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General form of the p energy spectrum in charged-hyperon P decay
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We have computed the radiative corrections to the P energy spectrum in the semileptonic decay of charged
hyperons. Strong-interaction and intermediate-vector-boson effects on the electromagnetic corrections are retained

in general by extending an approach that Sirlin introduced for neutron decay. Our result is quite accurate. It is valid

up to corrections no larger than a few tenths of a percent. It is suitable for performing experimental analysis in a
model-independent fashion.

INTRODUCTION

With the advent of hyperon beams, experiments
that measure the energy spectrum of the electron
or positron emitted in the P decay of charged
hyperons can be performed. The analysis of such
experiments will require a knowledge of radiative
corrections. Our aim in the present paper is to
obtain a theoretical expression for the energy
spectrum of the electron or positron that includes
the radiative corrections to first order in &, the
fine-structure constant, and that is as general as
possible.

There are several problems in computing those
radiative corrections. First, they are divergent
in the ultraviolet, second, they are affected by
the strong interactions of the hadrons and the in-
termediate vector boson of the weak vertex, and
third, the mass difference between the two had-
rons involved is such that the four-momentum
transfer q cannot be neglected. The first prob-
lem may already be solved by using a gauge-
theory model. The second problem requires a
deep knowledge of strong interactions which is
not yet available. The third one renders the first
two more difficult. One is faced with a compli-
cated situation. Choosing some particular gauge-
theory model and making specific hypotheses about
strong interactions does not really solve the prob-
lems. An experimental analysis based on some
models for radiative corrections only produces
experimental numbers for quantities of interest
that are model dependent, and that would not guide
or even misguide if used to cheek predictions of
theoretical calculations based on different models.
What is desirable is that the experimental analy-
sis be performed without bias in favor of or
against any model.

There is one approach that meets this require-
ment. It was proposed by Sirlin for neutron P

decay. It consists of separating a finite model-
independent part from the most general form of
the radiative corrections within the V-A theory,
allowing for the effects of strong interactions and
the presence of an intermediate vector boson with
all generality. We shall follow this approach to
handle the radiative corrections in the P decay of
charged hyperons. We shall end with an expres-
sion for the energy spectrum of the P that is very
accurate and can be used in performing unbiased
experimental analysis.

In Sec. I, we discuss the separation of the mod-
el-dependent part in the virtual radiative correc-
tions and we compute the finite model-indepen-
dent part. In Sec. II, we give the form of the
model-dependent part and we show that effective
form factors can be introduced. In Sec. III, we
study the bremsstrahlung contribution. In Sec. IV,
we show that if hard photons can be experimentally
discriminated then there is no contribution from
model-dependent terms in the bremsstrahlung
part. Finally, we devote Sec. V to collecting our
results to derive a formula for the P energy spec-
trum. After discussing it, we give a few sugges-
tions on how to improve an experimental analysis
and on how theoretical predictions could be better
compared with the data.

I. GENERAL FORM OF THE VIRTUAL RADIATIVE
CORRECTIONS

For definiteness, we shall study the radiative
corrections to order ~ for the process

Z fl8V~

but our calculations will be valid for the P decays
of other charged hyperons. The uncorrected tran-
sition amplitude is

Mp —~(n ~
J„~Z )u, O„v„.
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The four-momentum vectors of Z, n, e, and &, are p&, p2, l, and p„, respectively. 4„stands for both
the vector and the axial-vector currents and O„=y„(1+y,). The hadronic part of Ma is~

(viz, Iz'&—= ~N'„(p&, p2)u =u, fi(q )&'„+ M v„,q„+ M q„+ gi(q )Y +
M s„„q„+ M q &'s)e

f24 ) f34') 2 g24') @~4')

(2)

Here q=pq-P2 is the four-momentum transfer. Since the electron mass is very small, the terms fq and

ge can be ignored. The q„ that accompanies them will become a factor of m when it is applied to the lep-
ton covariant and the Dirac equation is used. Their contribution is then very much suppressed. We shall
drop contributions proportional to m/Mq.

