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The structure of the dual topological expansion is studied up to the cylinder level by concentrating on the
determination of Reggeon and Pomeron slopes. A precise formulation for the generation of Regge behavior

in terms of an effective random walk is presented, and a well-defined meaning is provided for the trajectory
slope in terms of average step lengths in the rapidity and the impact-parameter directions. The smallness of
the Pomeron slope, ~ /~ -0.3, is shown to represent a nontrivial constraint for theories satisfying the
requirement of short-range ordering; a topological phase consideration is shown to be the primary
mechanism responsible for this phenomenon. The relation between our finding to the naive expectation

~ /~ = 1/2 based .on a string picture and to the general phenomenon of the f/P identity is clarified.

I. INTRODUCTION

The topological expansion' ' based on the N, -~
limit has been advanced as a promising calcula-
tional scheme for gauge theories like quantum
chromodynamics (QCD), where, one hopes, in

the leading order quarks and antiquarks are per-
manently bound to form zero-seidN mesons. The
dual topological program' ' which is motivated by
a 1/N expansion with N„Nf -~, and N, /N& fixed,
on the other hand, has also been advocated re-
cently as a unified approach to the study of soft. .'

hadronic phenomena.
Common to all topological-expansion (TE) ap-

proaches to strong interactions is the basic re-
quirement that the planar component-of the S ma-
trix, i.e., ' the leading order of the expansion, must
resemble closely the observed low-energy spec-
trum, e.g. , the existence of a vector-tensor nonet
of Regge families of particles with a Regge inter-
cept ao-~ and a slope n,'-1 GeV '. One major
advantage of a dual topological approach is the
admission of resonance widths at the planar level,
consistent with the remarkably successful Okubo-
Zweig-Iizuka (OZI) rule for particle decays. Un-
like the 1/N, expansion for QCD, internal quark
loops are not suppressed in a dual TE approach,
leading to a unitarized 0ZI rule already at the leading
order of the expansion. Furthermore, the pres-
ence of internal quark loops allows a simultaneous
description of an elastic amplitude and, through
a unitarity cut, partidle production. Therefore,
it is much more appropriate for making contact
with high-energy reactions where soft hadronic
production predominates. However, due partly to
the difficulty of handling fermion degrees of free-
doms, not much progress has been made in explor-
ing consequences of the dual TE by directly work-
ing with the QCD Lagrangian. Nevertheless, be-
cause of planar unitarity, together with duality

n,'/n, '-0.3 (1.2)

(which, as we shall point out shortly, is a rather
nontrivial result).

One major triumph of the TE approach to soft
hadronic phenomena has been the observation' of
Lee and Veneziano that the pattern of Regge inter-
cepts at I = 0 (n„-l, n, - —,') can be understood by
a general topological analysis together with a posi-
tivity requirement. However, the determination
of Regge slopes must involve additional inputs.
This can best be contrasted with the study of QCD
where, at the classical level, the theory does not,
contain any dimensional parameter. Whereas
Regge intercepts are "effective spins, "which are
dimensionless, a dimensional parameter such as

arguments, consistency relations among physical
observables can be deduced, in the spirit of the
analytic S-matrix approach to hadron dynamics. '

In this paper we study the structure of the dual
TE up to the cylinder level by concentrating on
the determination of Reggeon and Pomeron slopes.
A precise formulation for the generation of Regge
behavior in terms of an effective random walk is
presented, and a well-defined meaning is provided
for the relation

no = Bo/2Lo, (1.1)

where L, and B,' ' are average planar elementary
step lengths in the rapidity and impact-parameter
directions, respectively. By analyzing the im-
pact-parameter structure of a planar absorptive
amplitude, (1.1) allows us to relate the Regge
slope n,' to dimensional parameters characterizing
the multiparticle amplitude-phase structure and
their ~p, ~

distribution, i.e. , those which define
what is meant by soft hadronic phenomena. We
next carry out an analogous analysis for the Po-
meron sector; we identify the mechanism re-
sponsible for the smallness of the Pomeron slope,
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A straightforward analysis would then lead to a
"Pomeron" with a slope'

Q ~ (Bo/Lo) Qo, (1.4)

a phenomenologically acceptable result. However,
it is also easy to show that the Pomeron so gene-
rated actually is a logarithmic branch point in the
J plane. ' Since one expects the Pomeron to be a
pole at the cylinder level, both from theoretical
and phenomenological considerations, one ap-
parently must remove this extremely simple
mechanism from directly being responsible for
a small Pomeron slope. (For completeness, the
essential arguments involved are summarized in
Appendix A.)

By insisting on the Pomeron being a pole, we
can again analyze its generation by an effective
random walk leading to a relation

n ~= B~/2L z, (1.5)

e ' can only emerge through "dimensional trans-
mutation" in the course of performing a renor-
malization (and, of course, also after the color-
confinement mechanism is properly identified).

In a dual topological approach in terms of quark
lines, color confinement is built-in and the dy-
namics is controlled by the nonlinear planar uni-
tarity. At t= 0 under a general factorization as-
sumption for production amplitudes, a dynamical
scheme for Regge intercepts can be constructed
where only integrated dimensionless couplings are
involved. In the nonforward limit, however, di-
mensional parameters must be introduced, e.g. ,
to characterize the p, distribution. Therefore, a
determination of Qo corresponds to finding pre-
cise relations such as (1.1) which relate dimen-
sional parameters of the problem (e.g. , no and

(p„'}). Past dynamical calculations, though crude,
indicate that consistency at this level can indeed
be achieved. ' '

However, divergent views exist on the proper
treatment of cylinder diagrams at the nonforward
limit, leading to a variety of schemes for gene-
rating the Pomeron. One popular mechanism has
been Veneziano's two independent qq jets pic-
ure ~, io, ii This mechanism is suggested by a

string picture where the Pomeron is to be as-
sociated with a closed string. If a string qq jet,
i.e., the planar structure, corresponds to a ran-
dom walk, the Pomeron would then be generated
by a simultaneous "double random walk. " For
instance, to reproduce (1.1}, we need only to con-
sider a random walk with an elementary step dis-
tribution

where L~ and B~ are average nonplanar elemen-
tary step lengths. To provide a qualitative esti-
mate, it is perhaps reasonable to at first expect

and

&~=&o (1.6)

(1.7)

no = B;/(2L, ) + (L,"/L, )n,'(0),

o,'= B' /(2L, )+ (L",/L, )o,,'(0),
(1.10)

where o.,'(0) =-,' o.,' is the slope of a two-Heggeon
cut. We next identify the primary mechanisms
leading to consistency for (1.10) on the one hand
and leading to a much smaller value for e~ in
(1.11) on the other.

