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We present a new, nonperturbative method to effect radiative corrections in lepton- (electron or muon) nucleon
scattering, useful for existing or planned experiments. This method relies on a spectral function derived in a previous
paper, which takes into account both real soft photons and virtual ones and hence is free from infrared divergence,
Hard effects are computed perturbatively and then included in the form of "hard factors" in the nonperturbative
soft formulas. Practical computations are effected using the Gauss-Jacobi integration method which reduces the
relevant integrals to a rapidly converging sequence. For the simple problem of the radiative quasielastic peak, we get
an exponentiated form conjectured by Schwinger and found by Yennie, Frautschi, and Suura. We compare also our
results with the peaking approximation and with the exact one-photon-emission formula of Mo and Tsai.
Applications of our method to the continuous spectrum include the radiative tail of the 3 33 resonance in e +p
scattering and radiative corrections to the Feynman scale-invariant F, structure function for the kinematics of two
recent high-energy muon experiments.

I. INTRODUCTION

Radiative corrections are quite an old subject.
Routinely used by experimentalists, these are con-
sidered to be so well known (or no longer interest-
ing'?) that many experimental groups do not pub-
lish the details or even the magnitude of QED ef-
fects, usually incorporated in intricate programs.
Since a proper handling of radiative corrections is
crucial to the extractions of the nonradiative (NR)
cross sections and structure functions, it would
be wise that these corrections appear transparently
along with the published experimental results. In

some domains of the experimental variables, typ-
ically for small fixed scaling variable and large
momentum transfer, the difference between the
raw and radiatively corrected data becomes so
large that the term "corrections" becomes im-
proper. Although the events belonging to these do-
mains are usually "put aside, " it is not clear at
which level one must consider radiative correc-
tions as being too large to be trusted.

In this paper, we present a simple and practical
nonperturbative method to effect radiative correc-
tions, using the spectral weight function and non-
perturbative vertices we introduced in a previous
paper, ' hereafter denoted I. We apply here the
method to lepton-nucleon scattering, although our
formalism does apply in a straightforward man-
ner to many other QED corrections. By nonper-
turbative, we mean that soft-photon effects (in
fact, we use what might be called the soft-peaking
approximation) are taken into account to all orders
while the effects of hard photons are computed per-
turbatively and used as "hard factors, " thus mod-
ifying the soft cross section. The first advantage
of this nonperturbative approach to radiative cor-

rections, besides avoiding infrared divergences at
intermediate stages, is that at least the elastic-
peak spectrum is integrable' whereas it is not
in standard perturbation theory. The second and
decisive advantage of our method is that the two
extra integrations brought about by the radiative
corrections can be reduced using the Gauss- Jacobi
integration method to a double sum which con-
verges rapidly. This favorable circumstance per-
mits us to make contact with the peaking approxi-
mation and our method appears then as a simple
generalization.

In Sec. II, we derive the basic formulas which
express the soft radiatively corrected cross sec-
tion and structure functions in terms of the cor-
responding (NR) ones, assumed to be known. This
is done using the soft spectral function E which
takes care of both real soft photons and virtual
radiative corrections and thus is free from infra-
red divergence.

Section III is devoted to the simplest case of
radiative corrections, the elastic contribution to
the structure functions. In particular, the almost
elastic lepton-nucleon scattering cross section,
where the emitted photons are necessarily soft,
is obtained in closed form and compared with cor-
responding known results. The radiative tail of the
elastic peak is discussed next, using the Gauss-
Gegenbauer integration method, and the results
are compared to those one gets in the peaking ap-
proximation. We compare also our results with
the exact one-photon-emission cross section and
we emphasize that the discrepancy is due to hard
bremsstrahlung which must be treated as a separ-
ate contribution.

Section IV deals with radiative corrections to
the hadronic continuous spectrum, a reputedly dif-
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ficult subject. The efficiency of our method is
demonstrated by easily getting the radiative tail of
the ~» resonance and the radiative corrections for
two recent high-energy p, +p experiments.

In Appendix A we present the Gauss-Gegenbauer
and more generally, the Gauss- Jacobi integration
methods which are central to almost all computa-
tions of this paper. Appendix B is devoted to the
computation of the lepton tensor needed by the ex-
act one-photon-emission contribution and get a
result equivalent to that found in the literature.

II. THE SOFT PART OF RADIATIVE CORRECTIONS

where E is the total four-momentum of the emit-
ted photons. The other quantities are defined as
follows. Let qz' be the "experimental" squared
momentum transfer

q,2=-(p-p )'=2(ZZ -pp cose-m2)

—4EE' sin~&8, (2.4)

where 8 is the scattering angle and m is the lepton
mass. The symbol @ emphasizes the high-energy
limit qs'» m'. The kinematical variable r, con-
venient whenever it is desirable not to neglect the
lepton mass, is defined through the equation

In this section, we derive the soft-photon radia-
tively corrected W, and 8', structure functions in
terms of the corresponding nonradiative (NR)
ones, assumed to be known.

A. Radiatively corrected structure functions

(2.5)

In terms of x, the usual infrared exponent' nA
=2+A reads

2n (1+r')
, lnx '-1

m g1 —x
The cross section for lepton- (electron or muon)

proton inclusive scattering in the one-photon-ex-
change approximation, including the soft part of
photon emission from the lepton vertex and cor-
responding virtual radiative corrections to all
orders in perturbation theory, is given by'

2n' d'p' d'q
. . .,w'„„"(P,q)x, „(p,p )

=—ln, -1 (2.6)

1 Xe"
F(r) =F(r)+2'+ —-A ln

v qs

The infrared-finite function F(r), which is used to
normalize E, is given by

xE(p, p'; p - q p') .
(2.1)

lnr —2 &+ ln(1 -r)-(1+Sr)
2v(1- r) v

Here p, E and p', E' are the momenta and ener-
gies of the incident and scattered lepton, P the
proton momentum, q the momentum of the ex-
changed photon, and a the fine-structure constant.
W» is the usual nonradiative proton structure
tensor, X„„the lepton tensor defined below, and
E the soft-photon spectral function. This func-
tion, which describes both real and virtual soft
photons, is related to the spectral weight function
E~ defined in I by

E =EqE (2.2)

E(P Pg. ~) (~)2oaF(r)
OQ OO I

x do do'(oo') ~& '
0 0

where F„ is the soft part of F, =F, + (&/2v)F„F,
and +, being the electric and magnetic lepton ver-
tices.

In the soft-peaking approximation which is dis-
cussed in detail in I, the explicit form of the spec-
tral function P is [see Eqs. (3.41) and (4.77) of
Ref. 1]

(1+r') v (1+r') . (,)1-r' 6 w(l r')-
m 1= -ln~- —.

m 6' (2.7)

(2.6)

&n Eq. (2.3), l and l' are the light-cone momenta'

~p $t p p ~ pt1+r ' 1+x (2.9)

fulfilling the equations

The infrared-divergent function F(r) has been
introduced in I to normalize the spectral weight
function' E» B is the standard infrared-divergent
part of the vertex function, Li, (y) is Euler's di-
logarithm function' closely related to the Spence
function Q and defined by

x 5~(K- ol —o'l'), (2.3) E =1' =0 (2.10a)
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and

(2.10b)

E —y'E' m - E' —gE m= 1+. = '= 1+. (2.ii)

%e shall denote by E and E' the time components
of l and 3' in the laboratory reference frame,

The infrared-finite lepton tensor X~", defined by
leaving out the factor E„' from the tensor X~&„") de-
fined in I is given by

&'"(P P') =I' ' 2( '-P P'~a'"+2(p'P'"+P P")-— (P+P')" (P+P')"

p+pt 4 p+pr v

e
(2.i2)

where VH is the hard part of E, defined below while the conventional nonradiative proton structure tensor
reads

p 6

(2.is)

where v =P ~ q. Contracting the lepton tensor and the proton structure tensor leads to

W "X ) nE Q2FNR» W 4EEi q &
™F~ (E+Ei)&+ ~ (E+Ei)2

H e e

+W 2(Q ' —2m')+ —(~))Q *+4m') —
(
—

) (~) (2.i4)

To arrive at this equation, we have assumed that
q~X „=q"X „=0, which is in fact strictly valid only
in the soft-photon limit K-0. To go beyond soft-
photon radiative corrections, we show in Sec. III
how to include approximately hard effects, by
comparison with the exact one-photon bremsstrah-
lung cross section. Using this hard-factor cor-
rection, gauge invariance will be enforced when&
is no longer soft, at least to lowest-order pertur-
bation theory.

