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Quark diagrams and the Q nonleptonic decays
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The quark-diagram model for nonleptonic two-body baryon decays is discussed and applied to the decay of the

0 particle. Current algebra is not employed, but the relation between the quark diagrams and current algebra is

explored.

INTRODUCTION

The &S =1 effective nonleptonic Hamiltonian
calculated originally by Shifman, Vainshtein, and
Zakharov (SVZ)' in the context of the four-quark
model, and by Gilman and Wise' in the context
of the six-quark model [the Kobayashi-Maskawa'
(KM) model], ha. s proved to be very useful in the
calculation of the S- and I'-wave amplitudes for
hyperon decays. 4'' In such calculations the effect
of the short-range gluons is taken into account
in the Hamiltonian by the use of quantum-chro-
modynamics (QCD) renormalization effects, and
the effect of long-range gluons (confinement ef-
fects) is taken into a.ccount by the use of the MIT
bag' wave function for confined quarks.

The effective weak Hamiltonian calculated in
Ref. 2 has the form'

II f f sin0, cos0, cos0,G~
eff

x (c,Q, +c,Q, +c,Q, +c,Q, +c,Q,), (1)

where 8,. (i =1,2, 3) are the three Cabibbo-type
angles in the KM model

Q, =d,.I's,.u,.I" u&+H. c. ,

SU(3) matrices normalized by the condition Tr
(X A. ) =25" and i and j are color indices.
(2) we have done. some Fierz rearrangement in

order to make some of the operators better look-
ing, and in order to simplify further calculations.
All the Q,. in (2) are normal ordered.

The coefficients C,. in (1) were calculated in

Ref. 2, and they are functions of the three Cabibbo-
type angles, of the 5 phase (the CP-violating
phase) of the KM model, of the quark-gluon cou-
pling constant o. evaluated at the subtraction point
p, and of some of the masses in the theory (as,
for example, m„m„m„M, and p, ). Some
numerical values of C, are presented in Table I
of Ref. 2.

Once the Hamiltonian has been fully determined
as in Eqs. (1) and (2), the following task is to
calculate the matrix elements of such a Hamil-
tonian. At the present time, the most satisfac-
tory approach is to use the soft-pion methods of
current algebra' as is done, for example, in Refs.
4 and 5. The main result from the soft-pion tech-
niques is the parametrization of the amplitude
involving a, pion in the following way:

a. (0)IB)

Q2 =dgI ~s)u.I qq~u +H. c ~

= d I LQ)'M)I f Is) +H. c. ~

= ——(B'l IF,', H„,(0)]lB) +P(q) +R(q), (3)

Q) =d I~s;u)I ~~.u) +d I~s(d)I ~zd).

+d&I +s&s&X „~s& +H. c.

=d,.I'"s,. q&I'„q& +H. c. ,

;q+ qr;" =(-P,;,.-,r„,.,.q"q,)

where I'~ =y "(1+y,), I'„=y "(1—y, ), X" are color

where I =94 MeV is the m decay constant and
where we denote possible pole terms in (3) as
P(q) and absorb into the rema. inder term R(q) any
contribution not included in the first two terms.
In a sense, this parametrization tells us nothing
since R(q) is unknown. However, we do know that
lim, „+(q)=0 and therefore it can be neglected in
the first approximation.

In the calculations made in Refs. 4 and 5 for
hyperon decays, the commutator term at the right-
hand side of (3) gives the main contributions to the
parity-violating (PV) S waves and the pole terms
P(q) give the main contribution to the parity-con-
serving (PC) P waves. In Ref. 4 the contribution
to R(q) due to the anomalous commutator term
was ca,lculated, and in Ref. 5 the equivalent se-
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para, ble contribution to R(q) wa.s determined. The
matrix elements of the commutator and of P(q)
were evaluated in Hefs. 4 and 5 using the MIT
bag' wave function for hyperons formed from va-
lence quarks in their ground states.