In Sec. II we first explain how Regge behavior
can be viewed as a diffusion process with the
Regge slope serving as the "diffusivity". A mi-
croscopic random-walk model is then constructed
allowing us to express a' in terms of microscopic
parameters. " In Sec. III we demonstrate how a
general MP cluster producti:on model can always
be recast in the form of a Markovian walk. " An

effective random walk is then contructed out of a
Markovian milk in Sec. IV, which allows us to
calculate the Regge slope directly. In Sec. V pro-
perties of the elementary density for our effec-
tive random walk is investigated for both a general
MP cluster model and for the case of a factoriza-
ble kernel. Our discussion up to this point applies
to both o.,(t) and n~(t), so that no subscripts 0 and
P are used, and n(t)=n(0}+n't. In Sec VI we re-.
cast the dual TE dynamics in terms of our effec-
tive random-. walk language and the resulting

The later relation (1.7) is suggested by the fact
that a cylinder topology corresponds to a higher-
multiplicity event than a planar topology would,
and a factor of 2 follows from a rough estimate
based on an analysis of the Lee-Veneziano type. '
Substituting (1.6) and (1.7) into (1.5), one arrives
at Q~ 2Qo in gross disagreement with the em-
pirical result (1.2).

It is our contention that, in the dual TE, when
effective random walks "'"responsible for generat-
ing o Onad oa~re constructed properly, both (1.6) and
(1.7) are false. We demonstrate that the impor-
tance of both clustering and Regge behavior for
particle production leads to contributions

(1.8)

&p=&~+&~ L~=L~+ ~~

where superscripts c and h stand for "cluster
mass distribution" and "helicity pole, " respec-
tively. By explicitly constructing multiper ipheral
(MP) cluster kernels, we obtain
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structures for o.,' and n~ are discussed in Sec.
VII.

II. POLE DOMINANCE AS A RANDOM WALK

Under a Regge-pole-dominance assumption,
an absorptive amplitude near the forward limit
can be represented by

(2 1)A;, ,(s, f) P;(-fb "'P,( )f,

wh~~~, «r ~f ~
sm»I, o'(&) —o.(0)+ n'f and P(t) is

peaked. In an impact-parameter representation,
(2.1) becomes

P(y, b) =g P(y, b),
ff =1

which then satisfies an integral equation

P(y, b)=~(y, b)

(2 8)

+ dg~'d'b'co y', b' P y —y', b —b' . 2.9

sponding to having traveled to the point (y, b)
from an origin in g steps; it can then be evaluated
recursively from +(y, b). We next define a total
density

A, ,(y, b) -
Jt db'db "P;(b')

x e '"'P(y, b —b' —b")P&(b"),

with

P(y, b) =(e ' '"')/4c'-'y,

(2.2)

(2.3)

Expanding P( y —y ', b —b ') in the integrand as a
power series in y' and b', and making use of (2.5),
(2.6), and (2.7), one arrives at

[8 (B/2L)V, ']P(y, b) =0. (2.10)

Corrections to (2.10) involve higher derivatives of
P(y, b), which are unimportant in the limit y»I. ,
b'»B. Comparing (2.10) with (2.4), one obtains

where y = Ins is the rapidity. Equation (2.2) for-
mally corresponds to a signal propagation in the

(y, b) space where e '"'P(y, b) is the propagator
and P,.'s serve as the sources. From (2.3), one
verifies that I' satisfies a conventional two-di-
mensional diffusion equation:

(a„—n'V-„')P(y, b) = 5(y)6'(b), (2.4)

u)(y, b)dyd'b = 1. (2.5)

We assume axial symmetry so tha, t v(y, b) is a
function of b' only and we also assume that
Gr(y, b) ~8(y). We assume further that u&(y, b) is
rapidly convergent so that

o. ' being the macroscopic diffusivity. The formal
construct suggests that this macroscopic pheno-
menon can be explained in terms of microscopic
local dissipations and a' can be related to micro-
scopic parameter s.

To provide an explicit realization, next we in-
troduce a microscopic model in which (2.3) be-
comes valid when y and ~b~ are larger than certain
microscopic parameters to be specified below.
Consider a random-walk process in a three-di-
mensional (y, b) space; let ~(y, b) be a normal-
ized elementary probability density for the one-
step distribution:

Q'=B/2L, (2.11)

which is precisely the desired relation between
our macroscopic and microscopic parameters.

III. MULTIPERIPHERAL MECHANISM
AS MARKOVIAN WALK

Analyses of experimental data in the early
seventies have revealed that the essential features
of high-energy production processes can be un-
derstood in terms of a multiperipheral (MP) clus-
ter production picture. " The key ingredients in-
volved are local rapidity correlation and limited
momentum transfers to neighboring clusters.
These assumptions are fairly standard, and,
through an inelastic unitarity relation, an over-
lapping-function calculation then leads to Regge
behavior for the elastic absorptive part. It then
seems possible to identify the micromodel in-
troduced earlier with the actual cluster produc-
tion process. If true, P(y, b) in (2.8) can be re-
lated to the Fourier transform of the absorptive
amplitude A(s, t), and P„(y,b), when integrated
over b, becomes the cluster multiplicity distribu-
tion. For the moment, we keep our discussion
general without distinguishing between planar and
Pomeron sectors. Therefore, a Regge function
n(t) = o.(0)+ n'f can apply to either n, (t) or n~(t)

Consider a standard MP equation (see Fig. 1),
I =& yG(y, b)dyd'b,

B=
I b'9(y, b)dyd'b

are well defined, e.g. , that given by (1.3).
Let P„(y,b) be a probability density corre-

(2.6)

(2.7)

A(p, P;, Q) = C(p, p, ; Q)

+ (2,). d'P'C(I, P'; Q)R(P, P', P;, Q)

xA(P', p, ;Q), (3.1)

where the kernel is allowed to have a po dependence
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p-Q/2 po-Q/2

p+ Q/2 po+Q/2

p- Q/2

p+Q/2 '

p'- Q/2 po" Q/2

c (A)
p'+Q/2 p, +Q/2

turn-transfer invariants

t, =(p+q/2)', t,'=(p'~Q/2)', t', =(p, +q/2)'

FIG. 1. Multiperipheral integral equation.
and "energy invariants"

(3.2)

appropriate for a multi-Regge cluster model.
Take Q to be a spacelike two-dimensional Eucli-
dean vector (0; q, o) so that we can occasionally
replace Q by q where Q'—= t=-q . Equation (3.1)
can be. expressed in terms of standard momen-

e=(p-p, )', s'=(p'-p. )' fd, '=(p-p') .