In I, the following forms of E, and E, were de-
rived'.

F,=F„1+—
1

—lnr ' —1 +O(o.')
o.'1+r
m21 r-

(2.15)

w'„„"x.„=v„2(4EE q, 2)

~a

x w, „„(i+re,)

= V„'(4EE' —qB')(W, „„+2W,„„tan'8/2) .
(2.is)

The last factor in this equation is familiar from
electron-proton scattering where the electron
mass is usually neglected. The C, and. C, functions
result from the magnetic-form-factor contribu-
tion and are given by

1+r o' 1 n 2(l+r)
(1-r)(1 4r+r ) ~-S ~ (i r)-

F,=F„,
)
Inr 'll+0(o. )], (2.1s) (2.IOa)

where

p (] ~ ) Dt). B+ (2g) + YXy3
es 1 (2.1V)

In the last equation, A, is an analytic function
whose real part is A. Although F,/F, is propor-
tional to m'/qz, we shall keep track of the terms
involving this ratio, in view of possible applica-
tions for JL(.-proton scattering at low momentum
transfer. Using the explicit forms of F, and F„
Eq. (2.14) becomes

+P (y2 .
7r 1 —y' (2.2O)

It is convenient to express Eq. (2.1) using the
Mott cross section as reference unit,

(E+E') 2n lnr n 2 ln r
4EE' —qB' m 1 —r' 7) 4(1 —r)'

The function V„' is the square of the "hard part"
of the elastic vertex function



22 5 ONPERTURBATIVE METHOD FOR RADIATIVE CORRECTION S.. .

~'p" (4EE —q, ')
pQ 4

m v cos 8/2
4E'sin 8/2

' (2.21) 2 v - Q2 & 0 and v & 0 . (2.31)

the state of lowest mass which can be produced
at the hadronic vertex is a proton, we have the
kinematical constraints

Using Eq. (2.3) into Eq. (2.1), the differential lep-
ton-proton cross section reads

, =Fo W2(1+rC2)
do'

From Eqs. (2.29) and (2.30), we see that we can
work equivalently in the (v, Q') or (o, o') planes. In
the former plane, the effective integration domain
is represented in Fig. 1 where the o =0 and o' =0
equations are straight lines

+2W, s, 2 (1+rC,), (2.22) g=O~Q2= a E-—Q - v
(2.32)

where ~, and &, are the radiatively corrected
structure functions given by

and

o' =0~ Q'= E'+
M ~. (2.33)

gr (oA)2&eE(r&y 2
t

00

/0 0
(2.23)

Alternatively, in the (o, o') plane, the effective
integration domain is represented in Fig. 2 where
the equations 2v =Q' and v~ 0 represent part of a
hyperbola whose equation is, from (2.29) and (2.30),

where Q'=-q'=-(P -P'-K)'. The following
kinematics analysis will make more precise the

(o, o') integration domain.

B. Kinematics and integration domains

(Ã@ M ) —(7 A@a

Aa —g'Qe2
(2.34)

where A~ and A~, are two combinations of the kin-
ematical variables, extensively used in this paper,

The nonradiative structure functions depend on
v and Q' which should not be confused with the
"experimental" invariants

and

Ae =2ME —Qs2,

As, ——2ME'+Q@2,

(2.35)

(2.36)

I, =P ~ (p p)=M(E-E)=M(E E') (2.24)
Ã@ =(P+p —p ) =2v@-Qg +M, (2.37)

and Qz' already defined in Eq. (2.4). The former
ones are given by

From Figs. 1 or 2, it is clear that the integration
domain is empty unless

v =P q=P ~ (p-p'-K) (2.25)
ggz2 & M2, (2.38)

and

Q'=-q'=-(p-p'-K)'.
From Eq. (2.3), the momentum q reads

q =p —p' —K=I (1 —a) —I'(1+o') .

(2.26)

(2.27)

which is of course expected. In particular, since
the integral in Eq. (2.23) is convergent, we see
that the cross section for exactly elastic scattering
(sos' —M') vanishes, which is in agreement with

the Bloch-Nordsieck theorem. '

Incidentally, we note that o and o' are simply re-
lated to the light-cone components of K in the
Breit frame (p+p' =0) through

Q2

(GeV')

12

I I I I I I I I I

K, K0+Eg

Q~ qa
0 gK K-K

qz qz
(2.28) 10

where the z axis is taken along the p momentum.
Taking into account Eqs. (2.10) and (2.11) we get

6

E 4

and

q' = -q' =qa'(1 —o)(1+o')

p = p@ —gME —g'ME' .

(2.29)

(2.30)
2 4 6 8 10 12 14 16&(GeV )

The effective integration domain in the double in-
tegral in Eq. (2.23) is obtained by noting that, since

FIG. l. Integration domain in the (v, Q ) plane for
given experimental values of E, p@, and Qz .
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1.2

0
(g 0.8

0.4

I I I I I I I I I I

E=206eV, e=5
16

a, )-

Q
2

E

where

O'A~,
2 2 ~I)@
—ZU

(2.41)

For later reference, we introduce also the follow-
ing variables:

K~ (2ME'+w2 —M')[1+B'(w') T]

q, A,[1-.( ').]
0.4 0. 8 1.2

(GeV)
1.6

and

(2.42)

FIG. 2. Integration domain in the (K, E,) plane.

x =y = 1+==1+@' =1 +8"(w )w
K 2

QE
(2.43)

C. Practical form of W& and 4'2
where the functions z, 8', and 8" are defined by

For the applications we shall develop in the
following sections, it is convenient to write Eq.
(2.23) so that the invariant squared mass produced
at the hadron vertex,

= (P+tg) =wE —(jAE —0'A Eg+ o(x QE q (2.39)

is one of the integration variables. From this
equation, we can express o in terms of ~' and 0'
in the form

2ME'(w E —w 2)

AE.(2ME'+w' —Mg '

26 SUEe(w2) E
gl

(2.44)

(2.45)

(w '-w')(1- v)
AE —TQE (wE —w )/AEi

(2.4O)

Computing the Jacobian for the (cr, o')- (w', y)
change of variables, Eq. (2.23) becomes after
straightforward algebra

W, 2=.
((rA)2eoE( )y )2 1 dr tuE

H dw2N~ ((2)2 w')1.2NR
~ 2 (A A )nA [r (1 T)]1 ~A 2 (w 2 w2)1-))'A(1 2 (w2)T)))A (q2/q 2)2

where, using Eqs. (2.29), (2.42), and (2.43),

(2.46)

Q'=QE'x, y . (2.47)

III. ELASTIC CONTRIBUTION TO THE STRUCTURE
FUNCTIONS

Equation (2.46) is the general equation which gives
the radiatively corrected structure functions in
terms of the nonradiative ones.

In the following sections, we shall develop a
suitable method for handling very simply the ~ and
m' integrations. We shall also derive the expres-
sions of the hard factors which extend the validity
of Eq. (2.46) in domains where the emitted photons
are not necessarily soft and discuss various appli-
cations of this equation.

t

steep peak. The integrated cross section under the
peak gives the radiatively corrected "quasielastic"
cross section. Second, since photon emission by
the lepton lowers the momentum transferred by
the exchanged photon, the elastic contribution can
be large in the very deep inelastic domain. This
is the tail of the elastic peak.

