=-(-y, (x), y, (x), -)((x)},
we obtain

M(x) =W2
"

=-&2(C (x)C (x)) . (2.9).-y-(x) y'(x).
Under a local SU(2}z x U(1) gauge transformation

M(x)-M'(x) =&2(C'(x)C'(x)}

e i e(X).T /2

x~2 (8-)Sp(x)/2C (x)e)sp(r)/2C, (x)')

= e"")' '&2(C (x)C(x)}e " (")'3/'

ei6(x) ~ y/2M ( )e-(ap(x)TS/2 (2.10)

It is also apparent that the covariant derivative
of M(x), constructed to transform like M(x) it-
sel.f, is given by

(2.11)

u„M (x) = W2 (ir, [D„C(x)]*D„C(x))
= [()„+—.'i/;A„(x) .rPY [c (x)c (x)]

-'.ig 'B„(x~2 [C (x)C (x)]r,
= S„M(x)+ .'ig A„(x) rM (x)——big'B„(x}M(x)&.

The explicit presence of a ~, matrix in the last
lines of Eqs. (2.10) and (2.11) can be traced to the
fact that although C (x) and C (x) transform iden-
tically under the local SU(2)~ group, they trans-
form "oppositely" under the local U(l) group
[compare Eqs. (2.2) and (2.8)].

Equations (2.5a) and (2.5b) may now be rewritten
in terms of M(x):

Z, (x) = —Tr[()„M'(x)a "M (x)]

—.'~(-'. Tr[M t(x)M (x)]+ )).'/) }2 . (2.12)

This is exactly the Lagrangian of the l.inear 0
model, and it is now apparent that Zp(x) is invari-
ant under the global SU(2), x SU(2)„gauge trans-
formation

M(x)-M (x) = e"~'/'M (x)e "R'/' (2.13)

After gauging the global SU(2)~ x U(1) symmetry
of Sp(x) by making the replacement ()„M(x)—X)„M(x), the scalar sector loses its additional
global SU(2)~)( SU(2)s symmetry, due to the
presence of the r, matrix in S„M(x) [see Eq.
(2.11)]. In the

limits�

'=0 (i.e., 8=0), the gauge
group reduces to SU(2)~, and the giobal chiral
symmetry is restored. It is important to realize
that the global ehiral symmetry of the scalar
sector is accidental and is not required of a. gen-
eral. theory which is locally invariant under
SU(2)~ x U(1). The fact that it is respected by
Zp(x) has important consequences which we will
discuss later.

The choice p, '(0 in the Vgeinberg-Salam La-
grangian

Z„s(x)= —cB„,B""—2 Tr(E„„E"")
+ —,

'
Tr[[n„M (x)]'~"M (x)}

——.) (-2 Tr[M'(x)M (x)]+ )),'/) }' (2.6a')

forces the potential

V(M'(x)M (x)}=~)((-,
'

Tr[Mt(x)M (x)]+ p, '/X}'

to develop an asymmetric minimum, which is
located at

M'(x)M (x) =M (x}M'(x)= )/. '/) =f'—-(2.14)

in the representation space of the scalars. This
implies that M(x) has a nonzero vacuum expecta-
tion value (0 ~M(x) ~0) =f. In order to perform per-
turbation theory about the stable, asymmetric
vacuum state, we define a new field, M'(x) =-M(x)

f, such that (0 ~M'-(x)
~
0) = 0. If the substitution

M(x) =M'(x)+f is made in Eq. (2.6a'), and the
Higgs mechanism is invoked, the particle spec-
trum of the theory may be read off the resulting
Lagrangian. The would-be Goldstone bosons
7/, (x), w, (x), and m, (x) are gauged away and become
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the longitudinal components of three vector mesons
which become massive. Two of these are charged

W,"(x) = (I/vY)[A,"(x) 7- iA,"(x)]

and one is neutral

(2.15a)

2"(x) = cos8A,"(x) —sin8B" (x), (2.15b)

where 8-=tan '(g'/g) is the weak mixing angle. At
the level of the Lagrangian, the lPs both have
mass Mp= a gf, whereas the Z has mass M x= aGf,
where G-=(g'+g")'~'. The combination of fields
orthogonal to that appearing in Eq. (2.15b),

A" (x) = sin8A,"(x)+cos8B"(x), (2.15c)

remains massless, and is identified with the
photon. The remaining scalar field o'(x) develops
a tree-level mass M„=~2k f, and is the physical
Higgs particle.