The virtual radiative corrections to ~0 ax'e given by three amplitudes. The steps in their derivation are
the same ones as in Ref. 2. It is not necessary to repeat them here. The resulting expressions are

2l, —y„k' &„(pl)p2)(2pg, —k,); g

v2 4m'i

M2 = s. " „„(Pg,p2)uc I d k &„„(k)u, 'g g" " . ", (I'+ m)O~v„,
Gp t'

g (2l, —y„P)f(21„—ky„)
Smi 2 2m k -2L ~ k+ig

M3 ~3 ™3— 3. +~g(PgpP2)ucu~Ogvp ~ d k&,„(k), ' . , " +M~ .Gv — — t 4 (2pg-k), (2pg-k)„
Smi 2 k —2p& k+ &&

k is the virtual-photon four-momentum, the pho-
ton propagator in the Landau gauge is

( )
g„„—k„k„/(k —& +is)

PV

~j, contains all the contributions of the vertex
form, i. e. , when the photon goes from the elec-
tron line to any hadron line or to the intermediate
vector boson. All the model dependence due to
the effects of the strong interactions and the in-
termediate vector boson are contained in the ten-
sor +~)t,

"& P "'=k"
2p

' k';. "'& P "
1

k +2P2 i+i& '

In this expression, the first term corresponds
to graphs where the photon emitted by the electron
is absorbed by the fully dressed Z, the second
one corresponds to graphs where the photon is ab-
sorbed at the dressed weak vertex, and the third
term corresponds to graphs where it is absorbed
at the dressed neutron. A part that is independerit
of the details of strong interactions and the inter-
mediate boson has been separated in M~, it is
free of the ultraviolet divergence and it contains
the infrared-divergent contribution in this type of
vertex graphs. We denote this part by ~~.

Following th6 reasoning of Sirlin, our tensor
T»(pq, p2, k) is "regular" as k-0 and is trans-
verse in the sense that

k„T„),——0.

These two properties follow from the essential
differ entiability assumptions on the electromag-
netic vertex functions, which can be made plausi-
ble by a judicious use of the generalized Ward
identities for them.

~2 comes from the electron wave-function re-
normalization. M3 corresponds to graphs where
the virtual photon is emitted and reabsorbed by
the hadron lines. It is split into two contributions.
~3 is a convection-convection contribution that
arises from grayhs where the photon is emitted
and reabsorbed by the incoming Z. It contains the
infrared divergence due to the hadron lines. All
other contributions that are not infrared divergent
are in M3. Its general form is just like the form
of Mo.

The model-independent part in the order-& vir-
tual corrections is the sum of ~q, M2, and M3.
It can be checked that it is gauge invariant, finite,
and contains the infrared divergence.

Our expressions ~q, ~2, and M3 formally match
the corresponding ones of Ref. 2, except that our
W~(Pg~ P2) is no longer restricted 'to q being negli-
gibly small, q = 0. The reason for this is that the
separation procedure is valid even where q cannot
be ignored.

I et us now concentrate on the model-indepen-
dent part and leave the model-dependent one for
Sec. II. Ii'„(pq, p2) is given by Eq. (2). The form
factors that appear there are independent of k, so
that the integrations over k can be explicitly per-
formed. D enoting by M„ the model-independent
virtual radiative correction to be added to Mo, the
result is
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M„=M, y(Z) +M„@'(Z),

where

Q(&) = —
~

—tanh P 1-ln ———(tanh P)
o' /1 i X 1

~ tp m 2p

—:.(-. )--:. (:—:)
1 g Mg -MgE(1+P ) 3 Mi+ —tanh P + —ln
2p d 4 m

——,",——,
' i.(,'-') i.( ) i.:-t I,

(&)

h-i~(~ ~P')~ Md ) (Mi)

(8)

We have used the following notation. '

-Eel
2E '

d =M1 —2M1E,

P —l

higher order in these momenta will be suppressed
twofold. First, because of the factor of &, and

second, because although the energy release in
hyperon decays is noticeable it is not large enough

to give an important contribution to the radiative
corrections to higher orders in q and l. Apart
from this approximation we shall only exploit the
relativistic covariance of T».