The elastic contribution to the nonradiative
structure functions is easily expressed' in terms
of G~ and G~, the electric and magnetic proton
form factors by the well known formulas

M'

(3.1)
In this section, we shall use the formulas de-

rived previously to discuss the elastic contribu-
tion to the structure functions, i.e., the contribu-
tion from the proton hadronic state. Owing to ra-
diative corrections, this contribution is drastically
modified. First, the nonradiative 6(E' —E,', ) peak
(E,', is the elastic energy of the scattered electron)
is transformed into a continuous spectrum with a

and

w'-M' [G '(q2)+(q2/4M')G '(q')]
»II™2 (1+q2/4M2)

(3.2)
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(3.3)

while Eqs. (2.44) and (2.45) simplify to

Q, '(», —Q, ')
z=

A~A~,
(s.4)

2vs —Qs
A, (s.5)

We shall call ~, and W„which are functions of
Q' only, the reduced structure functions. Owing
to the 6 functions in Eqs. (3.1) and (3.2), which
express the fact that the scattered proton is on the
mass shell, Eq. (2.46) is greatly simplified and

we get for the elastic contribution

(oA)2e~&«&y 22M

(»~ —Qs')' "8,A~.) "

t 'dr[ad(l -r)]~" 'W (Q')
(1 —«)~&(q'/Qs2)'

there is no hard correction in this domain. In-
deed, from Fig. 2 we see that the integration line
zv =M is in the vicinity of the origin K, =K =0.
The elastic scattered energy E,', is the value of
E' for which 2]/s —Q~' vanishes. From Eqs. (2.4)
and (2.24) we get

m

I+2(E/M) sin'8/2 ' (3.7)

To avoid writing long formulas which may ob-
scure the physics, we shall limit ourselves, for
the rest of this subsection, to the high-energy
limit. This simplification is not used in our nu-
merical programs.

For E' close to E,'„we can put 2v~ —Qs'=0 in
Eqs. (3.4) and (3.5) and get B' =B"=z = 0 and Q2

=Qs'. The r integral in Eq. (3.3) is now Euler's
B(o]A, nA) function and the other functions simplify
to

where As and Az. are defined in Eqs. (2.35) and

(2.36). The squared momentum transfer Q' is
still given by Eq. (2.47), while the general expres-
sion of x., Eq. (2.42), simplifies somewhat. In
numerical applications, we shall assume the usual
expressions of the proton form factors

A@-2ME,'q, A~-2ME.

Using, moreover, the kinematical relation

2M ~ E,',
2v~ —Q~' E(E,', —E') '

Eq. (3.3) becomes

(s.9)

~proton

G proto n GN

2.793

1
(i +q2/0. 71 Geg')'' (3.6)

(n
grP +k F 1(~)F2(1+ ~) 1.2&~E

a/g ~g/6 2 2 ( /+el)x (Q~/m) 'e '
V// (q]. )

(1 E,/@, )~e1

(s.io)

A. Radiative corrections in quasielastic
lepton-proton scattering

By quasielastic scattering we mean that (2v~
—Q )/sM' is small, that is, point E in Fig. 1

is near the Q'=2v line, inside the physical re-
gion. This is the simplest case of radiative cor-
rections leading to a peak spectrum which can be
obtained in closed form. Under the peak, within
the one-photon-exchange approximation, this
spectrum is expected to be exact to all orders in
perturbation theory since the emitted photons are
necessarily soft owing to phase-space limitation;

I"(Q ')=~ '(Q ')I/ '(Q ')

m 5&1 Qs 28o.'
( 2)

3m m' 9m
(s.ii)

where we have used Eq. (2.20) and the known ex-
pression of vacuum polarization to lowest order,

At this point, we shall include the effect of vacuum
polarization to lowest order. For electron-nucleon
scattering, V~' is changed to

j
2m' ]/ 4m' ' ' [I+(4m'/q')]"'+I 5 4m'

'3 Q' ) k Q' ) [1+(4 '/Q*)]"' —1 3

To get the radiatively corrected cross section in
the vicinity of the elastic peak, all we have to do is
to substitute Eq. (3.10) into Eq. (2.22). It is con-
venient to express the result in terms of the elas-

I

tic cross section without radiative corrections,

(s.is)
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and we obta. in

do "~ do I' '(~)1'(I+ oA)
dQ'dE' dA' 0 Er

(3.14)

The important feature of Eqs. (3.14) and (3.10) is
the radiative tail, characterized by the integrable
I' '(oA)(E,', —E')'" ' spectrum, in agreement with
YFS work. ' To illustrate Eq. (3.14), Fig. 3 rep-
resents the elastic peak spectrum for E =1o GeV
and 8 = 34'. The one-photon-emission cross sec-
tion is also drawn for comparison.

It may be worthwhile at this point to recall the
comparison between these results and standard
perturbation theory. In the latter, the differential
cross section for one-photon emission is propor-
tional to (E,', —E') ' which is nonintegrable, where-
as the elastic differential cross section is, in
lowest order, proportional to 5(E,', —E') [in text-
books, only the integrated cross section which we
called (do/dQ'), appears]. To first order, one-
virtual-photon radiative corrections modify the
above cross section by a factor of (1+nA in&/m)
which goes to -~ in the limit X-0. These difficul-
ties are solved in part by cutting off the spectrum
at a distance ~E' from E,', . The positive infinite
cross section (in the X-0 limit), integrated be-
tween E,', —~E' and E,', is added to the elastic
cross section to produce a ~-independent differen-
tial cross section proportional to 5(E' —E,', )(1
+ oA in&E'/E). To avoid in this result an infinite
cross section in the limit &E -0, which is physi-
cally unsatisfactory, Schwinger'" conjectured the

d0' d&,
1-—

4
aA '+ ~ ~ V' E'e '

(3.15)

where

and

E(&E')' 2v m' 6
(s.16)

QEr Er (3.IV)

The second factor in Eq. (3.15) comes from the
. expansion of 1" '(1+ oA)I'(1+ 0A). We note that,
leaving aside this factor and V'(Q~') which takes
into account the hard part of virtual radiative cor-
rections and vacuum polarization which are not
expected to exponentiate, Eq. (3.15) is an expon-
entiated version of Schwinger's .formula'"

(s.18)

exponentiation of this lowest-order result, that
is, (1+nA ln&E'/E) should be merely the first-
order expansion of exp(oA ln&E'/E), which van-
ishes in the limit ~E'-0. In our approach, in fact,
quite similar to YFS, there is no distinction be-
tween elastic and inelastic cross section. Th' e
5(E' —E,', ) and (E,', -E') ' spectrum are lumped
in the continuous integrable spectrum of Eqs.
(3.10) and (3.14), where, as we shall see in a
moment, Schwinger's conjecture is fulfilled.