In the renormalizable B& gauge, the Qoldstone-
boson fields p(x) remain explicit in the Lagrangian
obtained from Eq. (2.6a') by shifting the field
M(x) M(x)+f. In order to quantize the theory,
we append the gauge-fixing (QF) term

I 2

g (x) = —Tr s„B"(x)
'g

[M(x)r, —r Mt(x))

1—-Tr S„A"(x)+ [M(x) -Mt(x)]
1a

(2.16)

to the shifted Lagrangian. The parameter $
varies continuously from zero (Landau gauge) to
infinity (unitary gauge). Defining g(x) -=p(x). r/2
and &u(x) =-Po(x). r/2, we associate the following
Faddeev-Popov (FP) Lagrangian with the $ - 0
limit of &op(x):

2 pp(x) = S„ri,(x)8"(u,(x)

Rspp(x) =X~(x)+Pop(x)+ Rpp(x), (2.18)

where it is assumed that M(x) has been eliminated
in favor of M'(x)+f. Fermions can be included in

Zzpp(x) in the standard way, and we shall have
occasion to do so in Sec. V.

+ 2 Tr (9„q(x)8 "&u (x) —ig&„q(x)[u& (x),A" (~')]},

(2.17)

where the fields q, (x) and &u,(x), a = 0, . . . , 3 are
anticommuting scalars (Faddeev-Popov ghosts).
In later sections of this paper, we will exploit the
fact that the ghosts decouple from the v(x)'s in the
Landau gauge. From Eqs. (2.6a'), (2.16), and

(2.17), we find the Landau-gauge effective La-
grangian

III. THE HIGGS SECTOR AS AN EFFECTIVE
LOW-ENERGY THEORY

In order to study the strongly interacting, 1-TeV
region through experiments which are done at en-
ergies E«1 TeV, it is necessary to find some
low-energy observable which is sensitive to the
heavy-Higgs-boson sector of the theory. The
problem is that there. are many quantities which
satisfy this criterion, and we have no guidelines
to help us determine which observable is most
useful as a probe of the heavy-Higgs-boson sec-
tor. To motivate the solution to this problem,
let's examine the typical behavior of the one-loop
corrections to an observable which depends on

M~ in the limit of M„approaching infinity.
In general, the one-loop corrections to an

observable will contain divergences which, due to
the renormalizability of the Weinberg-Salam
model, can be removed by adding counterterms
to the original, tree-level Lagrangian. In par-
ticular, the counterterms used to carry out the
renormalization program must have the same
form as the terms appearing in the original I a-
grangian; no new structures are required. Re-
normalization, therefore, amounts to a rescaling
of the bare fields and parameters of the theory
and does not result in any new physical effects.