We can always write the lepton covariant in the
second term of Eq. (3) in the form u, o,v„, after
relabeling the indices. After the integration over
the virtual-photon four-momentum k, we must
end with a one-index tensor which in general will
be function of the available four-vectors, namely,
p1, p2, l, and the y matrices. In the case of Ms
we shall also have a one-index tensor but this
time a function of p1, p2, and the 'Y matrices. The
model-dependent part is

Mf + Mq —— " u„T (Pi, p2, l)u u, o v„.
7l' V2

Within our approximation, the form of T, given
by I orentz covariance is

b C d e
Qfl ~)ting gff ag)t + Ogg g ll + o)tlat lg + g)t +

l = ~1~ is the three-momentum of the electron and
& is its energy. & is the infrared cutoff. I is the
Spence function. The amplitude M~, is

G~
Mp ——~u„W, (Pg, P2)ucu, P'qO„v„.

b' c'
4 M +)i,P Qg M +xP lg

1 1

d e+ Qx+ lx ~5 +c '
1 1

(9)

In these results we have neglected m/Mq, but
have kept rn otherwise, especially where it leads
to mass divergences.

II. CONTRIBUTIONS OF THE MODEL-DEPENDENT
PART OF THE VIRTUAL CORRECTION

In the virtual radiative corrections, the contri-
butions that depend on the details of strong inter-
actions and of the intermediate vector boson are
all contained in the tensor T„„(pq,P2, k) which
was introduced in Sec. I.

%hat we propose to do now is to exploit as far
as we can the general properties that &» has,
avoiding involving ourselves with any specific
model. At the end of this section we shall see
that effective form factors can be introduced such
that the theoretical formulas to be compared with
experimental results are general and not biased
by any model. Those formulas would then be use-
ful in performing and finishing an experimental
analysis.

The only approximation we shall make is to con-
sider the contributions of T» up to first order in
the four-momentum transfer q and the electron
momentum l. The contributions of second and

We have kept terms that are first order in q and
l only. The coefficients a, b, etc. , are Iorentz
scalars functions of the variable p, l=- (pq+ p2) l

only, that is,

a=a(p, l),

b =b(p, ' l), etc.

One can form other combinations in Eq. (9), but
the Dirac equation and y-matrix identities allow
us to reduce them to the form given. To have
form factors of the same dimensionality, we have
used the same normalization as for the form fac-
tors in Mo. The same argument given by Sirlin
can be followed here to show that there are no
contributions of order 1/l, instead there will be
terms of logarithmic order in E and rn. There is
no need to reproduce this argument here, since it
can be traced in exact parallelism to the one of
Ref. 2. It is this argument which permits the
above normalization.

Since M1+M3 must be added to the uncorrected
transition amplitude M0, we can absorb a, b, d,
a', b', and d' into fq, f2, fa, gq, g2, and gz, re-
spectively. In addition, the terms e and e' in Eq.
(9) can be fused into f3 and g~, because the l~ that
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goes with them can be replaced by q„after it is
applied to the lepton covariant and the Dirac equa-
tion for the antineutrino is used. Only the terms
c and c' seem to stand by themselves. It turns
out that they can be absorbed into f2 and g2, re-
spectively.

To see this, let us consider their contribution
to the transition probability. It is convenient to
make the replacement I, = —,'q„+ —,'l„——,'p„„. Then
we can absorb —,'c and —,'c' into f2 and g2, respec-
tively. In our approximations, the terms mith
—,'l, ——,

' p„„will contribute to the transition proba-
bility through interference with the terms with f2
and gq in Mo. Performing the trace calculation
after summations over spiris, we get

2M2M, [Re(g2c*)(E &„)—Re(g~c'*)(&+ &„)]l p„.
(1o)

~„ is the antineutrino energy. The interference
terms with fq are of second and higher order in q.