QUARKDIAGRAMS

The soft-pion method for calculating hyperon-
decay amplitudes is very useful in order to calcu-
late the first two terms on the right-hand side of
Eg. (3), but unfortunately it tells us nothing about
the third term R(q). One way to calculate several
contributions to R(q) is to use the quark-diagram
method. ' If we neglect final-state weak inter-
actions" and assume that the ground-state hy-
perons are formed only of valence quark, then all
the possible quark diagrams that can contribute to
nonleptonic baryon decays are exhibited in Fig. 1.
Of course, we are working under the approxima-
tion that no gluon exchange is occurring between
quarks and the only gluon contributiori that we are
taking into account is the effects of the leading
logarithms from QCD that renormalize the weak
Hamiltonian.

From the five diagrams in Fig. 1, the easiest
one to calculate is l(e); we calculate it by using

=Fog„(B-B')q"u(B' )y„(1 +y, )u(B) . (4)

Notice that in the limit q-0 this contribution va-
nishes, so it will contribute to R(q).

If we employ the assumptions which justify the

appearance of the short-distance expansion in the
derivation of the effective nonleptonic weak Hamil-
tonian (1), we can cast Fig. 1(d) in the form im-
plied by Fig. 1(e). The W boson is taken to be so
massive that its propagator is shrunk to a point.
The ensuing four-fermion vertex can be reordered
by a Fierz transformation to yield a factorized
structure that will give a contribution that is pro-
portional to the contribution given by 1(e). For
example, for the particular case when only left-
handed currents are considered (Q„Q,Q,), the
color structure of such currents will imply that the
contribution from Fig. 1(d) is —, the contribution
from Fig. 1(e).

fn the limit q-0, only Figs. 1(a)-1(c)are non-
zero, so in our approximation they are the ones
that might contribute to the first two terms on the
right-hand side of Eq. (3). As an aside, we note
that the resemblance between the baryon pole dia-
gram in Figs. 2(a) and 2(b) and the quark diagrams
in Figs. 1(a) and 1(c) is striking; this can be seen,
for example, in Fig. 3 where the comparison be-
tween Figs. 1(a) and 2(a) is made. As can be seen
from the figure, the weak vertex of the baryon
pole corresponds to the 8' exchange in the quark
diagram, and the strong vertex corresponds to
the creation of a pair by the vacuum in the quark
diagram. Similar comparisons can be made be-
tween Figs. 1(b) and 1(c) and the pole diagrams in

Figs. 2(a) and 2(b).
The graphical analogy that we have indicated in

Fig. 3 can also be developed in an analytical way,
as is done for example in Ref. 11, where the mi-
croscopic equivalent of the baryon poles is de-
rived by the use of Wick's theorems in field the-
ory. Because such an analysis has not been pub-

gll ~ Bl
S

(c) (b)

(e)

FlG. 1. Quark diagrams that contribute to nonleptonic
bvo-body final-state baryon decays. FEG. 2. Pole diagrams.
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lished, I will, with the kind permission of the
author, reproduce here the highlights of the deri-
vation.

P(q) in Eq. (3) can be written as'

rn, ' q')-
P(q) =q~-

F m,

x d4ye"~ ' TA,. y0~0

where the term p(q) will vanish as q-0 unless
there is a pole in the integra, l at q =0. Let us
study the m amplitude (A', =uy'y, d) with the sam-
ple Hamiltonian Q, . Using Wick's theorem to
reduce time-ordered products we have

I

I

I

gll
I

I

I

I

I

I
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I
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I

FIG. 3. Graphical relationship between quark and pol.e
diagrams.