However, if M~ is gradually increased and is
finally made to approach infinity, the renormalized
observable being calculated will grow in magni-
tude and ultimately diverge. In this sense, M~
acts as a regulator for the Weinberg-Salam mod-
el. Although the theory resulting from the re-
moval of the Higgs particle from the physical
spectrum is nonrenormalizable, it is reasonabl. e
to expect that, at one loop, the new divergences
can be removed by introducing a small number of
new counterterms into the theory. If the M~ —~
limit is taken in a way which keeps the SU(2)z
x U(1) symmetry of the theory intact, the con-
struction of the one-loop counterterms is limited
only by the fact that it, too, must respect this
symmetry. Furthermore, the cutoff dependence
of these counterterms is calculable, since the
counterterms must cancel the divergences which
arise when M~ . In contrast to the situation
in the case of the Weinberg-Salam model, the non-
renormalizability of the no-Higgs-boson theory
implies that some of the new symmetric counter-
terms will be different in form from the terms
already present in the tree-level Lagrangian.
Consequently, the cutoff dependence of the new
counterterms is, in principle, measurable. Once
the coefficients of the new counterterms have been
determined, we may reinstate the Higgs particle
by identifying M~ with the cutoff.
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'The strength of this technique' lies in the fact
that it enables us to systematically isolate those
observabI. es which are most sensitive to M„. Be-
ginning with the tree-level, no-Higgs-boson La-
grangian, we may determine, a priori, all possi-
ble symmetric structures which can be generated
as eounterterms for an I -loop calculation. As
will be shown in Secs. IV and V, the dependence of
the coefficients of these counterterms on M~ may
be found from a power-counting ana. lysis. Since
the counterterms will typically contain some of
the vertices of the original %'einberg-Salam the-
ory, the M~ dependence of some of the quantities
calculated in this theory reflects the presence of
the symmetric eounterterms. Furthermore, these
counterterms contain all the one-loop, heavy-
Higgs-boson effects. '

At the level of the Lagrangian of Eq. (2.6a'),
taking, Ms ~ (or, equivalently, X ~) means
that the potential

V(M'(x)M (x))= -'.~f-. Tr[M'(x)M (x)]+ (/. '/X'/2

acquires an infinite, positive curvature at its
minimum, determined by the SU(2)L x U(1)-invari. —

ant condition

M (x)M'(x) =M'(x)M (x) =f'. (2.14')

This implies that the scalar fields o(x) and 7i(x)
are constrained to lie on the four-dimensional hy-
persphere o(x)'+ (v)x'=f'. Imposing this con-
straint on the Lagrangian of Eq. (2.6a'), we find
that the no-Higgs-boson theory, obtained by taking
the limit Ms ~, is an SU(2)~ x U(1) Yang-Mills
theory coupled in a gauge-invariant manner to the
nonlinear o model. An interesting consequence of
this is that in the unitary gauge limit (ii(x) = 0), we
obtain the massive Yang-Mills theory'

R(x) = —4B„„B""—2 Tr(F„„F~')

+M~'W„(x)W;(x)+ zMx'Z„(x)Z" (x)
(3.1)

with M~= agf and Mx= aGf
It is important to note that within this frame-

work, the Higgs field o(x) is realized nonlinearly
by Eq. (2.14), and the gauge mesons obtain their
masses from the nonlinearity of the realization.
The SU(2)~x SU(2)a global symmetry of Eq. (2.14)
guarantees that the chiral symmetry of the La-
grangian of Eq. (2.6a') is broken only by the U(1)
portion of the covariant derivative, as before.
Since Eq. (2.14) is locally invariant under SU(2)~
x U(1), the gauge symmetry of Eq. (2.6a') re-
mains intact when we impose Mt(x)M(x) =M(x)M (x)
=f '. Consequently, the counterterms required to
renormalize the nonlinear theory must be con-
structed to be SU(2)~ x U(1) invariants. We indi-
cate how this construction can be accomplished in

the next section.

IV. CONSTRUCTION OF THE COUNTERTERMS

The construction of SU(2)zx U(1)-invariant
counterterms begins with the scalar field M(x).
By operating on M(x) with an arbitrary number
of covariant derivatives x)„, we obtain a set of
tensors, T a . , w. h. ich transform like M(x) under
SU(2), x U(I),

Qgo ~ ~ 0(80 ~ 0 Qge o ~

(4.1)

If we let M(x) M(x)v, in each of these tensors,
we obtain a second set of tensors which trans-
form according to the law given in Eq. (4.1). From
the elements of the union of these two sets of ten-
sors we ean construct a complete list of objects
which transform like M(x) under SU(2)z x U(1).
We will denote the members of this list by U z....
As an illustration, ~,M(x) and X) M(x)7', are two
tensors which obey the transformation law of Eq.
(4 1).