To calculate the integrated cross section under
the peak we integrate the differential cross section
as given by (3.14) from some threshold energy E,'
up to E,', . After a trivial integration over E' in
Eq. (3.14), we get

~ 20
O

E 15
EP

C)

10

5b

I

E=10 GeV e=34
2 2

Q =12 GeV

where in our notation

5~ =—([ln(E/&E') —~3][in((2E/m) sin(a 8)) —~ ]

+ ~+-,'sin(-,'8)y(cos(-,'8))}, (3.19)

where Q is the Spence function. To compare with
Schwinger's result, we expand Eq. (3.15) in the
form of (3.18) and take into account Eqs. (3.16),
(3.11), and (2.6) to get

0 t I I

3.450 3.475 3.500 3.525
E (GeV) 3 544

FIG. 3. e-p elastic-peak spectrum: comparison be-
tween the nonperturbative (lower curve) and the one-
photon-emission (upper curve) cross section.

ln 1/'2'~E, ln

&3m Q~' 28m
ln ~+9 +66p m m

(3.20)

Since in Schwinger's computation E«M is as-
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sumed (potential scattering) and therefore, from
Eq. (3.7) E' =&,', =E, Eqs. (3.19) and (3.20) coin-
cide except for the last term. The origin of this
discrepancy, which is very small at high energy,
lies in the fact that Schwinger's k' „and our ~E'
are introduced in quite different ways. In fact, .

since we do not introduce any cutoff on photon ener-
gy when using the spectral weight function, our ap-
proach is completely covariant until we ask the
noncovariant question: What is the cross section
for E~ o E~g

Even the last term of Eq. (3.20) may be under-
stood by noting that the normalization of the spec-
tral weight function E, in I, through F(x), has been
adjusted so that the exact and approximate energy
spectral functions coincide in the Breit frame. '
Thus, e(n/6 is recovered by taking e =m (p+p'=0
in the Breit frame) in the last term of Eq. (3.19)
and noting that P(0) = v'/12.

As a numerical example using Eq. (3.15), let us
compute 6 for E = 20 GeV, 8 = 6', and ~E' = 10
MeV. Then E,', =17.909 GeV, QN2=3. 924 GeV',
eA =3.6 x 10-', and 6 =0.5210. The radiative-cor-
rection factor is thus R, =0.592. Of course, Eq.
(3.15) for the elastic peak is trivially inverted to
give the uncorrected cross section (dv/dA')0 and,
using Eq. (3.13), one separates the W, and W,
structure functions. In principle, this is the way
the proton form factors [Eq. (3.6)] have been mea-
sured.

B. Radiative tail from the elastic peak

When we leave the immediate vicinity of the
elastic peak there is still an elastic contribution
to the structure functions which is now given by
Eq. (3.3). Far from the peak, the emitted photons

deviate from "softness" and we must include in

this equation hard-photon corrections. The hard
correction factors are known from the peaking
approximation to the one-photon-emission cross
section. To extrapolate these factors for multi-
photon emission, it is convenient to work out the
integration method of Eq. (3.3) and compare the
results with the soft-peaking approximation one

gets in lowest-order perturbation theory.
Since the integrand in Eq. (3.3) is weighted by

[r(1 —7')] " ', a suitable method of integration is
the Gegenbauer-Gauss quadrature described in

Appendix A. ~ being of the order 0.03, it is clear
that the main contribution to the 7' integral comes
from the vicinity of ~ =0 and 7 =1. According to
Eqs. (2.28), (2.40), and (2.41), these values of r
correspond to K =0 (K, =K0) and K, =0 (K,=-K0),
respectively. Using formulas (A1) and (A4) of
Appendix A, the nth order approximation to Eq.
(3.3) is

where

I'(1+(2X) (2v —q ')' '"
p, „,

21'(2(2A) AN AN,

n

&& v, '(q, ') „,Q c,.„p, ,(w,.„),
2v@ —&@» j

(3.2i. )

w, ,(Q') v, '(q')
1, 2 (1 &&)kkg(q2/q 2)2 (3.22)

and V& takes into account the contribution of vacu-
um polarization as defined in Eq. (3.12). In Eq.
(3.21), r(„ is related to the ith root x,.„of the
Gegenbauer polynomial P™"'~2(N) of degree n,
through x»n =27'», —1, while C»n is proportional to
the weight of the x»n root. As shown in Appendix
A, there are always, for no 2, two roots 7~
=O(nA) and r =1 —O((2A) with weight of order 1,
while the other roots have weights of order ~.
Thus the leading contributions to Eq. (3.21) are
from the v,„and v„„roots. We have given the an-
alytical expressions of 7'»„and C;„up to n =5 in

Appendix A and used these expressions in our. first
programs. We found a very rapid convergence
with n. This is illustrated in Table I which we dis-
cuss after we derive the expressions for the hard
factors.

C. The hard factors

Let us first consider, along with Eq. (3.21), the
elastic contribution to the structure functions one
obtains in lowest-order perturbation theory in the
soft-peaking approximation. The relative prob-
ability for one soft photon of momentum k is co-
variantly given by ix

ul, (k (= kA f —k'(k —vl)

00 p

+ nA 6'(k —o'I') .
Ol

(3.23)

Here, A comes from the angular integration over
the direction of the emitted photon and & is a quan-
tity proportional to the photon mass regulator X,
whose exact expression is irrelevant for our dis-
cussion. l and l' are the positive-energy lightlike
four-vectors defined in Eq. (2.9). The correspond-
ing one-photon elastic contribution to the cross
section is [compare Eq. (2.1)]

da'"'" t' d k 2(Q '-2m )
dflkdEk 0 (q2/q 2)2 2 NR 4@@k q 2 1 NR

x o(I,(k),
(3.24)

where we have used Eq. (2.14) in lowest-order
perturbation theory. Of course, v and Q2 are still



TABLE I. Elastic contribution to the e-p &W2 function in the peaking approximation for one-
photon emission (lp) and for multiphoton emission using Gegenbauer s polynomials of increas-
ing degrees (g =2-5). E =20 GeV, 0 =O', E@=18.499.

E' Q@
(Ge V) (GeV ) xz

10~ 8"
2

n —2 n=3 n=4 n=5
10'mW",

1y . n=5

18.48
18.46
18.40
18.20
18.00
17.80
17.50
17.40
17.30
17.10
16.90
16.70
16.50
16.00
15.50
14.00
12.50
10.00
7.50
5.00

2.813
2.810
2.800
2.770
2.740
2.709
2.663
2.648
2.633
2.603
2.572
2.541
2.511
2.454
2.359
2.131
1.903
1.522
1.442
0.761

0.986
0.972
0.933
0.820
0.730
0.656
0.568
0.543
0.520
0.478
0.442
0.410
0.382
0.324
0.279
0.189
0.135
0.081
0.049
0.027

3.378
1.695
0.7056
0.2726
0.1881
0.1533
0.1295
0.1250
0.1259
0.1171
0.1147
0.1140
0.1145
0.1201
0.1307
0.1946
0.3328
0.9824
3.4210

13.988

2.235 38
1.178 82
0.523 977
0.218 862
0.156 707
0.130 759
0.113202
0.110021
0.107 652
0.104 726
0.103 566
0.103 705
0.104 874
0.111406
0.122 446
0.185 313
0.318 640
0.938 396
3.227 31

12.824 0

2.235 38
1.178 82
0.523 977
0.218 862
0.156 607
0.130 760
0.113203
0.110022
0.107 653
0.104 729
0.103 571
0.103 712
0.104 884
0.111432
0.122 505
0.185 722
0.325 565
0.955 583
3.352 88

13.'733 1

2.235 38
1.178 82
0.523 977
0.218 862
0.156 607
0.130 760
0.113203
0.110022
0.107 653

. 0.104 729
0.103 571
0.103 712
0.104 884
0.111432
0.122 506
0.185 728
0.320 616
0.956 511
3.364 27

13.894 9

2.235 38
1.178 82
0.523 977
0.218 862
0.156 607
0.130 760
0.113203
0.110022
0.107 653
0.104 729
0.103 571
0.103 712
0.104 884
0.111432
0.122 506
'0.185 728
0.320 617
0.956 554
3.365 27

13.915 3

64.66
32.00
12.80
4.36
2.69
1.98
1.45
1.34
1.25
1.11
1.00
0.93
0.87
0.77
0.72
0.72
0.87
1.46
2.88
5.57

42.79
22.26
9.50
3.50
2.24
1.68
1.27
1.18
1.11
0.99
0.91
0.84
0.80
0.72
0.68
0.69
0.83
1.44
2.86
5.64

given by Eqs. (2.25) and (2.26) with K-k. Using
Eq. (3.23), the k integral in Eq. (3.24) is trivially
effected. We can cast the result in the form of Eq.
(2.22) (with' C, and C, set equal to zero) where,
using Eqs. (3.1) and (3.2), the radiatively cor-
rected structure functions are given by

The final form of Eq. (3.25) is therefore

W'"'" (soft-peaking)

E gf 2

(3.25)

The 6 functions in the last equation make the o or
o' integrations also trivial. The relevant kine-
matics may be read from Eqs. (2.40)-(2.45) with
sv =M and O' =K = 0 for k = ol and v =K, = 0 for
k =o'1'. The values of v, o', and Q' at the 5-func-
tion peaks are thus

(3.30)

We note that Eq. (3.30) may be obtained also from
Eq. (3.21) in the limit oA-0. The peaking ap-
proximation to the exact one-photon-emission for-
mula has been derived by many authors. "" In
our notation, the Bjorken" result can be expressed
as

do'
o.'I, (k) - nA —(1 —o+-,'o') V(k —ol)

"do'
+oA, (1+o'+ -' v")5'(k —o'l') .