(3.3)

However, to obtain a simpler expression for the
phase space, we introduce, in place of t„ t,', and
)0 15, 16
y)

cosp=—z=—[p ~ q/(ut)' '], cosp'=—z'=—[p' Q/(u't)'~'], cosp, —= e, —= [p, q/(u, t)' '] (3.4)

and three rapidity variables y-lns, y'-lns',
q'-1nM, '. In terms of these variables (3.1) can
be rewritten as (see Appendix B)

A, (y;q)=C, (y;q)

+ dy'K, ,( y - y', q)A»(y', q}, (3.5)

where

K„(y;q)-=dq' df'5(y —q' —f')e ~

0

x C „(q', q)R „(t',q) .
(3.6)

In (3.5) and (3.6), (u, p), (u„ p, ), and (u', Q ') have
been replaced by a set of discrete indices i,j,k,
where a discrete sum over A represents

Equation (3.10) is a generalization of (2.8) and it
must hold independent of j, i.e. , g,.~( y, b) being
a probability density for taking a step of type i,
after having previously taken a step of type j,
must be asymmetric in' and j. Once m,.

&
is con-

structed, a total probability density P,&(y, b) can.
then be found by solving an integral equation.

The primary difference between the solution of
(3.9) and the desired probability density P„.( y, b)
will be their asymptotic behavior in y; this sug-
gests that G,.~(y, b) is directly proportional to
K,~(.y, b) with a proportionality factor independent
of b. To determine this factor, it is sufficient to
integrate (3.9) over b, which, by the definition of
inverse Fourier transform, is equivalent to treat-
ing the original integral equation (3.5) in the for-
ward limit, q=0.

Performing a partial-wave analysis at q= 0 by
P 0 2$'

Q —(I/32m )
' du'J dP'.

k 0
(3.7)

A, ,=-) dye 'A„(y;0},
0

(3.11)

Introducing two-dimensional Fourier transforms
A,.&(y, b), C,.z(y, b), and K,.&(y, b), e.g. ,

2

A &(y b)= Jf e-fa SA &(y q} (3 8)

Eq. (3.5) becomes

A, q( y, b) = C,.~( y, b)

Eq. (3.5) at q=o can be diagonalized:

A]~= C.)+~E.~A~].J J V J J

Regge behavior for A,.&( y; 0) at large y

A„(y;O)-P,.e '" P,

(3.12)

g JI dydbe, .~(y, b)=1. (3.1o}

+g~~dy
"db'K, ~(y", b')A»(y —y",b-b'),

(3 9)

and now it resembles Eq. (2.9). However, because
of its matrix nature, instead of a random walk,
(3.9) can be shown to lead to a Markovian walk. "
To complete this identification, we must construct
an elementary step distribution +,.&( y, b) where

P Q Ka(0&P
k

(3.13)

This is the central result of any t = 0 MP dyna-
mics —once the kernel K,&(y;q=0) is known, o, (0)
can be found by solving (3.13}as an eigenvalue
problem. As a by-product, we also obtain the
forward Regge residue, playing the role of a
wave function.

follows if and only if there is a nonzero solution for
the corresponding homogeneous equation
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&,'»= S,'» f: S,'» = S»'. (3.14)

It follows that the left eigenfunction of K,,'" is
P,f»""., i.e. ,

In general, K~kcK„,, however, it is sufficient
for our purpose to consider the case

also clear from (3.16) that this transform is di-
rectly expressible iv terms of partial-wave pro-
jection of the kernel (3.11), generalized to tc0.
That is, if we define

K(z, t&= Q p, f;"'o,(p&&,p,. , Q p, 'p," ')t,

0. (0)KO.(0) Ot (0)

It is then straightforward to show that if (d, ,( y, b)
is given by

( y b) —
P fn(0)g ( y b)/(P f n( 0) en(0)»)

(3.16)

it follows from (3.16), (4.4), and (4.5) that

~(x, t) =Sr(n(0) —x, t),
L = s.~(»»l.—.=- sr@~ 0)I z-.(.&
B=28,(o(0& t)i, o= 28,K(n(0), t)i, ,

(4.5)

(4 6)

(4 I)

(4.8)

it satisfies the desired normalization condition
(3.io).

As anticipated, 9,,( y, b) and K,( y, b) are re-
lated by factors which depend only on the solution
of the MP dynamics in the forward limit, this in-
dependent of b.

IV. EFFECTIVE RANDOM WALK AND REGGE SLOPE

'I (5(y, b)dydb=1, (4.3)

so that at large y and ~b~& P(y, b) satisfies the
diffusion equation (2.10), with L and B retaining
their proper interpretation as average elemen-
tary step lengths for the distribution (4.2).

Defining an integral transform
ce ~ d'b

(o(X, t) = dy J' e"e'"-'(d( y, b),
0

(4.4)

it clearly serves as the generating function for
moments of y and b' with respect to g( y, b). It is

We have just seen that when the transverse de-
gree of freedom is treated properly, an MP
mechanism can be cast in the form of a Markov
process. We now demonstrate that, starting from
(3.16), an effective random walk can be defined
so that we can again evaluate Regge slopes by
intuitively simple representations (1.1) and (1.5).