It is convement to build SU(2)z x U(1)-invariant
counterterms out of objects which are bilinears in
the tensors 1/' z... . A bilinear like V &...V z. ..
transforms eovariantly under SU(2)~, and is a
U(1) singlet

~Q@o ~ 0 ~ gP oo 'r ggy ~ 0 V QI/0 0 ~

(")'/ V Vt e i'(*&'/ (4 2)=e 0 go ~ ~ g po ~ 'o ~

Two typical examples are n M(x)7, M"(x) and
X),M(x)[&&M(x)] . Similarly, a, bilinear like
Vt„...V z... transforms covariantly under U(1),
and is an SU(2)~ singl, et,

V y+a ~ ~ & Ogy ~ ~ QI/ ~ ~ ~ +go ~ ~

—s i & 0(&) ~3 / V i'
V e -f

8O (x)Tg /2 (4 3 )

An object obeying this transformation law is
[S M(x)] M(x). If we include the SU(2)~x U(1)
singlet B„„,and +,„, which transforms covar-
iantly under SU(2)~ and is a U(1) singlet, we have
all the objects which can be used to build SU(2)~
x U(1)-invariant counterterms. A moment's thought
suggests that the way to construct these invariants
is to take the, trace of a sequence of bilinears like
V &...V~ ... and I'„„'s, or to take the trace of a,

sequence of bilinears like U „...U ~.... Either
type of trace may be multiplied by 8 „'s without
changing its invariant character. The imposition
of the SU(2)~ x U(1)-invariant constraint M(x)M (x)
=M (x)M(x) =f ' on these traces leaves us with the
SU(2)~ x U(1)-invariant eounterterms of the non-
linear theory.

In order to decide exactly which counterterms
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The authors of Ref. 7 deal with the dimensionless
scalar field U(x) =M(x)/f—, which is why D only
counts derivatives and gauge fields. In terms of
U(x), the Landau-gauge' nonlinear (NL) effective
Lagrangian is [see Eqs. (2.6a'), (2.16)-(2.18)]

Z~(x) = -,'B„„I3""——,
' Tr(-I"„,I'"")

+ ZoF(x)+ &„p(x) . (4.5b)

Implicit in these equations are the $- 0 limit, and
the constraint U(x)U~(x) = Ut(x)U(x) = 1. The quan-

tity n of Eq. (4.4) can be related to the number of

loops, L, appearing in a Feynman graph by noting
that f' essentially plays the role of a loop-counting
parameter in Eq. (4.5a). Consequently, the num-

ber of powers of f' associated with an L-loop
Feynman graph is

n= 1 —I + (Io —V~), (4.6)

where V& and I~ are, respectively, the number of
vertices and internal lines of the graph whose ori-
gin is So(x) [see Eqs. (4.5a) and (4.5b)]. Using the
fact that i~ —V~ ~ 0 (except when L= 0), we derive

D «21+2-x (4.7)

from Eqs. (4.4) and (4.6). The counterterms
which are relevant for an L-loop calculation can
now be classified by the quantities D, x, and n.

A number of rather obvious statements concern-
ing D, x, and n can be made. Because D only
counts gauge fields and derivatives, each of which
carries one spacetime index, Lorentz invariance
restricts D to be an even positive integer, or zero.
Since r indicates the cutoff dependence of. the
counterterm, it too must be an even positive in-
teger, or zero. (If r=0, the cutoff dependence is
either logarithmic, or trivial. ) Taking into ac-
count these facts, Eq. (4.4) allows us to conclude
that the parameter f always appears an even num-
ber of times (in counterterms or graphs).

The one-loop calculation to be presented in Sec.

are relevant for a particular calculation, we can
use a power-counting analysis developed by Appel-
quist and Bernard' and arrive at a set of relations
which link the detailed structure of a counterterm
(e.g. , its dimension, or its cutoff dependence) to
topological quantities which characterize Feynman
diagrams (e.g. , the number of loops in a graph).
Assuming that a typical counterterm is accom-
panied by n powers off', r powers of a cutoff A

(to be later identified with M„), and D gauge fields
and derivatives, dimensional analysis implies

D+ 2n+r = 4.