2' —Q@

t, =-e,'=e. '(1 —;)= 2ME'QE

E

2vz —Qz
P'

(3.26)

(3.27)

(3.2S)

Consequently, Eq. (3.30) is modified to

W'"'" (peaking)

( ) W(Q ')H

(3.31)

t~. —= Q~.2=@~~(1+a~,) =
2MEQ@2

(3.2S)
2 2

+ s
—, W(QpP)H~, (1+o~.)', (3.32)

pt
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where Hp and Hp. are hard factors for the P and P'
peaks,

(3.33)

and

H 1
ops 1 GPSS

1+0'pi 2 1+og
(3.34)

y ~H=y ~H,H .
Here,

1 —o +-,'o' =-,'(1+x,'),
(r' 1( (r' ' 1

; +-i, =-(1+x '),
1+0' 2 ( 1+0'

(3.35)

(3.38)

(3.37)

and y, x., and x have been defined in Eqs. (2.42)
and (2.43).

Thus, in practical applications, we modify Eq.
(3.22) to

W(Q2) P'2 2H

(1-«) "(Q'/Q ')'

W(Q~)VPH

(1-«) "x,'' (3.38}

It is easy enough to generalize the hard factors
so that they can be used to correct for hard-pho-
ton effects in the nonperturbative formulas. For
that purpose, we note that since o =K,/Q~ and
o' =K /Q~ reduce, respectively, to o~ and o~. at
the one-photon-emission level, we can replace
op by 0 and Op, by cr' in the H factors. Further-
more, comparison between Eqs. (3.3), (3.21), and
(3.32) shows that we can, at least to lowest-order
perturbation theory, introduce a hard factor multi-
plicatieely in the nonperturbative formulas through

where the second form uses Eq. (2.47).
In Table I, we illustrate our results for v~~' and

MH, ' in electron-proton scattering in the peaking
approximation for one-photon and multiphoton
emission. 'The columns labeled ly correspond to
one-photon emission and are obtained from Eq.
(3.32). For vsW, we present also the results of
Eqs. (3.21) and (3.38) for n increasing from 2 to
5. %e see that for x~ ~ 0.1, n =2 is already an ex-
cellent approximation to v~~'. The same fast
convergence with n is found for W" and for the
cross section. For very inelastic scattering
(small xs and large Qz') one may need the roots
and weights of Gegenbauer polynomials of degree
higher than five, owing to the strong variation
w th 7 of the integrand of Eq. (3.3). In this case,
our present program finds the roots and weights
numerically with good precision up to n=25. %e
must note, however, that slow convergence with
n in the very inelastic region is the signal for hard
bremsstrahlung which we discuss later on.

In Table II we present the results for the elastic
contribution to the ep cross section. Column ly
gives the results of the peaking approximation for
one-photon emission using Eqs. (2.22) and (3.32)
while the column labeled n =5 gives the results for
multiphoton emission using Eqs. (2.22), (3.21) with
n =5, and (3.38). I et us remark that the one-pho-
ton and multiphoton contributions to the cross
section are quite different near the elastic peak
and become comparable in the very inelastic re-
gion. The discrepancy between the one-photon
peaking approximation and the exact result in the
very inelastic region is not due to a failure of the
peaking approximation but rather to a new physical
contribution which comes into play, the hard
bremsstrahlung. The exact one-photon cross sec-

TABLE II. Elastic contributions to ep cross section do'/do'dE' in units of 1033 cm /GeVsr.
E=20 GeV, 0=5, Eg =18.4995, ED=3574.9&10 cm . HCS and HCS' are the values of the
hard cross section given in Eq. (3.44) for t~=(t~~tp) and t, at the position of the minimum
between the t and p peaks, respectively.

E'
(GeV}

Qg
(GeV') Exact HCS HCS' n=5

18.495
18.480
18.46
18.40
17.50
16.50
14.50
12.50
10.00
7.50
5.00
2.50
1.50

2.815
2.813
2.810
2.801
2.664
2.511
2.207
1.903
1.522
1.141
0.761
0.381
0.228

0.9967
0.9861
0.9723
0.9328
0.5678
0.3824
0.2138
0.1352
0.081
0.049
0.027
0.011
0.0065

345.78
79.92
39.57
15.86
1.862
1.176
1.092
1.593
3.523
9.805

33.38
169.60
475.51

344.32
79.58
39.41
15.80
1.886
1.258
1.370
2.237
5.083

13.437
42.732

207.7
577.2

0.030
0.079
0.046
0.028
0.015
0.049
0.160
0.346
0.789
1.831
5.094

24.58
73.55

0.030
0.079
0.046
0.028
0.018
0.070
0.267
0.654
1.679
4.203

12.07
58.57 .

174.9

206.29
52.89
27.53
11.78
1.628
1.077
1.037
1.534
3.430
9.645

33.21
170.1
473.9
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tion is discussed next, while the hard bremsstrah-
lung accompanied by soft photons will be treated
in a forthcoming paper.

D. Exact one-photon contribution to the elastic peak

Qz2y2(E-E')(E —E'+u)
E-E'+u

1
M

(s.4o)

In the very inelastic region, the variable u be-
comes

u =[(E-E')'+Q ']'~'

The exact, one-Photon-emission contribution
to the lepton-proton cross section has been com-
puted by Mo and Tsai." This is the standard re-
ference for radiative corrections in ep and pP
scattering, currently used by experimentalists
to extract the nonradiative structure functions
from the data. In Appendix B, we give a brief
summary of the derivation of the original Mo and
Tsai formula, the needed results being quoted in
Eqs. (B26) and (B27). In the general case, this
equation involves a double integral, one over the
squared momentum transfer t, the other over the
squared mass u' produced at the nucleon vertex.
Since, as we shall see, the importance of the
bremsstrahlung cross section for small x~ arises
from the vicinity of small t, we shall limit our-
selves for the rest of this paper to the elastic con-
tribution in which the smallest values of I; may be
reached.

Using Eqs. (3.1) and (3.2) into Eq. (B18), the
latter equation reads

J
™~d—

,,[t,w, (t)+t,w, (t)], (s.s9)
&m'en

where t, and t2 are components of the lepton tensor
integrated over the azimuthal angle with u = p —p'as
polar axis, given in Eqs. (B26) and (B27) with
so'=M'. From Eq. (B19)we have

changed photon propagator leads to a third peak
(besides the p and p' peaks already discussed) in
the integrand of Eq. (3.39). The discrepancy be-
tween the exact and peaking one-photon cross sec-
tions has its origin in the existence of this third
peak, ignored in the peaking approximation, which
is called the t peak. Figure 4 shows the graph of
the integrand of Eq. (3.39),

(,) t, w, (t)+t,w, (t) (s.4s)t2

for e+p scattering with E=20 GeV, 8=5', and
E' =5 GeV. VVe shall define the hard bremsstrah-
lung cross section as the integral of P(t) under the
t peak,

n' '
—,t,W, t +t,W, t, 3.44

m&11

where t, is a value of t which separates the t and

P peaks. In Table II, we list the hard cross sec-
tion given in Eq. (3.44), in the columns labeled
HCS and HCS' corresponding to t, = (t,„t~)'~' and

t, at the position of the minimum between the t
and P peaks, respectively. The column labeled
"exact" is the result of Eq. (3.39). Under the
elastic peak (x~ ».9, say), the hard bremsstrah-
lung cross section is negligible and the peaking
(ly) and the exact cross sections almost coincide.
Thus in this domain of x~, we may be confident
in the peaking approximation and we can use the
column n =5 as the elastic contribution to the cross
section.