Define a probability density matrix

( y b) P f (on)g ( y b)P f n
(0)e-n(0)&& (4 I)

It satisfies an equation analogous to (3.8) with

ur, »(y, b) as the kernel. It then follows from (2.2)
that, at large y and b, P(y, b) satisfies (2.9) with

tp(&, o& 1 E tp, ,(&, o&p '& '
l,Z p &' )i k

(4.2)

so that the analysis of Sec. II readily applies.
Note, -in particular, because of (3.15), &G(y, b) is
properly normalized

K,»(J, t) = C,..»(J, t)H»(J& t), (5.1)

where C,.k is a transform for a cluster-mass dis-
tribution and IIk corresponds to a helicity-pole
contribution. Furthermore, the cluster contribu-
tion can also be written as

C,,(d, f) =S,,(Z, f)g,(~, t), (s.2)

where S,, =S,,. In particular, g,.(J, t) contains in-
formation on the phase structure of multiparticle
amplitudes. If we next define

(5 3)

(5.1) is then in agreement with our earlier nota-
tion (3.14) at t=0.

Given a function 0,, , we can define an average

(o&=-Q(o, , p,.p;. "'o,(n(o&, o&p,.l g p, 'f "').

(5.4)

With this notational simplification, (4.V) and (4.8)
can be rewritten as

where

gc+~h I L c+I h (s.s)

B'=28,(lnC( (n)0, t)). ..
B=»28,(l nH( n(0), t), o,

I '= 9 z(lnC(J, 0))z, «&,

L,"=-s~(lnH(J&0))~ (o).

(5.6)

V. ELEMENTARY DENSITY IN MP CLUSTER MODEL

A. General analysis

As we have emphasized before, our ability to
diagonalize Eq. (3.6) by an appropriate O(2, 1)
partial-wave analysis follows from the intrinsic
short-range correlation property of a MP cluster
integral equation. Although we have grossly sim-
plified our actual group analysis, it is neverthe-
less correct to be able to write in general the ker-
nel as a product
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Equation (5.6) is the key result of our analysis.
We emphasize that to be able to evaluate (5.6),
only the dynamical equation (3.13) at f = 0 needs
to be solved. Once Eqs. (5.6) have been evaluated,
we can parametrize our elementary one-step
random-walk density as

G(y, b) -(I/KALB)e ' ~e " 8(y) (5.7)

for the purpose of generating a' and P(y, b).

gwuug yUVp

&;,(~, f) = P;(t)P,(t)g,(~, t). (5 8)

For (=0, the eigenvalue condition (3.13) then re-
duces to

(5 8)

where we have made use of (5.3). Substituting
(5.2) and (5.8} into (5.4) and making use of (5.9),
we are led to a general expression for an average
of a tensorial quantity 0,

(o) = g ~~ (p. 'f'&'&)'io„„
iy, i2, ." t ', '='.'.'

In particular, from (5.6} and (5.8), contributions
to B and L from the cluster mass distribution are

(5.10)

B'= 4s, (ln p(t)), ,+ 28,(lng(a(0), t}), , (5.11)

and

L'= -s~(lng(J, 0))~,&». (5.12)

B. Factorizable kernel

Equation (3.13), in general, can only be solved
numerically. Fortunately, for models of interest
to us, the use of a duality argument allows us to
perform a factorizable approximation, thus al-
lowing us to solve (3.13) analytically. In particu-
lar, we shall shortly consider kernels of the form

FIG. 2. (a) Planarity, (b) bootstrap condition.

VI. DUAL TOPOLOGICAL EXPANSION

We have shown in Sec. V. that Regge slopes can
be found simply once (i) the kernel of MP cluster
model is specified and (ii) the t = 0 eigenvalue
problem for the leading Regge pole is solved.
However, our approach, up to this point, remains
unsatisfactory due to the theoretical uncertainty
on the structure of the MP kernel, i.e., both the
phase structure and the dynamical origin of clus-
tering are unspecified, and the strength of inter-
action remains unconstrained.

When we adopt the dual TE viewpoint, the sitga-
tion is greatly improved. First of,all, whereas
clustering is an intrinsic feature in a dual model,
the phase structure is specified by the topology.
Furthermore, the strength of particle production

. can be constrained by a planar bootstrap condition.
In terms of quark-line diagrams, it is easy to

see that when a planar cluster is subdivided into
two subclusters, they again are planar [Fig. 2(a)].
When planar duality is applied to each subcluster,
a planar bootstrap condition emerges [Fig. 2(b)].
This condition can be realized in terms of con-
ventional invariants as""

dt,'dt' ' '', , p'(f; t.', t') coslv[a, (t,')- a(f')])= 1,, [-~(f, f,', f ')]'~28(-~)
16m' ~ ao t —a t~, t

(6.1)

where N& is the number of flavors, P(t; f,', f') is
the triple-Regge coupling, and

a,(t,', t) = a,(f,')+ a, (f ') —1-
= (2 a, —1)+ (t,'+ t ')a,'. (6.2)

A. MP kernel for planar sector

A similar expression can also be written down for
the Pomeron sector. It is our present purpose to
clarify the structure of (6.1) near t= 0 and that for
the Pomeron from the viewpoint of an effective
random walk introduced in Sec. IV.

(6.3)A-A. , x C xRxA,
with A, -Ae(so-M, '}, for some fixed value s,.
Equation (6.3) is identical in structure to (B2),
thus allowing us to identify its kernel as

I

a recursive relation can be obtained, symbolically
represented by A„-A, x 4 x R x A„„where 4 is a
phase factor, R is a propagator, and n denotes the
number of subclusters. However, because of
duality, the subscripts are redundant, provided
that the mass M, of the A, cluster is limited so
as to avoid double counting, i.e.,

The process of planar subdivision illustrated
by Fig. 2(b} can be continued indefinitely so that

I~' (n', 0', t) =A„(n', t)@',(.t)&,(f ', t)

&& e(cosh&70 —cosh@'), (6.4)
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P (s-~. ~b et.'+0(t+)+~0( -)~~ = e&o.c ) +
g%b yff

and a phase factor

/ ) e41f'[(xp( 8 ) Ap(t )j
yX~ J

(6 5)

(6.6)

We next integrate out g' and g', with our asymp-
totic constraint y-q'+ g', and we obtain

rt' rip

H 0
( f),~ d~ig (~t f)e- az(t; k)n'

. 0 eJ

x C))(t)H~(y; t),
where H~(y; f) =—e %~(y; f). At large )7',

A, ,(q', t) p, (t)e-"". '"'P (&).