V requires, a priori, all the SU(2)z x U(l)-invari-
ant counterterms of the nonlinear theory charac-
terized by D «4. As will be seen there, the only
counterterms which are actually required are
those for which D= 2. However, to illustrate the
ideas outlined above, we construct all the SU(2)1,
x U(l)-invariant counterterms of the nonlinear
theory which are characterized by D = 0 and D = 2.
A future publication" will contain a complete list
of the counterterms characterized by D=4.

Construction of the D= 0 counterterms is limited
by the fact that only the scalar field U(x) may be
used. After imposing the constraint U(x) Ut(x)
= U (x)U(x)= 1, the only invariant left is
Tr f U(x)&, U'(x)]", where gpss is a positive integer.
Since this is a constant for any m, there are no
D=O counterterms for the nonlinear theory. A

quartic cutoff dependence can only accompany a
D = 0 counterterm, so we also conclude that there
are no one-loop quartic divergences in this theory.

The counterterms characterized by D=2 can only
contain two Lorentz indices, and they must be con-
tracted. This excludes the antisymmetrical ten-
sors B„„and I'~, from consideration. A detailed
analysis' indicates that the only independent D= 2

nonlinear invariants are Tr(u, U(x)[Q'U(x)]~},
which appears in i:a„„(x)[see Eq. (4.5a)], and

(Tr[B~U(x)w, Ut(x)] }', which is new. [Note that
the condition U(x)U (x) = U (x)U(x) = 1 is implicit. ]
Equation (4.7) tells us that at one loop these struc-
tures are accompanied by quadratic cutoff depen-
dence at most.

An explicit calculation is required to determine
the exact cutoff dependence of each of these two
structures. First, note that the structure
Tr(& ~ ( U)[x5)" U(x)] }contains a wave-function-
renormalization counterterm proportional to
B„w (x) ' 8"v(x), whereas the structure
(Tr[S„U(x)r,U~(x)]}' contains a wave-function
renormalization counterterm proportional to
B„m,(x)8 "g,(x). Let -iZ,'(q') be the first derivative
of the mass operator of p, (x), a= 1,2, 3. A calcu-
lation of this quantity in the nonlinear theory indi-
cates that it has a symmetric (i.e, , independent
of a) quadratic divergence. This divergence can
only be removed by a symmetric wave-function-
renormalization counterterm which, as we have
just seen, is contained in the structure
Tr(~ „U(x)[D"U(x)]~}. Hence, the cutoff depen-
dence of Tr(D~U(x)[K)~U(x)]'} is quadratic, while
that of (Tr[u„U(x)r, U~(x)]}' is logarithmic.

The important point to note is that although
Tr(S„U(x)[X)"(x)]t}has a quadratic cutoff depen-
dence, it corresponds to a rescaling of the origi-
nal nonlinear Lagrangian, and is, therefore, not
measurable. But the heavy-Higgs-boson effects
signaled by the logarithmic cutoff dependence of
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(Tr[5)„U(x)v,Ut(x)]j' are measurable, a.s will be
explicitly shown in Sec. V. The only D=2 coun-
terterms are, therefore,

z,(x)= —,
'

P, Tr[a „V(x)[u' V(x)]' j, (4.8a)

z,(x)= —,
'

P,f '(Tr [u„U(x)7,U'(x)]j'. (4.8b)

Before we end our discussion of these counter-
terms, it is interesting to note that since it is
characterized by D = 2 and y = 0, the counterterm
of Eq. (4.8b) must be accompanied by one power
of f'. It must, therefore, act to cancel a loga-
rithmic divergence of the nonlinear SU(2), XU(1)
theory which is proportional to f'. There is, in-
deed, a graph of the non1inear theory with one in-
ternal gauge meson line and one internal scalar
line which satisfies these requirements. In con-
trast, the nonlinear SU(2)~ theory studied by the
authors of Ref. '7 contains no such diagram, and,
in fact, there is no analog of the counterterm dis-
played in Eq. (4.8b) for that theory. The heavy-
Higgs-boson effects signaled by this counterterm
are, therefore, not present in the SU(2)z theory,
as we will see in Sec. V.