For smaller values of xE, the difference between
the exact and (ly) peaking approximation becomes
sizable. To solve this difficulty, Mo and Tsai"
decided to take into account the exact one-photon
cross section for the elastic contribution and to
modify the peaking approximation for the inelastic
one. The problem then is how to take properly
into account multiphoton effects. Since our 3p-

and the minimum value of t simplifies to

(3.41)

I)
Ol

L5

10'

E=20 GeV, e=5
E= 5 GeV p peak

E M2+ 2Q
4

min 4(E EP)2™8 (3.42)

Comparison of Eqs. (3.42) and (3.27) shows that
t „could be smaller than t~ =Q~' by two orders of
magnitude or more. For example, in e+p scatter-
ing, for E=20 GeV, E'=Io GeV, and 6) =5', we
get Qs'=1.52 GeV', t „=5.8 && 10 ' GeV', and t
=7.9X &o ' GeV'. For t reaching t~,„, the ex-

10
10

'i/2

mini (
p fnin

I I I I I I I III
10 3 10 2

t (Gev )

0 2

I I I I I I I I II ~l I I I I Ill~
10-'

~IG. 4. Differential hard bremsstrahlung cross sec-
tion versus the squared momentum transfer emphasizir)g
the importance of t peak for very inelastic scattering.
The smal, l-p ' peak is not shown.



22 NON PERTURBATIV E METHOD FOR RADIATIVE CORRECTIONS. . .

proach to the radiative corrections is nonperturba-
tive (by this we mean that we include the effect of
soft photons to all orders), we shall treat this
problem differently. Following Grammer and
Yennie's" ideas, the contribution of the t peak,
which clearly originates from the emission of one
hard photon, appears as a higher-order term in a
rearranged perturbation series. Physically, the
rearranged series instructs us to include first
the cross section with the emission of no hard
photon and an arbitrary number of soft photons,
then the contribution of one hard photon plus an

arbitrary number of soft photons, and so on. To
take into account the soft photons which accompany
the hard emitted one, one includes a spectral
weight function in Eq. (B1) and generalizes the
discussion of Sec. II. However, we must note

the following problems associated with such a pro-
gram.

(i) We do not know a nonperturbative form of the

yeey vertices whose infrared-divergent part must

cancel the infrared-divergent factor in the spectral
weight function E~ introduced in I. In fact, one can
assume that E, given in Eq. (2.3), is still the right

weight function to use and which takes into account
the effects of real and virtual soft photons.

(ii) There is probably some double counting in

this approach. However, this is not expected to be
important since the t and p peaks are well separ-
ated when the hard bremsstrahlung contribution
needs to be taken into account.

(iii) Since we are concerned with the small-t
domain, one-may wonder if multiphoton exchange
between the lepton and proton vertices leads to
important contributions. In fact, infrared argu-
ments show that these exchanges are character-
ized by the exponent of the order (o.'/v)lnE/E',
much smaller than ~ since it does not involve

the lepton mass. " Consequently, multiphoton

exhanges are expected to be small.
(iv) Computation using a rearranged perturbation

series show that soft-photon effects in the hard
bremsstrahlung cross section are important. We

present these results in a forthcoming paper.

IV. RADIATIVE CORRECTIONS TO CONTINUOUS
SPECTRA

Using the formulas derived in Sec.- II, we can
now carry out the radiative correction for a con-
tinuous spectrum almost as simply as in the dis-
crete (elastic) case. We discuss first, in general,
how to compute the measured structure functions
in terms of the nonradiative ones. We apply the
resulting expressions to the radiative corrections
of the &33 resonance and to the phenomenological
E,(x} function derived by Feynman and Field. "
From the formulas we obtain one can discuss the
unfolding procedure, "that is, the way to get the
nonradiative structure functions from the mea-
sured ones. Surprisingly enough, taking into
account soft, multiphoton effects makes our re-
sults simpler than those of Mo and Tsai. Corre-
spondingly, the unfolding procedure is simplified.

2w —(wE+ Z)
%E —+ (4.1)

where the experimental variable zv~ is defined in

(2.37), and Eq. (2.46) becomes

A. General formula for a continuous spectrum

The discussion of radiative corrections to a contin-
uous spectrum relies on Eq. (2.46) in which the factor
Hy

' must m ultiply 8'»„and 8'»~. For orientation,
we remind the reader that in the approximation where
the leptonmass is neglected, H, =H, =H= (H,)(H ),
where H, = (1+x,)'/2 and the variables x, and y.
are given in Eqs. (2.42) and (2.43). After the
elastic contribution to Eq. (2.46) has been sub-
tracted, the lower limit in the zv' integration is
the nucleon-pion threshold: M' should be replaced
by Z'= (M+m, )', where m, is the pion mass. In
practice we shall let Z be any mass such that the
contribution to the 8',. functions for zv' & Z' has been
already subtracted.

For later convenience, we make the linear
change of the w integration variable

gf (et+)2enF(&)P 2 E ( E

g p~

0 [r(1 —T)]u-~x&, (1 —])' " [(w~+ w)/2w~]' " x,'[1 z(w')y] ~-" ' (4.2)

Here, we have used Eq. (2.47) and introduced vacuum polarization to lowest order through the factor V~'

given in Eq. (3.12}. Notice that w' and Q' are known explicit functions of r and $.
We have already discussed, in Sec. III, the & integration method using the roots of the Gegenbauer poly-

nomials and the corresponding weights. The g integration receives the most important contribution from
the vicinity of )=1, that is, w=wE. Consequently, we use the Gauss-Jacobi integration method described
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briefly in Appendix A. For an approximation of degree n, the formula involves the roots of the Jacobj
polynomial P„'"~' with o = -I+ nA and p= 0 and the corresponding weights C„„. For nA smail, there is
always a root of the form $ = 1 —0 (AA/n), whose weight is of order one, the weights of the other roots being
of order nA. . When the nonradiative structure functions are smooth enough, low values of n give sufficient
precision as we shall discuss later on with some examples. For simplicity, we have chosen in our nu-
merical programs the degree n' for the & integration equal to n+ 1, where n is the degree used for the f
integration. In general, for comparison we list the results for different values of n from 1 to n, „—-20.
(For higher values of n, we cannot determine for the moment, with sufficient precision, the roots and
weights. ) Using the normalization and weights given in Appendix A, the approximation of degree n to Eq.
(4.2) is given by

Ifl

W= e'~'"'V„' e e I' '(1+ nA)1'(I+ aA) —,
' g g C„„,( 1+ nA, 1+ nA)C, „(-1+oA, O)8„„„„,.