(6 7)

we assert that a moderate value of gp can be
chosen so that the quantity in square brackets
in (6.7) can be replaced by its asymptotic value.
Under this duality assumption, the planar kernel
becomes factorizable, and its Laplace transform
is given by

where we have switched from using conventional
invariants to those introduced in (3.4) and (Bl),
and we have also replaced the cutoff in M, ' by one
for cosh/ .

For large g', R,(g', t) is power behaved in e~',
the usual leading helicity-pole approximation
corresponds to keeping"

(0 ~O(t) ~0&
-=P O,.(t) P,.'(0)/[n, —,(0; )]' (6.13)

and

I c+Lh I c p0 0 op 0 (6.15)

f.,"= (0/ [n, —n, (0; i) 7 '/ 0) = = 2 . (6.16)

and, in terms of invariants,
f'2g "0 P'(0; u, u)

«IO«)I0)=32 ~ J dg" du&

x O(t; u, (I)), (6.14)

where an extra factor of N& associated with each
loop integration has now been inserted. The eigen-
value condition (0~0) =1, when expressed in the
form (6.14), is in exact agreement with the t-0
limit of (6.1).

The calculation of np' will be discussed in the
next section, and for now we illustrate the struc-
ture of the planar random walk by calculating the
average elementary step length in the rapidity di-
rection. In general, we expect contributions from
both C and H in (6.8); however, since the only
J dependence of K';~(J, t) is contained in H„(J, t),
we immediately obtain, upon applying (5.6) for the
case of (6.13),

H. ;,(Z, t) = C', ,(f)H, P. , f),
where

(6.8) Therefore, for ep = 1 QeV ', a value of

Bp = Bp+ Bp 4 GeV (6 17)

c',,(t) = p,.(t) p „(t)g'„(t), (6.9)

go(t) [@ (t)][&&(n(t)-N~(t;k))n ]/[0n(t) n (f. P)]

must be obtained.

C. Pomeron kernel

and the helicity-pole propagator is

(6.10) The absorptive amplitude for the Pomeron sec-
tor can also be written in terms of cluster contri-
butions so that

H,(Z, f)=[Z —n, (f;a)] '. (6.11) A~ A && g &&A~. (6.18)

B. Effective planar random walk

With (6.11), the eigenvalue condition at t=0 [E(I.
(5.9) ] becomes

Q P,.'(0)/[n, —n,(0;i)]'=1. (6.12)

Note that the only J dependence of K', ,(J, f) is con-
tained in H~(Z, t). In what follows, we shall also
simplify the discussion by setting the quantity in
brackets in (6.10) containing the exponential term
to be unity in order to be compatible with (6.1)."'

I(:;~(J;t) = C,.~(J, t)H~(J, t), (6.19)

Equa. tion (6.18) is analogous to (6.3) with the ex-
ceptions that (i) A is the planar amplitude without a
mass cutoff and (ii) the phase factor 4 is absent.
Therefore, in (6.18), neighboring clusters do not
resonate; they clearly correspond to configura-
tions not included in the planar sector.

'The Pomeron kernel can be directly obtained
from (6.7} by first removing the factor 4',(t) and
then setting the upper limi4- of the g' integral to be
y. It then follows after applying a similar duality
assumption that

An effective planar random walk can then be in-
troduced with an elementary density (d,(y, b) given
by (4.2} after appropriate substitutions, e.g. ,
n(0)- n, We can no.w define a "planar average"
with respect to (d, (y, b) for a function O, (t):

where

C;,(~, &)= P;(f)p,(&)g (~, t),
1

g (J, t)=~ () .

(6.20)

(6.21)
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Note, in particular, the cluster contribution now
represents the dominant J dependence with a pole
at no(t), to the right of a,(t), for t small.

From (6.16), (6.28), and (6.29), we find

I.~~ L„ (6.30)

D. Effective Pomeron random walk

The eigenvalue condition for the Pomeron pole
at (=0 now reads as B~-2 GeV ' (6.31)

a result opposite to the naive expectation (1.7).
Finally, we note that to achieve ag 0 3(lp with
1~=3, we must have

g P,'(0)f,'(~, o) =1, (6.22)
When compared with (6.17), one obtains

1Bz Bp-» (6.32)
where

f (J, I) =g (J', t)H,(J, t)

=[[~-~,(f)][~-~,(f, n)])-'.

In terms of invariants, (6.22) becomes

(6.23)

a result again differing from one's naive expecta-
tion (1.6).

VII. WHY IS np /no SMALL'?

(o~(X; I}=K~(n p- X, I} (6.25)

i 2w i 0. P'(0; u, u)
32v' ., ~ „"[n~ —,n, ][n, —[2a,(u) —1]j

(6.24)

By comparing (6.24) with (6.14), it is easy to show
that n~) Np follows, which is the essence of the
Lee-Veneziano relation. Equation (6.24) also
embodies the phenomenon of f promotion, lead-
ing to the P/f identity hypothesis 'We. assume
that the triple-Regge coupling P(0;u, g) is such
that (6.13) and (6.24) are satisfied with a, = —, and
e~= 1.

An effective Pomeron random walk can then be
introduced in a straightforward manner, whose
elementary density or~(y;b) can be specified in
terms of its transform, defined by (4.4), with

By inspecting (6.19), (6.20) and (6.21), it is
clear that the Pomeron kernel is completely spec-
ified once the planar problem is solved. Although
our parametrizations for K' and E are highly
simplified, the above observation reflects the fact
that in a dual TE approach, one always proceeds
in a hierarchical fashion by isolating all nonlin-
earities in the planar level and then derive non-
planar properties by linear iterations. Therefore,
to be able to ask the question posed for this sec-
tion quantitatively, one must first solve the planar
eigenvalue equation e.g. , (6.2).