The remaining one-loop counterterms are char-
acterized by D=4, and they are at most logarith-
mically sensitive to the cutoff. In contrast to the
situation when D=0 and D=2, we cannot present
any simple criteria to limit the number of coun-
terterms and there is a large number of candi-
dates. Because we will not need these counter-
terms for the calculation of -Sec. V, we defer a
complete construction of them to a future publica-
tion. '

The SU(2)~ x U(1)-invariant counterterms contain
all the heavy-Higgs-boson effects of the theory,
and, as we have seen, the only mea. surable one-
loop M~ dependence is logarithmic. Motivated by

the fact that the ratio M~/M~ cos0 has been ex-
perimentally measured, we turn to a calculation
of the one-loop heavy-Higgs-boson corrections to
the natural relation M~/Mz cos8= 1 in the next
section.

V. HEAVY-HIGGS-BOSON CORRECTIONS .

TO A NATURAL RELATION

The measurement of thequantity p= (M~/M, cos6)'
does not have to await the production of the W

and Z mesons and a determination of their mas-
ses." Infact, pparametrizes the relative strength
of the neutral- and charged-current interactions
which occur in low-energy neutrino scattering ex-
periments, and has already been determined to
be 0.S81+0.037.' A calculation of the heavy-Higgs-
boson corrections to the natural relation p =1 of
the minimal SU(2)z &(1) Weinberg-Salam model is,

therefore, timely and may give us some insight
into the strongly coupled, 1-TeV regime described
in the Introduction.

In order to determine which eounterterms of
the nonlinear theory are responsible for the one-
loop corrections to the tree-level prediction p=1,
we will define p in terms of the zero momentum
transfer limit (q'-0) of the purely leptonic pro-
cesses v, + p, -e +v~ and v, +v„-v, +v„. At the
level of the Born approximation, the a.mplitude for
v, +v -v, +v is givenby

(5.1}

e Mz 1s t"e q 011m1t of » 1«erse prop
gator, and M ~ contains the currents for the ex-
ternal lepton lines. Note that q M ~q8 =0, so
that this result is gauge independent. In the same
approximation, the amplitude for v, + p, -v +e
18

(5.2)

a~(o) a'(o)
(5.3)

The function a(q') is defined by

m, „(q) =g„„a(q')+q,q„b(q'), (5.4)

where w, „(q) is the vacuum-polarization tensor of
a gauge meson. The ellipsis in Eq. (5.3) is meant
to represent the radiative corrections due to ex-
ternal lepton lines or vertices. The reason for
separating the corrections in this manner is that
heavy-Higgs-boson effects appear only in gauge
particle lines, since the Higgs-boson coupling to
leptons is proportional to the lepton mass which
we are assuming is negligible.

Although the calculation suggested by Eq. (5.3)
can be done quite easily in the linear theory, it is
interesting to see how the heavy-Higgs-boson cor-
rection can be found in the context of the formal-

where N ~ contains the external currents. If we
assume that the leptons are massless, q N q~=0
and Eq. (5.2) is gauge invariant. The ratio 2Ms/N~

yields the quantity p, with M~' and M~' the q'- 0
limits of inverse propagators. The use of elastic
neutrino scattering for the neutral-current pro-
cess is, of course, meant only as an illustration.

The tree-graph relation p=1 is ensured by the
SU(2)~ && SU(2)„chiral symmetry of the ungauged
scalar sector, as described in See. II. Since the
full theory is only SU(2)~ x U(1) invariant, this
natural relation receives finite radiative correc-
tions. Extending the definition of p given above
to a one.-loop calculation in the linear Higgs theo-
ry, we obtain
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Z,,( ) =-,'P,Tg~, U( )[~ U{x)]'),

Z, {) =-4P, /'[Tr[m, U( )~,U'(x)]j2.