AeAe. v~1 v ~1

(4.3)

Here, W is W, or Wp 8 is the corresponding in-
tegrand in Eq. (4.2),

W„„HV w/ge

x,'[I —e (m') v]~& [(~+mr) /2m']' (4.4)

Let us note that, according to Eq. (4.1), m'- ~+~'

while, since Q' is a function of both & and ( [see
Eqs. (2.40)-(2.45) and (2.47)), Q'- Q, , '. Equa-
tions (4.3} and (4.4} are the basic formulas for
radiative corrections of a continuous spectrum, the
corresponding formulas for the elastic contribution
being Eqs. (3.2) and (3.38). As an example of how

Eq. (4.3) is used, we give in Table III the values
of the weights C„„and C~, for n = 8 and n' = 9 and

H is the hard factor defined in Eqs. (3.35)-
(3.37), and WN„ the nonradiative structure func-
tion. The indices which affect the integrand re-
mind us that it has to be evaluated at the roots
of the Zacobi polynomials P'' ""(() and
P (-1+n Ai -1++A)(2 & 1)n'

(4.5)

I

also the relevant values of w and Q'. From this
table, we see that the terms in Eq. (4.3) corre-
sponding to (v = 8, p = 1) or (v = 8, p, = 9), reminiscent
of the P and p' peaks, have each a weight of 1.83
x0.955 out of a total weight of 2 &2. The next
dominant terms will have v=8 or p, =1 or p, =9
with only one large weight. The remaining terms
involve the product of two small weights. It is
illuminating to draw, even schematically, the
(v, Q') points with their corresponding weights, on
the analog of Fig. 1, for the actual kinematics.
The dominant points are located near the lines
E,=O, E =0. Among these points, two of them,
located in the vicinity of the (ve, Qe ) point will
have the largest weights. Of course, one can get
large contributions from nondominant points when
it happens that the integrand of Eq. (4.4) is large
for these points. This is the case, for example,
for the elastic tail and to a lesser extent, for a
resonance tail. Then, one must take into account
these contributions separately since the Gauss-
Jacobi integration method breaks down when the
behavior of the integrand is irregular as a function
of d'or (.

TABLE III. Values of C~8, C ~, M, and Q for p. p, E=219 GeV. zvz=16. 94, Qz =4.85
GeV, ~=60. The third through tenth columns give values of Q in GeV for the indicated p.

and v.

w 1.43
C„8 0.003

1

2.89 5.28
0 ~ 007 0.011

2 3

8.24
0.017

4

11.32 14.06
0.025 0.038

5 6

16.03
0.072

7

16.934
1.829

8

0.9555
0.020
0.012
0.009 '

0.009
0.009
0.012
0.020
0.955

1.44
1.79
2.71
4.34
6.71
9.61

12.6
14.9
16.02

1.51
1.87
2.78
4.39
6.71
9.54

12.4
14.7
15.77

1.75
2.10
3.00
4.53
6.71
9.32

11.9
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structure function E»„of Fields and Feynman, "
F,„„(x)= x[v4(u+n)+ v'(d+ d )+ ps+a)], (4.12)

where

xu(x) = 0.17(1—x)'[1+41.88x+ 1412.38x + 1276.42x'

+ x'@(9.09 —389.89x —2080.05x'

—258.07x') ],

xfI(x) = 0.17(1—x)",
xd(x) = 0.17(1 —x)~[1 —14.11x—139.39x2+ 126.87x'

+ xu'(5. 48+ 112.51x —3 7.93x'

rate effect. We intend to discuss this subject from
a nonperturbative point of view. in a forthcoming
paper.
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APPENDIX A: GAUSS-JACOBI INTEGRATION
METHOD

—46.49x') ],

xd(x) = 0.17(l —x)',

xs(x) = xs(x) = 0.1(l —x)'.

(4.13)
Our formulas for radiative corrections involve

integrals of the form

f(f;n, P)=
1

dx(1 —x) (1+x)'f(x),
-'1(n+ P+ 2)

(Al)

The results of using Eqs. (4.12) and (4.13) into

(4.3) and (4.4) are illustrated, for the two experi-
ments, in Figs. 6 and 7. These radiative correc-
tions include neither the radiative tail from the
elastic peak nor the hard bremsstrahlung which
must be computed separately. These figures show
in particular the steep rise of J", for small fixed
xs and increasing Qs', that is, in the very inelas-
tic region.

Our discussion of the unfolding procedure, "that
is, the procedure for extracting the nonradiative
structure functions from the measured cross sec-
tion, will be very sketchy. The reason is that ex-
perimentalists found ii more practical" to adjust
a parametrized form of the nonradiative structure
functions, on which radiative corrections are ap-
plied, until agreement with the data is reached. In
this case, Eqs. (4.3) and (4.4) need not be inverted,
although inversion is possible similarly to the pro-
cedure described in Ref. 13.

Two other important parts of radiative correc-
tions, the straggling and ionization in the target,
are not considered in this paper since these sub-
jects are very clearly exposed in Ref. 13 and can
be incorporated in our formulas.

To conclude, we emphasize that the nonperturba-
tive approach described in this paper, which takes
into account mainly collinear photon emission, is
expected to be the dominant contribution to the in-
ternal bremsstrahlung, except in the very inelastic
region. In that region, the t peak is important and

hard bremsstrahlung must be included as a sepa-

where f is assumed to be a smooth function on the

integration interval. The factors introduced in the
definition of I make the final formulas simpler
since the normalization of I is

f(I; n, P) = 2.

f(f;n, p)=QC„„(n, p)f(x„„).
V=/

(A3)

Here, C„„ is the weight attached to the x„„root
which is proportional to X„„, the Chr istoffel or
cote number for the Jacobi polynomial. Taking
into account the normalization of Eq. (Al) and the
known expression" of A.„„we get

Equation (A2) results from the definition of Euler's
B function. In practice, we shall need these in-
tegrals for n = P= -1+ nA (elastic tail) and for
n = -1+ nA, P= 0 (for a continuous spectrum). The
Gauss-Jacobi integration method is suited for the

computation of these integrals.
I.et x„„be the zeros of P„"'~'(x), the Jacobi poly-

nomial of degree n. These polynomials are ortho-
gonal on the [-1,1] interval with the weight func-

tion (1 —x) (1+x)~. In the Gauss method of mech-
anical quadrature, one shows that if f(x) is ap-
proximated by an osculating polynomial of degree
2n —1 through the points x„„, the following formula
holds:

(n+ 1)(n+ 2)* (n+ n —l)(p+ 1)(p+ 2) ~ ~ ~ (p+n —1)(1—x„„')(n+p+ 2u)'
2(n+n)(P+n)n! (n+ P+ 2)(n+ P+ 3)~ ~ ~ (n+ P+n)[P' "(x )]' (A4)
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When the function f is smooth enough, the use of a
low-degree Jacobi polynomial in Eq. (A3) is suf-
ficient to get very good precision in the mechanical
quadrature. Since the reader may like to use our
formulas without being involved in a computer pro-
gram, we shall give the analytical expressions of
the roots and weights for the lowest values of n
and for the two cases of interest which we have
computed by hand.

1. The Gegenbauer case, n = P

When o. = P, the Jacobi polynomials are propor-
tional to the Gegenbauer polynomials P„'(x) with
X= Q+ &. Since these polynomials have definite
parity, we have computed "by hand" the x„„and
C„„up to n = 5 and checked the results by taking

f=l, x, x' . Defining

n=2:

x|2= -(1+ 2l+X = -x~2

C„=C,2= 1;

n=s:

x„=—(1+2n/3) '~ = —x„, x„=0,

1+ 2o!/3 8o!

1+ 2n 3(1+2o')

n=4:

3 + 2[(l+ n)/(I+ 2n/3)]'
xg x4

5+ 2Q 4

(A6)

(A 7}

(A8)

we get

(A5) y+ n + (2 —o') [(1+2n/3)/(I+ o') j' '
1 44 0
4 1+2Q 3'

n=5:
5+ 2[(1+n)/(I+ 2o. /5)]'i'

25 7+ 2Q

[1+(2o/5) ][[1+(14n/9)]+ [1+(4n/9)](1 —2n)/(1+a)[(1+ a)/(1+ 2+/5)]'i2].