Whereas the triple-Regge coupling P(t; I„t ) can
in principle be determined by a planar bootstrap, '
its small t, dependence can be more reliably ex-
tracted from inclusive experiments. However,
P(t; t„t ) is measurable only at t=0, where one
normally parameterizes

.and P (0 u, u) - P,e'o" (7.1)

K~(J, t) =Q P,f, IK,~(J, t) p~,. . .
j~ k

where f, &=f~(n~, O) an.d w—e have made use of
(6.22). With respect to g~(y;b), a Pomeron
average of a function O,(t} can be defined by

with b, =1 GeV '.' As we shall see shortly, to be
able to calculate ep' and n~, we must evaluate
s,(Oilnpi0), ~ and s, (PilndS P), , Therefore, at
the minimum, we must obtain P(f; f„f ) from
equations like (6.1) or other bootstrap equations
at small t where we can parametrize-

(Pio(f}P)=- g P', f;~o,(I). .(6.26} P(f I I)-P (f)e""'-"' (7.2)

~~=L ~+I ~~

where

»c (z

(6.27)

and (5.6) can then be used to calculate n~. In par-
ticular, we find

with P,(0) = P,. To delay this task (since our cur-
rent formulation can at best provide semiquanti-
tative results), we first discuss the aspects which
are least model dependent before we discuss those
requiring a detail knowledge of P(t; t„I ).

A. Phase contribution

= (&~—&0)

I "i =-sz(Pi»& (~ 0)IP) = p

[2a(u) —1]]-'iP)

= [n~ 2o.,+ 1] ' —-1.

(6.28)

(6.29)

We have seen that, with Lp=2 andi~=3, the
constraint c.~/o. o

= —,
' requires [in units of +0= 1

GeV '], B,=4 GeV ', B~=2 GeV ' [Eqs. (6.17)
and (6.31)]. Therefore, our task has been reduced
to evaluating
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Bo = 28, (0~1nK'(ne, t) ~0),~,
Bp=28, (P~»lf (np, t)~P)r

(7 3)

(7.4)

(7.5)

In terms of invariants,

From (6.8)-(6.11) and (6.19)-(6.21) we note that
the crucial difference between (7.3) and (7.4) is
the addition of a phase factor 4(t) in gas(t), where-
as the remainders are structurally similar.

The contribution to B, from this phase factor is

B (Q)=-28 (0~4(t)/4(0)~0)

= 28,&oie(t)io&, ,

With Hs(J; t) given by (6.11), its contributions
to Bp and B~ are

B,"= 28, (0~ ln e(n„ t) ~0), ,
=2m,'L,"=2 GeV ',

B"p 28t(——PilnH(np, t)ip)r e

c . P=2C,'L~ =1 GeV '.

(7 9)

(7.10)

Combining {7.7) and (7.8) with (6.16), (6.28), and
(6.29), we find that the contributions to n,' and np
from the helicity-pole propagator are

n,'(h) = B,"/2L,
@ (t) eirnc(r+ r )

i

e2 jgeO&gt cosg (7.6}
=a,'=2 GeV 2,

n p(h) =Bp/2L p

(7.11)

Substituting (7.6) into (V.5) to evaluate B,(P) ex-
plicitly by (6.14), one obtains

= (L" /I )n' —t GeV a (7.12)

B,(rf&) = 2rr'n "(-u),
where

(7.7)

B. Helicity-pole contributions

The generation of a Regge pole by a Mp mecha-
nism can formally be thought of as an infinite
iteration of a J-plane singularity of. the MP ker-
nel. Within current accepted leading helicity-
pole approximation formalism, "the basic J-plane
singularity is the two-Reggeon cut n, (t; t,'), with
t= 0 slope n,'(0) = —,

'
no. Therefore, it would not be

surprising that both e,' and o. ~, generated by
their respective random-walk mechanisms, con-
tain pieces reflecting the presence of the two-
Reggeon cut.

t' 0
(-u) = t du(-u) P'(0; u, u)/[n, —[2n(u) —1]}'.

m oo

(7 8)

Note that to evaluate (-u), only the t= 0 behavior
of P(0;u, u) is needed. Previous estimates for
P (0; u, u), e.g. , (7.2), would yield a value for (-u)
around 0.3—0.5 GeV', leading to B,(P) = 6-9 GeV '.
Therefore, the phase contribution to B, is very
large, and is the primary source for the difference
of B, and Bp needed for leading to a ratio n p/n, '
= 0.3. It is in this sense we claim that the small-
ness of the Pomeron slope is essentially a topo-
logical phenomenon.

We must remark that a value of Bo($) = 6-9
GeV ' is in fact such a large contribution that
8,(0~1nP ~0), , is forced to be negative for con-
sistency. This behavior near t= 0 is intimately
tied to the phenomenon of P/f identity. ' We shall
return to this point shortly. We turn next to an
investigation on the contributions to a,' and n~
from the helicity-pole propagator first.

Whereas the Regge slope no receives contribution
from n,' at full strength, the contribution of n,' to
n p is suppressed by a factor (Lp/Lp) = —,'. This
suppression factor comes about due to the pres-
ence of massive resonating clusters sequentially
arranged in the rapidity direction. With this sup-
pression effect, we note that, from (7.11) and
(7.12), the helicity-pole contributions, n,'(h) and
n p(h), can account for half of the observed values
of n,' and n~, respectively.

B'=2 GeV ' B' =1 GeV ' (7.13)

However, due to the uncertainty on the contribu-
tions from P(t;t„t ), a direct verification can
only be performed after the planar bootstrap is
under control quantitatively. Theref ore, in-
stead trying to check (V.13) directly, by eliminat-
ing the contributions from P(t; t„t ), we obtain
another estimate for Be(p) in terms of the ratio
n p/no We can then. establish the overall con-
sistency by showing that with n p/n, '—- —,', B,(g) so
obtained agrees with the earlier estimate [Eq.
(7.V)] B,(P) -6-9 GeV '.

We now go back to our basic equations (1.1) and
(1.5). From (6.8}-(6.11), we obtain

n,'= (1/L, )[8,&o~»P ~0),=,+ ='B,(P)]+ n,'(o),

(7.14)

where Lo =2 is given by (6.16). Similarly, from
(6.19)-(6.21) we obtain

n' = (2/L ) [8,(P~lnP ~P), ,]

+ (Lp/Lp) n,'+ (Lp/L, )n,', (7.15)

C. np jno and phase contribution

With (7.11) and (7.12), the consistency check
for n pin,'= —,

' has now been reduced to demonstrat-
ing that the cluster distributions satisfy
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where L ~and L ~are given by (6.28). With parametri-
sation (7.2), we have s, (olin p I0&t=o = s~(pllnp Ip&~=o'
therefore, we can eliminate them from (7.14) and
(7.15). We then arrive at our crucial relation

Bo($)= [(2LO+ Lg + 1) —(2L~)(n~/no)]no.