T(A, ,( y)H~(0)) = T(:iy"y,d::dI'~uu I'„~s:)

=:u(y) y~y, d( y)d(0) I'~~u( 0)i( 0)I'„~s (0):

+:~(y)y'y, &o
~
T(d(X)d(0))

~

o) I',"~(0)~(0)i'.,~ (o):

+:~(0)r,"s(0)Z(0)1„,&OI T(~( )~(y))
I

) y'ysd(0):

+(o
~
T(:~(J)y'y, d(X)::d(o) y.y,~(0):) i o) ~(0)1',"s (o), (6)

where the vacuum expectati. on values of the time-
ordered operators above are the Feynman pro-
pagators S (y). The second term in the left-hand
side of Eg. (6), when sandwiched between baryon
states, describes the weak Hamiltonian acting at
x =0, the baryon propa. gating as a three state to
x =y, where one of the quarks interacts with the
axial current. The diagrammatic picture of the
first three terms is given in Figs. 4(a)-4(c), re
spectively. They are the microscopic equivalent
of the baryon poles and they very much resemble
the quark diagrams in Figs. 1(a)-1(c). The fourth
term is represented in Fig. 4(d).

To handle the fourth term, the PCAC (partial
conservation of axial-vector current) relation and

the Lehmann-Symanzik-Zimmermann reduction
can be used in reverse to prove that it is equiva-
lent to

(w') dy„y,u
)
0)(B

i.e. , the fourth term is related to Figs. 1(d) and

1(e) and it belongs therefore to R(q) in Eq. (3) and
not to P(q). Because of the former arguments
we are going to assume from now on that the quark
diagrams in Figs. 1(a)-1(c) are related to pole
diagrams, and will give contributions to P(q) in
Eq. (3) and the diagrams in Figs. 1(d) and 1(e) will
give contributions to R(q) in (3). Finally, notice
that Fig. 1(d) can be related to the K pole diagram
in Fig. 2(c). Therefore, our conclusion is that

Hw Hw

Hw Hw

(c)

FIG. 4. Microscopic equivalent of the baryon poles.

the quark-diagram method as described here can
give us information about the pole terms and the
remainder terms in Eq. (3), but not about the
commuta, tor term.

Next, we will apply this model to the decay of
the 0 particle. "'"

As can be seen, our analysis will coincide with
the analysis made in Ref. l2 for the pole terms
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and it will improve our understanding of the ana-
lysis made for R(q) in the same reference

NONLEPTONIC DECAYS OF Q-

tirely here. Then the amplitude & will have con-
tributions only from quark diagrams as in Fig.
1. In order to draw such diagrams seven pieces
of the Hamiltonian must be considered; they are

Jn general there is only phase space available
for the following &8 =1. nonleptonic weak decays
of 0 into two-body final states.

n- -=-pn-, g- -=--~p, g- -=p*m-

0 AE 0

H, (LL) =Q,
H, (LI ) =Q, ,

H, (LR) =Z; r", s,.u, I,. u. „
H (LL) = d,. I' s, d&

I' dj, (IO)

From those we will consider only the first three
decays, where a spin-& particle (a Rarita-
Schwinger field) decays into a spin-2 particle
and a pseudoscalar meson. The invariant ampli-
tude M for those decays [fl(p)-B(p')+q)(K)]
can be mritten as

(p )(-B.r.&)U,(p),
gX

m Q
(7)

where U„ is the Rarita-Schwinger vector spinor
field, u is a Dirac field, & is the PC amplitude,
and A is the PV amplitude.

From (7) the decay probability is

I P I '[IB I '(P,'+ m') + IA I2(PO —m')]
I2nm„

where

m 2 /2 m
and IPI'=P"-

2m Q

(8)

where the commutator term is given by

(B l[F,'. , H.„(PC)] ln }
=-2&B'IH. ~ (PV) IB)+«q (9)

The first term in (9) is zero due to the SU(3) of
flavor symmetry' (a calculation of this term using
the MIT bag wave functions will also give zero
due to the orthogonality of the spin integrals).
The anomalous commutator term (e') can be cal-
culated here and neglected in the calculation of
R(q), or it can be calculated as a contribution
to R(q) and be neglected here (double counting
must be avoided). We are going to use the latter
approach, neglecting the commutator term en-

As we ean see from (8), the PV amplitude IA I'
is suppressed by a phase-space factor of the order
of 10 ' compared with the PC amplitude IB I'.
For that reason we will concentrate on the cal-
culation of IB I, under the assumption that both
amplitudes are of the same order of magnitude.