Working out the trace and spin summations for
the uncorrected transition probability, one of the
contributions is

4M2M1[ &e(graf~*)(& - &.) -&e(g2g2*)(&+ &„)]& P, .
(»)

A common factor to expressions (10) and (11) has
not been displayed. We do not give the full ex-
pression for the uncorrected transition probabi-
lity now, because it will be given later on in Sec.
V. We invite the reader to inspect it there. The
important point to notice is that the other contri-
butions of fq and g2 to Eq. (11) are all of second
and higher order in q. This fact and the form of
Eq. (10) allow us to absorb the remaining —,'c and
—,'c' into f2 and g2, respectively. The effective
form factors are then

y'(q', p, f) =X(q')+ —,.(1 p,),

g((q', P ' 1) =g~(q'}+ -„~'(1 'P.},

f2(q }=f (q )+ —&+ —c
Q Q

m m

g'(q') =g (q')+ —,~'+ —, '

y,'(q') =y, (q2) + —d+ —e,

g2(q }=g2(q') + —d'+ —e'.

Inaccordance with our approximation, b, c, d,
e and their primed counterparts can be taken to be
constant. For completeness, we have also given

fq and g,', but as we explained before, their con-
tribution to the electron energy spectrum mill be
too small, and can be neglected.

To summarize„we have shown that the model-
dependent part of the virtual radiative corrections
can be handled by defining effective form factors
in Mo. From nom on we shall take for Mo the
'same expression of Eq. (1}, except that each form
factor mill be replaced by the corresponding
primed one of Egs. (12).

III. INNER BREMSSTRAHLUNG

The p decay of & will be accompanied by photon
emission also and, thus, it is necessary to include
in the radiative correction an inner-bremsstrah-
lung part. As is well knomn, the infrared diver-
gence in the virtual part will be canceled by the
infrared divergence of the inner-bremsstrahlung.
We shall restrict our calculation to the case when
only rather soft photons are undetected, i. e. , we
shall assume that the experimental setup is such
that hard photons can be detected and separated
from the proper P decay processes This .restric-
tion need not be a drawback of our calculation. As
a matter of fact, if we computed the bremsstrah-
lung contribution without allowing for a cutoff for
the hard photons our calculation might not be di-
rectly applicable to fine experiments, where a
provision has been made to discriminate against
energetic yhotons.

If only photons with energy uy to a certain LR

are undetected, we shall assume that this Ak is
very small compared to the mass of either of the
hadrons involved in the decay process. Typically,
hk should be around a few MeV, 4 say. It may
be that in a given experimental setup bk is not
unique, it may depend on the direction of emis-
sion of the photon. We shall assume that, if that
is the case, the range of values of bt is such that
any of the allowed values is still very small com-
pared to the hadron masses. Then, such an angle
dependence will give a negligible contribution to
the bremsstrahlung and can be ignored. bk would

represent an average cutoff.
The bremsstrahlung contribution is also aff ected

by the details of strong interactions and the inter-
mediate vector boson. This is not the case when
the momentum transfer to the leptons is small
enough to be neglected. In our case we cannot
ignore q and, therefore, we must consider the
model-dependent contributions. We are again
faced with a complicated situation. It can be han-
dled in a similar way as in the virtual correction.

%'e shall proceed to perform a separation of the
bremsstrahlung amplitude into tmo parts. One
will contain the infrared divergence and will be
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model independent. The other one will contain all
of the model dependence. The separation is ac-
complished following the same steps of the virtual
case. We obtain the following amplitude'.

2l ~ 2~ p&-~ k
M, =eM, ~ +

2l ' k+ ~'+ iE ~ —2pg
' k+ie

+ ~ u„Wx(Pq, P2)ucu, . 0!,~„' 2l k+i&

eov-+ ~ 1C„(&11T11!,)QcBqO!!'U„

=-[1]+[2]+[3].
The coefficient e is the electron's electric charge,
&), is the polarization four-vector of the photon,
and k is its four-momentum, ' otherwise, we have
used the same notation as in Sec. I. The first
two terms are model independent, the last one
contains all of the model dependence. The form
of T~!,(pq, p2, k) is exactly the same one as in Eq.
(6), except that now k corresponds to a real pho-
ton. We refer the reader to the discussion after
Eq. (6) for details on T, ~, except that one must
keep in mind that that discussion should now be
limited to emission of a real photon.