(7.i6)

That is, given ao —-—, and n~= 1, the consistency
requirement for n~/no™—,

' has been reduced to the
compatibility between Eqs. (7.7) and (7.16). With

L, =2, L~=2, and L~=3, a value of n~/no™-,
corresponds to B,(ttt) = 7 GeV ', and n~/no™0
corresponds to B,( tt)t=9 GeV ', in excellent agree-
ment with our early estimate. On the other hand,

n~/n, ' = I would lead to a value B,( pt) = 3 GeV ', a
factor of 2 to 3 times smaller than estimated.

clustering is unknown. In particular, both the
strength and the phase of the cluster kernel are
unconstrained theoretically.

With the advent of the dual TE, the deficiencies
of earlier cluster models have been remedied.
Whereas clustering is natural in a dual model,
the strength for cluster production is determined
by planar unitarity and the phase structure of mul-
tiparticle amplitudes is unambiguously specified
in terms of topologies. A dynamical equation
determining the planar trajectory n, (t) can be
constructed and a particular version corresponds
to Eq. (6.1). Under a similar set of assumptions,
an equation determining the Pomeron trajectory
n~(t) can be written as

tt, tttt ') j dt'dt'
[n (t)- n, (t)][n (t)- n, (t,')]

VIII. DISCUSSION
&& P'(t; t,', t') =1. (8.i)

Hadroruc phenomena at small transverse mo-
menta have traditionally been grouped into three
categories: (i) low-energy spectroscopy, (ii)
diffraction scattering, and (iii) particle production.
Nearly two decades of efforts have taught us that,
up to current machine energies, regularities with-
in each category can be characterized respectively
by (1) a family of linear Regge trajectories obey
quark-line duality with intercept and slope no —

&,

n,'-1 GeV ', (2) a Pomeron pole with n~ 1, -
n~-0.2-0.3 GeV ', and (3) a limited lp, l

distri-
bution and short-range ordering in rapidity. A

well-posed challenge has been to find theoretical
links among properties (1)-(3).

Enough encouraging results have been obtained
in the dual TE approach so that an attempt has
been made to formalize this framework from gen-
eral S-matrix principles. ' " In this approach, in
place of the phenomenological groupings (i)-(iii),
hadron regularities are organized so as to manifest
the topological complexities of the hadron S ma-
trix. Instead of trying to interrelate (l)-(3) as
separate pieces of hadronic puzzles, one pro-
ceeds in a hierarchical fashion by first understand-
ing planar S-matrix elements, then explaining non-
planar effects by iterations.

Diffraction scattering as the shadow of inelastic
production has been a long-held physical picture
for the occurrence of a forward elastic peak.
Analyses of experimental results in the early
seventies have revealed that the essential fea-
tures of high-energy production processes can be
understood in terms of a MP cluster production
picture. Phenomenological cluster models can
easily be constructed to account for features such
as limited lp, l, short-range ordering, etc. This
phenomenological picture, however, has its limi-
tation. For instance, the dynamical origin of

Note that from (6.1) and (8.1), both intercepts
no and n~ and their slopes ao' and n~ can in prin-
ciple be determined.

We have explained in the Introduction that, in

pr inciple, additional dynamical assumptions are
necessary in order to calculate Regge slopes than
that for their intercepts. It is therefore, in gen-
eral, useful to have alternative yet equivalent for-
malisms which help to clarify the essential physics
involved. In particular, various technical assump-
tions have been made in deriving (6.1) and (8.1);
it is not at all clear how sensitive are results such
as n~/no =0.3 to the technical, rather physical
assumptions involved.

In this paper, a precise formulation for a
general MP mechanism as a Markovian walk is
presented, from which an effective random walk
is constructed for generating Regge behavior.
In terms of this random-walk picture, a Regge
slope can be expressed as n'=B/2L where v B
and L are elementary step lengths in the impact
parameter and the rapidity, respectively.

By studying the structure of the dual TE up to
the cylinder level, we emphasize that the naive
expectations (1.6) and (1.7) are definitely false;
the empirical ratio n„'/n, ' can then be used as a
test on the viability of a given dynamical scheme.
We next show that once one accepts the multi-
Regge hypothesis for production amplitudes, the
following decomposition emerges:

Bo = Bo+ Bo~ Bz=Bz+B

where superscripts refer to cluster mass distri-
bution and helicity-pole contribution, respec-
tively. A similar decomposition for I-o and L ~
also follows. In particular, under the same as-
sumptions which lead to (6.1) and (6.2), we find
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L0 2y L 3p B B 2 Gey y
and B B 1P & 0 0 P P
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Independent of the detailed assumptions needed
for leading to (6.1) and (6.2), we emphasized that
the primary mechanism responsible for B,&BP is
the phase structure associated with a planar kernel
and the primary mechanism for B0&BP is the
presence of larger resonating cluster mass for
the Pomeron sector than that of the planar sec-
tor. In principle, therefore, our approach can
serve as an efficient starting point for making
systematic improvement to existing models for
the Reggeon and the Pomeron.

Our intuitively simple random-walk picture can
easily make contact with a conventional t-channel
picture for generating Regge behavior. In a usual
integral equation language, the generation of a
pole comes about due to an infinite iteration of
the singularity of the basic kernel, which in our
case, corresponds to a two-Reggeon cut. There-
fore, no approaches n,'(0) in a weak-coupling limit.
This is exhibited in (7.12) where n, consists of
that from cL,'(0) and that from an effective interac-
tion strength. On the other hand, (7.13) indicates
that both o.,' and n,'(0) contribute to n~, with sta-
tistical weights (L~/L~) and (L~~/L~), respectively.
This is not really surprising, being a restatement
for the presence of large resonating cluster in a
Pomeron kernel.

How reliable is our estimate on the phase contribu-
tionBO($)'P WithB, ($) =6-9 GeV ', wenotethat
consistency can be achieved only if 8,(0~ ln p ~0), ,
= -1 GeV ', a result which might cause some dis-
comfort for the whole dual TE approach. If the
phase structure is modified from that given by
(6.6), one can easily obtain a positive value for
S,(0~lnP ~0}, , However, it then follows from
(7.13) that o.~& n,'(0), a phenomenologically unac-
ceptable result. Therefore, once again we have
demonstrated the intimate connection between our
topological phase structure (6.6) and the small-
ness of n~/n, '. Furthermore, if we treat the
Pomeron as a promoted f, trajectory, it follows
from (7.13) that the trajectory difference
ho. (t) = o.~(t) —n, (t) must increase as t decreases"
(and is negative). This is then in consonant with
the asymptotic planarity requirement" that
ho. (t) -0 as f-+ ~.