(5.5a)

(5.5b)

Explicitly displaying those terms relevant to our
discussion, we have

ism presented in the earlier sections of this paper.
At one loop, all the counterterms characterized
by D~4 are, in principle, needed. But the D=4
structures which can act as corrections to gauge-
meson lines are &„„&'",Tr(E,„E""),B,„Tr
x[E""U(x)7,U~(x)], and(Tr[E„„U(x)r, U"(x)])'. These
only yield wave-function-renormalization pieces,
which are proportional to (q'g~„-q~q„) and vanish
as q'-0. Thus, the only relevant counterterms
are the D =2 structures constructed in Sec. IV,
which we list below.

2 2
16m' 4-n) ' (5.6)

where we have used dimensional regularization.
If we make the correspondence

2 MH—In4-n p.
' ' (5.9)

where p, is a typical Low-energy mass scale which

we take to be M~, we find that

inate the wave-function divergences in Z', (q') is
symmetric. As MH gets large, each of Z,'(q') and

Z,'(q') develops the same divergence, whereas the
new divergence arising in Z,'(q') is different. The
"extra" divergence in Z,'(q') can be removed by the
wave-function counterterm resulting from Eq.
(5.6b), thus determining P, to be

+—,s,v( ) ~ s'v(x)+ ~ ",2 (5.6a) or

M~2 3g ~
2 MH, an Oln

M', 3n M
2=cos 8 — ln + ~ ~ ~ .

2

(5.iO)

(5.ii)

—s ( )s" ( )+ ~ ~ . (5 sb)2

The coefficients p, and p, are determined by the
fact that they must cancel the divergences which
arise when MH becomes large. Thus, including
the counterterms of Eqs. (5.5a) and (5.5b), Eq.
(5.3) becomes

M 2 aw(0) az(0
M 'cos'8 + M ' M ' (5.7)

which indicates that only P, leads to a measurable
effect. As Mw-~, a (0) and a (0) both become
quadratically divergent, but in a "symmetrical"
way so that these divergences are removable by
the counterterm of Eq. (5.5a). That is why only

P, contributes to Eq. (5.V). We can also see this
in another way. The deviation of p from one is due
to the breaking of the chir al symmetry of the scalar
sector and, as noted in Sec. II, the & gauge field
is responsible for this. We therefore expect the
Z, and not the W, to be responsible for the cor-
rection to one in Eq. (5.7).

A powerful consequence of the SU(2)J. x U(1) sym-
metry-enforced counterterm structure is that we

may calculate P, completely within the scalar sec-
tor of the nonlinear theory, since Eqs. (5.6a) and

(5.6b} indicate that P, and P, act as wave-function-
renormalization counterterms for the Pr(x)'s Let.
-iZ, (q ) be the mass operator for v, (x), a = 1, 2, 3.
In the linear theory, the divergences in -iZ,'(q')
are independent of a. This must be the case be-
cause the counterterm which is available to elim-

'This is the correction we have been looking for.
Equation (5.10) indicates exactly how the heavy-
Higgs-boson sector effects a low-energy observ-
able. Unfortunately, as the general analysis of
Sec. IV anticipated, the sensitivity to MH is only
Logarlthm1c. Even lf we assume MH —1 TeV~ the
correction to one in Eq. (5.10) is only about 0.006,
so that it will be difficult to probe the heavy-Higgs-
boson sector by measuring p precisely. "

We have checked the process independence of
our result in the sense that, for zero momentum

transfer (q'-0), the counterterm of Eq. (5.5b) is
the only one which contributes to any neutral-cur-
rent process between leptons. All other possible
counterterms are proportional to (q'g„, —q q„),
and the only ones which survive as q'-0 are those
which renormalize the Z-y or y-y vacuum polar-
ization tensors. The one-Loop graphs which con-
tr&bute to these tensors are the same ~n the Lxnear
and nonlinear theories, indicating that the sur-
viving counterterms do not signal any heavy-Higgs-
boson effects.