In the remainder of this section we shall study
the model-independent contribution, leaving the
model-dependent part for Sec. IV. We shall ex-

ploit the restriction ~k«Mq, M2. The phase-space
factor and the matrix elements depend on k, but
whenever such a dependence can be put as terms
with a factor 1/Mq, that is as k/Mq, it can be
dropped off. This simplifies the calculation a good
deal. We must square the sum of the first two
terms in Eq. (13), sum over the different spine
and the photon polarization, and integrate over the
photon direction k and energy ko. The upper limit
of the ko integral is not simply M, because the
real upper limit may be smaller than L&. It can
be written as

ko —(E —E)h,

where

Mg —M2 +m Mg -M22 2 2 2 2

2M( 2M(

n is such that if (E -E) ~ hk, r =1, and if (E„
—E) &rk, then b = nk/(E E) T-hus, . r is some-
thing like a step function.

The contribution to the transition rate due to
the model-independent part of the inner brems-
strahlung is

Gy lE(E —E)2dE
(1 2E/M P (IMOI ~+ IMo"

I
e')

where

u 1 g E~ —E (E~- E) 6) 1 6 2(Em- E)D'8= — —tanh p-1 ~ &~+ z i —+ —-2&+ —+ ln
p EP EP 2 2 2

+1-—(tan!! 1!! + —L1 g 2 1 2p
2P 2P 1+P

E. E (E. E)' n, (E. E)' ~,I--v
l

tanh'P-1 ~&+ ", —' +
p ~p

We have used the following definitions:

(14)

hy —6 —b, + —
) A2 ———— + —.

3 ' 2 3 4

We stay close to the notation of Sec. I, except that we have arranged the phase-space factor after extract-
ing a, factor M&EE„ from lM0 l

and lM» l
. We indicate this by putting a prime on them. M~ was defined

in Sec. I for the virtual case,' in the present case, M~ is proportional to M, . The proportionality con-ey
stant is the mass of the electron (or minus the mass of the positron in the cise of positive-hyperon decay).
We indicate this by putting another prime on M~, .

IV. CONTRIBUTION OF THE MODEL-DEPENDENT PART OF INNER BREMSSTRAHLUNG

We shall now study T !,(pq, p2k) of Eq. (13). Just as in the virtual-corrections case, we do not want to
get involved with a particular model to compute the contributions of T». Instead, we want to exploit
general properties of 1'„„asfar as we can.

I et us recall that we are concerned only with the case when the maximum energy of the unobserved pho-
tons is much smaller than the mass of either of the hadrons involved in the process, i. e. , hk «Mq, M2.
It must be noted that this restriction does not require that the momentum transfer to the leptons be small.
&» is infrared convergent and gauge invariant. So, we can take k =0 and & 'k=0 to be valid now. The
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. most general form allowed by relativistic covariance and gauge invariance for &, T» is

1
g(pl p2 ~) =

2 . ~ (2~ pl[(+sp k+ +3q k)r, + (~7p, k + ~vq k)p„-2Pg 'k+iE

+(& sp. 'k+ ~sq 'k)q. + ~A+ (~2r. + & 4m+ ~sp.~+ ~s4)&]

+(& p~k-pi kk)(~ik. +~2r. + ~.p„+~.q)

++(' sk~+&sr~+~v p.~+~sq~~k

1
+ . [(~ p2P k p2f0(xjkg ++2' +esp+g + +4') + f9(+5k' +assr~ +~'I'p x +&st)]2k p2+z~

+ ~ P [(07P+g + Q3sqg + usk, + ~,r„+(u(P„+ u2qg + u4kg + u(sr, )/]

+~ q[+7p+x+ ~sqx+us4+ ~34 + (usp x +us% +usk +u12r )&]

+(ups p+g + upsy + u~sk, +»sr, )K+ 6',ujv + Kr„ku(& + (u(jp.„+ujsq, + u(sk, +u(sr, )A', (16)

where p, =pq+p2.
In constructing this expression we have used the

property of B„~and R» [see Eq. (6)] that they
should go to zero when k goes to zero. There are
alternative forms for this expression (16), but
using the Dirac equation and y-matrix identities
they can be reduced to the above form. The model
dependence is contained in the different form fac-
tors, i. e. , ~&, u&, etc. , withi= 1, 2, . . . . They
are functions of the scalars that can be formed
with Pyq P2) and kq e. g. q

cog=cog(p~'k, q'k~ q ).
In order to match the dimensionality of the form

factors in Eq. (16) with those of the uncorrected
matrix element ~0, we shall introduce the same
convention as in Eg. (2). We shall divide by Mq

those form factors whose dimensions do not match
with the dimensions of fq. For example, instead
of uq7, we shall put ufo'/Mq. Now ufo' has the same
dimensions as fq and f2. We shall not rewrite Eg.
(16), but we shall understand that this convention
is being followed from now on.