25 2(1+ 2a.)(l+ 2o/3) 45

64 n(1+ o.)
45 (I+2o.)(1+2o./3)

'

(A9)

It is important to note that for small n (the value
of o. will be in fact nA), for a degree n~ 2, there
are always two roots in the vicinity of + 1 with
weight of order 1 whereas the other roots have
weight of order Q. With the change of variable
x=2& —1, Eq. (Al) reads

n=2:
—(n+ 2)(a+ 3}+[2(n+2)(o+ 3)]"'

2 (n+ 3)(o.+ 4)

(&+2) [2(o+2)]"'+o'(&+ 3)"'
(o. +2)[2(o;+2)]"'

(A13)

2. The Jacobi case with P = 0

Here, we have computed the roots and weights
for n=1 and n=2 only. We have used a program

I

for higher values of n. In many cases, n=2 gives
already precise results. Defining

x —18—
. 2

(All)

the results are

n=1:

1

I(f; o. , n) =21"(2n)I' '(o.) dr[ad(1 —&)j ~ 'f(x(&)).
0

(A 10)

We emphasize that when Q ——1+ QA with QA

small, there is always for n ~ 1 one root in the
vicinity of x= 1 with weight of order 2, the other
roots having weights of order QA.

APPENDIX B: A REMINDER OF THE EXACT
ONE-PHOTON-EMISSION FORMULA

For the reader's convenience, we give in this
appendix a brief summary of the Mo and Tsai"
formula. To lowest-order perturbation theory, the
exact one-photon-emission contribution to the
cross section is given by

do„QP' Q dk'

P 2&2 2~( 2)2 NR vv@~P i )

Q+1
llQ+2

(A12) Here, 8'"" is the proton structure tensor defined
in Eq. (2.13) and T ""is the lepton tensor describ-
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ing one-photon emission from the lepton vertex
(not necessarily soft), whose normalization is such
that

limT '"(p, p', k) = (-j'j,)X'"i
0

where the classical current j' is given by j'
=p"lk p' —p. '/0 p and thus

'p P Pj~' (k p)(k p') (k p)2 (k pi)'

From Eq. (2.12) with n = 0 we get

X""i, , = 2(m' —p p')g ""+2(p "p' "+p "p"). (B4)

The explicit expression of T ""is easily obtained
and reads

«'(p" +P'+m)y" y "(p —ft'+ m)«' ~ y "(p"+/+ m)g' «'(p'- ft'+m)y"
2kp' 2kp . ™. 2kP' 2kP

(as)

where q is the photon polarization vector. Computing the trace and the sum over photon polarizations, the
result can be written as

q'""= 2(-j')Nm' pp') g-""+(p'p'"+ p p")]

) kP kPii (kp)' (kp)' k p k p

1 1 4p'"p'v 4P P"
kp' kp kp' kp

-1 +2i, —,+1-'
~

p'"k"+p "k'i(p p' m' &p'k"+p"k" (p p m' i 4m2k'k"
„.P ii&k P' k p i, k.p, Ik.p —,.p, )

—(k.P)( .kP.)
(B6)

O' Tl v=V Tpv=o ~ (B

which result from gauge invariance. We noted in I that q„X'"=q+""=0 only in the limit K-0. Using the
complete expression of T", gauge invariance is maintained in the domain where the emitted photons are
not necessarily soft, at least at the one-emitted-photon level.

Taking into account Eqs. (2.13) and (B6) we can write Eq. (Bl) in the form

In this equation, the term involving the classical current represents the soft part of the lepton tensor. We
have checked that Eq. (B6) satisfies the identities

dA'dE' 2w'p 2~ (q')'

where

(B6)

P P 2 P P
kP' kPii kP' kP (k P) (kP')' k'P' kP

(B9)

and

P P Tpv
2 ~2

., i2(P p)(PP') . . . , 1 1,/kP' k p k P k P'
= —2j'i, —p p'+m' —2 (2p p'+m'), — +m'i

(

(P P)(P P') 1 1 & 4(P P)' 4(P P')' 4(P P')(P k) P P' m 1
M' kp kp' j M'kp M'kp' M' (kp)(kp') (kp)' kp

4(P p)(P k) p p' m' 1 4m'(P k)'
M' (k p)(k p') (k p') k p' M (k p)(k p')' (B10)
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Equation (B8)can be written in a more manageable form, suited for numerical computations. Let us in-
troduce in this equation as integration variables, the squared momentum transfer

t = Q' =——(P —P' —k)' = QR2+ 21d/(E —E' —u cos8,i)
and the hadronic invariant mass

w = (P+q) = —t+M'+2M(E —E' —&oz, ),

(B11}

(B12)

where u=p —P~ is a three-vector taken as the z axis in the laboratory frame, &u~ is the laboratory energy,
and 8» is the angle with respect to u, of the momentum of emitted photon. In terms of the usual laboratory
variables, u= ~u

~

is given by

[(E Ei)2+ Q 2]1/2 (B18)

Using Eqs. (B11)and (B12) and also

1 1 k (p' -p) Qs2 —t
kP kP' kPkP' 2kPkP' ' (B14)

one notes in Eq. (B10) an important cancellation of the large terms, those proportional to p p'(E'+ E")/
(k p)(k p'). After some elementary algebra, Eqs. (B9) and (B10) become

and

1 1 4[(t/2+m ) +p p'(p p' —42212)]

kpkp' (B15)

(k p)' 2M 2 (k p')' 2M

2(w' M'+ t)-
kp kp'

(B16)

Equations (B15) and (B16) reproduce the results of
Mo and Tsai.

When t and so' are taken as integration variables
in Eq. (B8), the nonradiative structure functions
do not depend on the azimuthal angle cp, of the
emitted photon. Upon introducing

1 21)

T d(pp, &=1 2 (B17)
0

and computing the Jacobian for the (&u~, cos8»)
-(w2, t) transformation, Eq. (B8) reads

da'" &'P

d Q'dE' 87t Mpu

and wR2 is given in Eq. (2.&'t).

To compute the functions t,. associated with the
lepton vertex, we define

a=E-p cos8~cos8», a'=E'-p' cos8~, cos8»,

(B20)

b = —p sin82zsin8~= t/' = —p' sin82z sin82, . (B21}

Here, 8~ and 8~, are the angles formed by p and p',
respectively, with the u vector (in the laboratory
frame). From simple kinematics one gets

where

~E, tm~dt2

2 ( 1 1NR+ t2~PNR) y

N2 'm-

(B18)

P —P'cos8
cos8 =

u
p cosg

cos8&, = (B22)

Qz'+ 2(E —E'v u)[E —E' (w2 M2)/2M]
1+ (E —E'+ u)/M

(B18)

»n8, =p' sin8/u, sin8, , =p sin8/u. (B23)

In practical applications, we use the second form
of the formula
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f
dic„2w

(1 1
($p)(kp) a —a ~~$' S

Eq. (817) we get

where

2w(a+ a')
=SS (S+S)' (824)

2m'(2m' —t) (a a' }
1 (g.2 I $3 $/3jl

4(a+ a')[(m'+ t/2)'+ p p'(p p' —4m )]
&o~,'$$'(S+ S')

S = (a' —5')'~ and S'= (a" —b')' ' (825) (825)

which avoids the spurious a= a' singularity. From and

t(Z' Z" ' . '
'(2Z' 2E"

(o~'$$'(S+ S') 4

(827)

The width of the p and p' peaks appear if we make
more explicit Eq. (825):

rn p' sin 8
S =P cos8» -—cosa + +, , (828)

p ~ pu'
~2P2 sjn2g 1/

$ p cosegg I cos Hat + Ig 2
p & p u

(829)

where, according to Eqs. (811) and (812),

g
cosH pL,

=
Q

8, (830)""- ')'
2M

In the main text we discuss in more detail the exact,
elastic one-photon contribution.
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