The author of Ref. 13 calculates the Higgs-boson
contribution to p and arrives at a coefficient of.
-11&/24w (Ref. 13) instead of -9o'/24m in Eq. (5.11).
However, in.his definition of p, M~ and M~'are the
physical masses of the W and Z vector bosons,
respectively, and cos'8 —= 1-e'/g', where g' is
defined in terms of W decay (at a scale q'=Mw')
and e' is defined in the conventional manner. We
can account for his result within our framework
by noting that at q'=M~', the W wave-function
correction due to the counterterm structure
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Tr(E „E"")no longer vanishes, and must contribute
to the renormalization of g', and, consequently,
cos'8. In addition, M~' and M~' are renormalized
by the counterterms listed in Etls. (5.5a) and (5.5b).
The result quoted in Ref. 13 is thus calculable with-
in our formalism and indicates that the heavy-
Higgs-boson corrections to p are q' dependent,
which is not unreasonable.

VI. SUMMARY

In searching for a systematic description of the
sensitivity of the low-energy observables of the
minimal %einberg-Salam model to a heavy-Higgs-
boson sector, we discovered that it was very use-
ful to view this theory as a regulated version of a
nonlinear o model coupled to a pure SU(2)z && U(1)-
symmetric Yang-Mills theory. Within this frame-
work, the Higgs-boson mass M~ plays the rnle of
the regulator.

The key point of this procedure is that the count-
erterms needed to renormalize the divergences
which arise in the linear theory when the regulator
is removed are restricted to be SU(2)~ && U(1) in-

variants. By using power-counting arguments, the
counterterms appearing in an L -loop calculation
can be classified by their "dimension" D and cut-
off dependence ~. The regulator M„may then be
reinstated, and the counterterms used to locate
those observables of the linear theory which are
most sensitive to I„.

In the minimal SU(2)~ x U(1) Weinberg-Salam
model, we found that at one loop the only mea-
surable MH dependence was logarithmic. The
accessibility of the ratio p to present-day experi-
ments led us to consider the one-loop calculation
of the heavy-Higgs-boson corrections to the natur-
al relation p=1 as illustrative of the ideas pre-
sented above. As expected, the correction to this
quantity is logarithmically dependent on I„, and

rather small, even for MH approaching 1 TeV.
The conclusion is that it will be difficult to learn

anything about the heavy-Higgs-boson sector
through low-energy (E«1 TeV) experiments.

This paper has only given us an introduction to
the low-energy structure of the Weinberg-Salam
model. In fact, we should be able to completely
characterize the low-energy regime of this theory
by an "effective Lagrangian, " composed of the tree-
level nonlinear. Lagrangian and those counterterms
needed to renormalize it at one loop. This entails
the construction of all SU(2)~ && U(1)-invariant
counterterms which arise at one loop, and the
computation of their coefficients. We can then
use these counterterms to locate all the heavy-
Higgs-boson effects which arise in the Weinberg-
Salam model. Unfortunately, we will have to
await the actual production of the W and Z gauge
mesons in order to measure the remaining Higgs-
boson effects. We expect these to include correc-
tions to the numerous natural relations of the
theory. As an example, the ratio of the coupling
of the Z to two 8"s, and the coupling of the Z to
two left-handed leptons, is constrained to equal
cos20 at the tree level. At one loop, this natural
relation should exhibit logarithmic dependence on

M~ through the radiative corrections to the gauge-
sector coupling g~«. Presumably, this effect
could be measured in Z-decay experiments. We
might also expect to generate gauge-particle inter-
actions which are logarithmically dependent on M~,
and not of the standard Yang-Mills type. ' It might
be possible to measure these new interactions
through the scattering of gauge mesons. This pro-
gram is currently being pursued, and its results
will appear in a future publication. "
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