In a certain way, we are introducing a disguised
assumption. We are assuming that strong inter-
actions are well enough behaved so as not to in-
duce terms in the electromagnetic corrections that
are anomalously large. In other words, once we

have chosen to normalize the form factors with&„
then the resulting form factors shall all be of
comparable size and none too large, very much
as fq and f2 are expected to be of the same order
of magnitude. Most of the models we would like
to use support this idea. But we must admit it as
an assumption.

T,„will contribute to the transition rate through
the square of the third term, and its interference
with the first two in Eq. (13). The full contribu-
tion is too long, so we prefer not to reproduce it

here. It has one general feature which we want
to stress. It only contains terms that can always
be factorized into a product of rA/Mq times a fac-
tor which is of the same order as the contributions
of the model-independent part. In other words,
the contributions from T» to the transition rate
will always be suppressed by at least a factor
hk/Mq with respect to the contributions of the
model-independent part.

To illustrate this point, let us pick up a term
which is expected to give a potentially large con-
tribution, the interference of uqq =-uf7/Mq with 1/
l k in the first term of Eq. (13). The integral
over the photon momentum will be proportional to

'"d'k I 1 ak 1M
ZM, ZM, '

while the interference of 1/l ' k with other terms
of the model-independent part will be of order 1/

It can be checked that any other contribution
from T„,behaves in the same way or gets an ex-
tra power of rk/Mq.

We can now draw our main conclusion in this
section. Provided that only photons with energy
much smaller than the mass of the hadrons are
undetected, the model-dependent contributions
of the inner bremsstrahlung are very small, of
the order of hk/Mq «1, and can therefore be ig-
nored in the radiative correction. The only part
that contributes is the model-independent one,
given in Sec. III. Let us emphasize once more
that our conclusion is not restricted to small q,
as was the case in neutron P decay.

V. RESULTS AND DISCUSSION

We are now in a good position to obtain an ex-
pression for the energy spectrum of the emitted
P in charged-hyperon decays. We must evaluate
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all traces, sum over spins, and integrate over
all kinematical variables except the energy of the
P. Since the expression we are going to obtain is
very long, we shall organize it so that it can be
read in steps. First we shall take constant form
factors in W, and later on we shall discuss their
q~ and P, .l dependence. The traces can be evalu-

ated more expediently if one uses

El=f1 + (1 +~2/~1)fs ~

G, =g, (1 M, /W, )g, ,

&s =-2fs i Gs =-2gs ~

F.=fs +fs ~s =gs +gs i

instead of the Dirac form factors of O', . Our re-
sult for the energy spectrum of the P is

M2
a6 —-2 1 — A4 —2A6,

Mg

2

] + 2

M
ago =— 1 —

2 A~
Mg

then,

A, = 2 ' —1-— H+

G~ )E(E —E) dE
2 s (1 2E/M )'

xlA(l+ y+ 8) +A. '(y'+ e')], (1v)

where

& =

adolf(

I'+ as lfs I'+ as «fez*+ a4 lg(l'

+ a, I g,'I '+ as Reg~,"+~ Ref(g,'*

+ as Reffgs
* + as Refsg( + a„Refsgs * . (18)

The coefficients a; are defined in two steps: first,

aj —Ag,

1+ — — Ag+4A2-2 1+—A3,

a3=2 1+ M- Ag-2A3,M2

1

a4 —A.4,

a

E E
1 1 1 1

,'H- —,'p J, —

A3 —1+ 1—

2

,'H- —,'pJ, —

l
Mg

A~=-(1 — 2 1- -l3M2 E
Mg Mg Mg, '