Finally, we remark that our Markovian walk
picture can provide a natural language for making
contact with attempts to interpret small-

~ pJ phy-
sics using parton concepts. In Ref. 11, a tentative
identification of valence parton distribution in a
dual TE framework was made, which has enjoyed
surprising phenomenological successes. Con-
ceptually, however, it remains undesirable since
the model utilized a two-independent-chain picture

for the Pomeron, "which has been shown in Ref. 5

to correspond to a Pomeron being a branch point
with slope n,'(0). However, from (7.10) it is seen
that in a treatment where a Pomeron always re-
mains an isolated pole, it is possible to treat the
two-chain model as the first term of a systema-
tic expansion for the Pomeron. Whereas the intro-
duction of the parton interpretation is unaffected,
it remains to be seen whether the success of Ref.
11 will be improved or weakened in our theoreti-
cally more consistent formulations.
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n

n=0 n=0 Pl »

S20t0-2+ g2
(A1)

The cross section for a two-jet process, if pro-
duced independently, wouM also obey a Poisson
distribution„with n = 0, 1,2, ... ,

APPENDIX A

In a string model, a meson trajectory and a
Pomeron are supposed to correspond to excitations
of open and closed strings, respectively; in this
picture, Eq. (1.4) is to be expected. To the extent
that the N, -~ limit of QCD should closely re-
semble a string picture, Eq. (1.4) can be expected
to hold in this limit as well. However, as we have
explained in the Introduction, in a QCD context
the relevant limit corresponds to N„N&- ~ with

Nf/N, c 0 and fixed; the connection between (1.4)
and the empirical relation (1.2) is far from being
clear.

With quark-loop insertion allowed, a string can
break leading to the production of a jet, where
particles produced are short-range correlated. A

simple realization for this planar production is a
random-walk picture. It has been suggested that
the Pomeron configuration corresponds to the
production of two independent jets. In Ref. 5, it
has been shown that this picture leads to a Pom-
eron which is actually a J-plane branch point in
what follows. The essential reasonings involved
are repeated.

A Pomeron as the production of two uncorre-
lated jets, at first sight, seems to follow from the
Lee-Veneziano' picture where, under a one-di-
mensional phase-space approximation, a one- jet
production is approximately governed by a Pois-
son distribution, and a planar trajectory is gene-
rated by
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fly+ tt2= fl

~ (g' ins)"~'"2 (2g' lns)"

(A2)

P ' (y, b}~ g P' ;','(y, b)P' ';,'(y, b) (A4)
fly+ F2= fl

and the corresponding production cross section is,
for n=0, 1,2, . . . ,

)( e-y/ Loe-& /(a+ 1)Bo (A3)

[To check that (A3) is correct, we integrate (A3)
over b to obtain o„'"; it is found to be in agreement
with (Al) with g'=I, .] For a two-jet process,
with jets uncorrelated, the relative probability for
n-cluster production is

In going from (Al) to (A2), the average multipli-
city has been doubled; this, in turn, leads to the
result that if Q.o-g, 0.~-1.

To determine the precise nature of the Pomeron
singularity, we must incorporate the transverse
dimension. We shall employ an impact-parameter
analysis where each jet is treated as a multiperi-
pheral chain, approximated as a simultaneous
random walk in both the impact parameter and the
rapidity direction. For simplicity, the elemen-
tary one-step distribution is chosen to be Eq. (1.3).
The probability density after n+1 steps for our
one-jet event is, with n=o, 1,2, . . . ,

'"( ) P' "'( b)
(yg+ 2)ul (A5)

From (A3) and (A4), one can verify that

(b&)(&-3e&) 2(b2)(&-&e&)

leading to the interesting result that

o =2@

(A6)

However, comparing (A5) with (A2), the presence
of the extra (m+ 2) factor in (A5) renders it non-
Poissonian, and the low-multiplicity events are
now enhanced.

It was pointed out in Ref. 5 that the proper inter-
pretation for (A5) corresponds to having

fo 2
dg's &' '-s~J''/lnstot

~CO

that is, n~ so generated is actually a branch point.
Furthermore, a~=2o.~-1, so that n~ is actually
the Reggeon-Reggeon cut; therefore, (A7} is
fortuitous.

APPENDIX B

In addition to (3.4), we introduce O(2, 1) boost parameters y, y', f', and q' by

coshy= [-2p k —(uuo)' 'zzo] /[2(uuo)' '(1 —z')' '(1 —zo )' '],
coshy-=(-2p' k -(u'u, )' 'z'z, )/[2(u'u, )'~'(I —z")'~'(I —z,')'~'],
cosh@'-=[-2p p'-(uu')' 'zz']/[2(uu')' '(1 —z')' '(1 —z")' ']

(s —u —u, )+ [(uu, )(l —z')(1 —z, ') ]'i' coshqcoshy'
[(uuo)(1 —z')(1 —z,)']' ~' sinhq sinhy'

The phase space d4p' in (3.1) can be expressed ex-
actly as (-u') sin'Q'du'dQ'dq'ds ', where y' is
treated as a dependent variable. With this choice
of variables, (3.1) can be diagonalized by a O(2, 1)
partial-wave analysis (Ref. 15) leading to Eq.
(3.12). However, the inversion formula is no lon-
ger given by (3.11) and a, more complicated "trans-
form" function is involved. For our present pur-
pose, a short cut is taken by employing asymp-
totic relations among y, y', g', and g'. To be pre-
cise, writing (3.1) first as

l

A~y(y;q)=C, (q;q)+ g f dcoshq'ds
k

xK (Ii', g', q)g &(y', q),
(H2)

where y' is expressed in terms of g', g', and y
as well as momentum-transfer invariants. How-
ever, for q', g', y, large, we obtain

y -g'+ g'+ y', (S3)
so that (B2) can be written as (3.5) with K„(z;q)
given by (3.6).
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