According to E(I. (3), B is given by

B = &B(p')«(@IH. , (PC}I
& (p)}

=- '
&B'l[Fl, H.„(PC)] I

"&+&(q)+R(q)

H, (LR) =d, I"s, djI' „dj,
H, (LI.) =d, I"s, sj I"„s,,
H, (I.R) =d,.r,"s, r, r,„.r, .

The operator Q,' involving &A matrices does not
need to be included here due to the relationships
(Q', ) =,' (Qg for factorization diagrams, ' and

(Q()}= —-', (Q,} for pole diagrams. '
Now in order to evaluate the invariant ampli-

tude, all the possible quark diagrams must be
drawn between the initial and the final state under
consideration. Then we must evaluate such di-
agrams for the PC Hamiltonian only. In Fig. 5
we have the three possible quark diagrams for the
decay @ -m "'. The values of those diagrams
together with the results for the other decays is
presented in Table I, where the notation" is

g=g„„p~ =13.5,

N N 2,
( ), ( )

Jj(5 )g)(6 ))(
A (4v)2 Jo )j ~o 2

(g e )1/2

x (u-u, s-u),
jj„')j, , j ()„)j,(i!,) j,(il„)j (il, ))

& (u-u, s-u),
3,. = ((d(2 —m,.2R),

(d,.+m,.B
GO ~ —m 8

¹
=

R2(2(d, 2 —3(d~m; R) sin25,. '

I„*and I~ are the same as I& and I» with the
replacement u s. B is the bag radius, jp and

j, are spherical Bessel functions, and ~ is the
frequency for the quark inside the bag.

The entries in Table I with the integrals ~~,
I~, I„*,I~ belong to pole diagrams and were eval-
uated using-the MIT bag wave function, while the
strong coupling constants mere determined by
using the SU(3} of flavor symmetry. The entries
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H, (LL)

HR (LL)
H~(LR)

Our final numerical results are presented in
Table II. The entries in the table should be com-
pared with the following experimental results":

~B(-'7r )
~

=22.19 && io ',
II'(- ~')

I
=is isx 1O',

(II(~&'& )
)

= O'I. 'I»& 1o '.
The six entries for h in Table II are for the six
sets of parameters presented in Table I of Ref. 2.
As we can see the agreement with the experi-
mental results is close for several sets of the
parameters.

Hg(LU
H~(LR)

FIG. 5. Quarkdiagrams for the decay & -™om.

with the parameter I belong to factorization di-
agrams. Quark masses in Table I refer to current
quark masses that are different from constituent
quark masses in Eq. (11).

If we use the entries in Table I with the SVZ
Hamiltonian' we get results consistent with those
in Ref. 12. Instead, we will use the Hamiltonian
in Ref. 2, and also the following parameters:

/a'/o&&=-'fw„[o &
=

where & =2.15 is a parameter that measures the
form factor ( ~S, A' ~Q & =aF,/m, . The con-
stituent quark masses we use in order to evaluate
the bag integrals are m„=m„=O and m, = 340 MeV.
The current quark masses we use are m„=5
MeV, m„=7.5 MeV, and m, =150 MeV; the re-
normalization parameter Z takes the value' 0,48.
The Cabibbo-type angles are such that cos8, =1,
and sin8, =0.23. For those numbers the bag in-
tegrals are

I„=0.95 x10 ', I =1.15 x 10 ',
3I~+ I~~ = 3.26 x 10-'.

CONCLUSIONS

By assuming that the quark diagrams in Fig. 1
can contribute only to the noncommutator terms
in Eq. (3), and that Figs. 1(a}-1(c)correspond
to pole diagrams, we have obtained a very con-
sistent scheme which is successful in evaluating
nonleptonic decays for ~ .