E E El
Aq —2 1 ———-2H+2 J+~

Mg Mg M,

A' stands for

(2O)

&'= as lf(I'+ z lfs I'+ asRefys*+ "Refry+ a; Refry*+ as lfs I'+ ~ le I'+ as lgs I'+ as Reg~s*

+ a(s Reghgs*+ ah Regsgs*+ a(2 Igs I'+ a(3 Ref~(* + ax&Ref(gs*+ a(s Refsgf*+ «s Refsgs"

Again, the a& are defined in two steps:
a3 —2 1+ — Ag-2A3+A4

Mg

a4 ——A.4,

1+ - Ai+4A2-2 1+ A3

+ 1+ — A' - 2A'+A',
a,'=A,',
az —Az,

2

Mg
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&s= 1- — &v+~e+2l 1- &s
M1 ( M1

—
) 1- A(p - 2A(g +A(2,

M1

M2

M,
A P

a10 =~10 ~

a11 ——1- -- A10- 2A11+2A12,
M1

I A I
a12 ——

A &

a13 —A13,

M2
a14 ——— 1 - A13,

M1

a15 — 1 + A13
M2

M1

2
I M2a16=- 1 — =z A13,

M1

A2 —
~ 1+ — —— 1 —-- —2H,

(22)

Al ]

a+ pz,

F-l
A{s=-2H+ 2P

1

We have used the definitions

(Z„-Z)[3(l —Z/M, )'+ f2/M', ]
3(1- 2Z/M, )M,

4(z. z)(1-z/M, )I
3(1- 2z/Mg)M~g

I
P = Z, as before.

I stands for the three-momentum of the P, I =
~
l ~.

The functions P, 8, P', and 8' were defined in
Eqs. (7), (14), (8), and (15), respectively. We
shall not reproduce them again. Let us just re-
mark that in the sum P + 8 the infrared divergence
is canceled out, as was expected. We emphasize
that our result is restricted to the emission of
photons whose maximum energy is much smaller
than either of the hadron masses, a few MeV, say.
This is taken into account in the term & in I9 and 8'.
For completeness, we give 6 in terms of a step
function 8

A3— a= 1- 8zk —F +F. + b,k'

z' ( M, z& z I&
M1 ( M1 M .) 1VI1 M1 j

H+ PJ-
M1 M1] ( M1 M1'

Af. 1+ 2

Z M2 2E& F I &

"(0
1 1 2) 1 1)

(23)

hk is the maximum energy of the unobserved pho-
tons in the inner bremsstrahlung, as mentioned
before. We have dropped all the terms of order
m/Mq. The primed form factors were defined in
Sec. II. Their q and P, 'l dependence can be han-
dled by expanding them in a power series. For ex-
ample,

2

f((q' P I) =f((0)+ ~~i ~~ + —~y Mz + -(24)
1 ~ 1

All the other form factors can be expanded in a
similar fashion. It is f((0), f2(0), etc. , that ap-
pear in the above formulas. Actually, according
to our approximations, as explained in Sec. D,
the form factors can be taken to be constant in A',
and f2 and gq can be taken to be independent of
p, 'I in A. We shall assume that contributions of
(q /Mq)' and higher. powers in the series expansion
can be neglected. These contributions should be
of order 10 at best. To complete our formulas
we must obtain the contributions of &q, Q, A$, A$,

Q, and &,. The contributions of the first four
slopes are

-H+PJ d(o(z)(q' slopes) = ", , A", (25)



ll40 A. GARCIA AND S. R. JUAREZ 22

where

A."= 2a,"Re &~qfj + 2a{'Re A~q ff + a3' Re(X~&fz* + &fff ) + ag Re(Q~ f,* + ~&ff ) + ag Re(Q~ fq* + Xq~f3 ) + 2af Re+~f3

+ 2av'Rei'g, *+2a,"Re&', g~*+ a9'Re(&, gf +Ãqgf) + afDRe(ggq + &$gf) + afq Re(g~gj + Xjg,*)+2afq Reg~g3"

+ af3 Re (&;f,*+ &',g',*)+al', ~ (~2f 1 + ~1g2 ) + a{sRe(~off + ~~ gf ) + afs Re(~If 2 + ~2 g2 ) ~

The coefficients a&' are the same functions as the
a,'. of Eq. (22), but with the &I replaced, respec-
tively, by the following A,":

P M E 2P~
Ag' — 1 + — 2 — -' —Hg —Jg — HI

M,

We should replace f{and g{ in Eq. (18) by ff and
g&', respectively. The other contributions of ~&

and &~ to the energy spectrum are'

d&o(E)(p, l slopes)
2

3 lE(E E) dE —[2Re&&fq +6Re&~gq]
27r3

1 —— 1+ ——H, —J,

A"= 1 ——1+ H,

P M~ E1+— 2+ — Hi- Jg -4PHp

2P2
Hg,3

As'=z 1-—

AII 1 1 2

P'l (E
Ag3 —2 1+— Hj Jg3) (M,

A4' —A5' —A6' —AI.o =Ay'y =Ay'2 = P .

(28)

We have used the abbreviations

2E(E E)
1

2E(E E)&
Jg

and

8El(E —E)
H2 ——

We can rearrange p, '1/Mq in Eq. (24) as

ff(o) =f{(0)+ ——& My-M2
m Mg

(27)

gf(0) =g{(o)+— (28)

The constant terms can be reabsorbed into f{and

gq, so we redefine

(29)
1

To summarize, our complete result is given by
the sum of Eqs. (17), (25), and (29), with f{and

g{ replaced by Eqs. (27) and (28). The primed
form factors were defined in Sec. II, Eqs. (12).

Although our result is lengthy and tedious, it is
basically simple. All of the radiative correction
to first order in ~ is given by only two functions,
&j&+0 and &f

'+ 8', that are universal in the sense
that they do not depend on the details of the strong
interactions and the intermediate vector boson,
plus model-dependent terms whose only effect is
to modify the already existing form factors due to
strong interactions alone without introducing new
form factors. Their energy dependence is modi-
fied, though, by the introduction of a dependence
on the variable p, 'E. Such a dependence should be
noticeable mainly for f,'(q~, p, l) and g,'(q', p, l),
while practically negligible for the other form fac-
tors.

The p, '1 dependence has an interesting feature.
As we have seen above, part of it goes into the
constant parts of f{ and g{. The remaining part
does depend on the P energy, but in such a way
that it is very small in the central part of the en-
ergy spectrum and only at its tails does it become
noticeable. This behavior should be contrasted
to the q dependence of the form factors, whichbe-
comes very small at the tails of the spectrum and
largest at its central part. So to speak, we could
say that the q and P, 'l dependences do not inter-
fere with one another.

Within our approximation of neglecting terms of
order q o'/m, we can also neglect the p, ' I depen-
dence when the factor (2E- E„)/Mq in Eq. (29) is
of order q /Mq or smaller. For Z -nev, this
means that a range of about VO MeV is free of
&z and &~ from Eq. (29); this represents 80% of
the energy spectrum. This range is centered
around the maximum of the bell-shaped spectrum,
and is therefore the statistically favored part.
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For other charged-hyperon decays this range
should be proportionally wider because our ap-
proximations become more accurate.

In using our result to perform an experimental
analysis, the primed form factors should be used,
since it is these form factors only that can be de-
termined experimentally. It is this fact that per-
mits the experimental analysis to be concluded
once and for all, in a model-independent fashion.
After experimental values for the primed form
factors have been determined, one can proceed
to determine quantities of theoretical interest by
computing partial contributions to the primed
form factors using some model; that part of the
form factors that cannot be computed, such as the
bare coupling constants for. example, can be at-
tributed an "experimental value" within the model
used. Of course, that "experimental value"
would change, in general, if another model were
chosen, while the experimental values for the
primed form factors would remain.

A curious point is that f, and g, are enhanced
through the radiative correction. They cannot
simply be dropped altogether as our neglect of
mlMt could have suggested. This opens the pos-
sibility of determining them experimentally even
in electron decays, although it would require very
high statistics.

Finally, let us note that our expression for the
P spectrum is accurate up to terms that are not
larger than a few tenths of a percent. It is valid
equally well for the decay of positively charged
hyperons.
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