It is our position that the restrictions we have
imposed in the model, especially the one that
identifies Figs. 1(a)-1(c}with pole diagrams,
are due to our lack of mathematical tools in order
to evaluate more precisely the quark diagrams.
It could be that the quark diagrams also give in-
formation about the commutator term, but then
a more sophisticated technique must be developed
to evaluate them before reaching final conclusions.

The most pleasing aspect of our calculations is
the way we handle the factorization diagrams,
especially for H;(LR). As can be seen from Table
I, not all the entries under the columns H;(&R)
are enhanced by the mass ratios, only the ones
associated with Fig. 1(d) are so enhanced. Another
point is that such enhancement is different for
H, (LR) than for H, (LR), due to the fact that differ-
ent quark masses are present.

The calculations in this paper are similar to the
ones presented in Ref. 12. Not only are the quark
dynamics the same in both papers but our Table
I (with a few changes) can reproduce the numbers
in Ref. 12. If this is the case, then why are our

TABLE I. Structure of the quark diagrams for the ~ decay. The factors are defined in Eq. (11).

Decay H,LI.) H2(LL) H2(LR). HBLL) H3(LR) H4{LR)

~2(=-~p)

(Ap~ )/~6
—2g(I~+ Ig)
(m —m A)

2g(I~+ Ig)
(m= -mA)

-2m~ IZ2 2

3(m„+mg) (m„+m, )

g( I~ IB)——
(m~ —mA)

m IZ-4I/O I+-
3m„(m„+m,)

4g(3I Q + I )f'
)

3(m g- m~+)

4g(3I~+ IJ3 )
3(m g- m=*)

2g(sl~+ Ig}
3(m g- m=+)
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TABLE II. Numerical study of the decay amplitude )8 ) for 0 decays. All the entries are in units of 10 ~. The
values for C& are taken from Table I in Ref. 2.

Decay

("-p~-)

Mode

Factorization
Pole
Factor ization
Pole
Factor ization
Pole

~ =0.75
m&=15 GeV

10.44
0.24
1.96
0.17
0.0

25.59

~ =1.00
m)=15 GeV

11.68
0.43
3.06
0.30
0.0

28.59

12.90
0.62
3.80
0.44
0.0

3:1.22

10.38
0.24
1.92
0.17
0.0

25.34

~ =1.25 ~ = 0.75
m]=15 GeV m~=30 GeV

~ =1.00
m&=30 GeV

11.10
0.43
2.84
0.30
0.0

28.35

~ =1.25
m)=30 GeV

12.82
0.61
3.75
0.43
0.0

30.98

final numbers not as close to the experimental
results as the ones obtained in Ref. 12? First,
by using the more realistic set of coefficients C,.
in Ref. 2 rather than those in Ref. I, we find that
the contributions coming from the left-right op-
erators Q, and Q, are not as large as we would
like them to be. In Ref. 2 not only is the calcula-
tion done in the six-quark model, but the sub-
straction point I is not required to be as small
as in Ref. I. Second, by using the renormalized
quark masses instead of the unrenormalized ones, '
we pick up an extra factor of ~' in the enhance-
ment coefficient for 8,(I ft). This. will lower the
contributions from those terms by about a factor
of 4. Finally, some of our bag integrals are a
little smaller than the ones calculated in Ref. 12.
Because of the first and the last reasons above,
our pole contributions are smaller by about a
factor of 10, and because of the first two, our
factorization contributions for Q, and Q, are
appreciably smaller. Therefore, our conclusi. ops

here are similar to those presented in Ref. 4:
The inclusion of the left-right operators tends to
improve the results, but the values of the en-
hancement coefficients C, and C, have to belarger
(by about a factor of 10) in order to have a good
agreement with the experimental results. Here,
as in Ref. 4, it may well be the case that the pole
model, at least in its present form, is unable to
adequately represent the experimental situation.

We hope that the analysis presented here serves
to provide a deeper insight in the evaluation of
the so-called factorization diagrams, and to im-
prove our overall understanding of the evaluation
of matrix elements.
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