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We present a detailed analysis of the first member of a previously derived hierarchy of instanton-generated

many-body potentials for multiquark states. Comparison with the two-body instanton-generated potential in

the heavy-quark framework is made in the T-baryonium system.

I. INTRODUCTION

In a recent paper, hereinafter referred to as
WJ, we investigated the contribution of instan-
tons to the interaction potentials present in a par-
ticular family of multiquark configurations. We
found that in the heavy-quark framework there
are, as might be expected from considerations of
color structure, many-body potentials as well as
the two-body potential found by Callan et aL

In WJ we derived a simple rule, developed by
induction, for constructing the one-instanton ef-
fective Hamiltonian in the static quark limit, for
the members of a multiquark family, which we
term the "color tree" family from the tree-graph
appearance of the usual stringlike diagrams of
color structure. (See, for example, Fig. 1.) This
is the family obtained through building up from the
meson by replacing a particle at each step by a
color antisymmetrized (color triplet) pair of anti-
particles, the sequence resulting is meson, baryon,
T baryonium, (4Q)Q state, dibaryon, and (QQ) QQ(QQ)
states, etc. We also considered the M-baryonium
state. A hierarchy of many-body potentials re-
sults as one moves to more complicated states
with richer color structure.

In this paper we present an analysis of the first
of the many-body potentials —the four-body term-
in the dilute-instanton-gas picture. This is the
only many-body potential encountered in the bary-
onia, (7 and M), (4Q)q, and dibaryon states of cur-
rent experimental and theoretical' interest. We
considered that a detailed analysis of the first
member of the hierarchy was thus warranted, as
the importance of these more complicated poten-
tial terms needed to be resolved. Two agreeable
possibilities existed. These many-body interac-
tions might strongly influence orientation and
structure of multiquark states, ' alternatively they
might be unimportant, allowing a further simplifi-
cation of the effective Hamiltonian from WJ into
the residue of two-body potentials from the many-
body terms. This would accord well with some
phenomenological approaches. To give a con-
crete view of the relative importance of the four-
body potential we also consider it in the context of
T baryonium (Fig. 1).

In Sec. II we examine the asymptotic behavior of
the four-body potential while Sec. III contains de-
tailed calculations for specific configurations. In
Sec. IV we indicate the effect of the four-body term
in T baryonium. Further discussion and conclu-
sions follow in Secs. V and VI.

II. THE FOUR-BODY POTENTIAL —ITS ASYMPTOTICS

From WJ the four body poten-tial involving four particles in two pairs (1,2 and 3,4) due to the presence
of a dilute instanton gas is

where the integration is over instanton scale size p, D(p) the density of the instantons of size p is

D(p) =x'e "

with

(2)

x = Bw'/g'(p),

and where, following Callan et ~l., we have introduced a dimensionless potential W4((x, /p}). Using dimen-
sionless units y,.=x,/p, r/p - r,
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W4((y, ])= —— d 3 cos[mf(y[, r)] cos[nf(y3, ~)]+ sin[4[f(y[, r)] sin[elf(y3yr)1- 1(y, —r) (y3- r)
ly, —r I I y3 —rl y2-y4

(3)

where

lyg- rl
f(74»)=(1+

I
I3)[t3 (4)

and N is the square of the normalization factor of the multiquark-state color projection operator. [This is
strictly correct for the T baryonium, (4Q)q, and dibaryon states. In M baryonium the four-body potential
appears with various weights and signs, and in states such as (q4L3)Qq(QQ) of the tree family a six-particle
interaction is present which has four-body elements of the form of Eq. (3) but with different weights. For
details see Secs. IV and V of WJ. ]

As the behavior of g (p), the strong coupling, is not known at all scale lengths we follow Callan et al. , in
concentrating our attention on the structure of the dimensionless potential 8"4. The two-body dimension-
less potential of Callan et p/. has the closely related form

)yr(y/ y/) = —,')I d rIoos[sf(y„r))nos[ry(yrr)) S ' ' "' s(n[sy(y„r}) sin[sy(yr, r})—i (5)

Before proceeding to a detailed numerical analysis of the four-body potential for some specific spatial con-
figurations we indicate its asymptotic behavior. When all four particles are close together (near the ori-
gin for convenience), ~y, ~

« I, we can expand the integrand, and defining s =y[ —y3, t=y3- y4 we find, after
some algebra [Eqs. (66)-(V1) in WJ],

Wq(s, t) = ——s't 4@[A+,'B+(s ~ t) —&], (6)

where

}y / (i+ R)//r () r(i+ )s (i+ )\/r

(6)

%e see that A and B are both positive indicating that 8'4 is repulsive when all four particles are close to-
gether. It is to be noted that in leading order there is no deperidence on separation between the two pairs.
If either pair of particles is superimposed then the four-body potential term vanishes regardless of the
coordinates of the other pair.

Evaluation of the integrals indicates that spatial orientational information may prove elusive as A =0.709
while 8 =0.013. The second simple asymptotic limit cited in NJ occurs when all interparticle distances
are large. Then from WJ

f~ ' t(y~-yi) (y4-V() )' &(y}-y3) (Y3-y3) )'
2 ttly3-y4I ly4-y[I' j (ly[-y3I' ly3-y3l j

t(y -y ) (y -y) ~'
~

(y -y) (y -y)~~'
I y[ - y4 I

'
ly3 -y 4I

' j gl y3 - y31' I y4 - y3 I
'

j

where

errE= d y 1+cos .i1+~ i

= -4w ——&g(}[)+ —,'&[(m)
r' r

(10)

= 13.874 . (12)

This K integral appears in the analysis of the two-body potential Eq. (5) for large separations performed
by Callan et pl. Here the potential is attractive.
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A further simply analyzed case is that in which the particles of each pair are separated but the two pairs
are superimposed, e.g., y, =y3, y, =y4. In this case the integrand of Eq. (2) for W4 is just the square of
that in Eq. (5) for W2. Naturally as separation of the pairs is not involved in Eq. (6) the small-separation
approximation is as before with s =t. The results are naturally reminiscent of the analysis of Eq. (5) by
Callan et al. ; the potential approaches-a constant as separation increases'.

4
OQ 2

W~(s) ——
Hm r dr 1+cos

0 I+r

sl (I ~ 2)g(2
— +cos

( ~ 2)gg2 2
cos (I ~ 2)(g2

~h~~~ s =y4- y3
——y2- y~ and y~

——y3, y4
——y2. In addition,

W4(s) [&g(2w) +2&)(w) + 2wdo(w) + 2w Jj)(2w)] 4

'

9 w J'g(2w) +~) w Jo(2w) + Z, (w) + J'0(w)
4p3

N

———7.058-—90.89—.4 4 1
N N

(14)

With these asymptotic descriptions in mind, we now

move to a detailed numerical evaluation of W4 for
some specific orientations.

tion plotted as a function of d and l. The graph
shows that as d-~ at finite l K4 approaches a con-
stant:

III. DETAILED CALCULATIONS —SPECIFIC
CONFIGURATIONS,

For intermediate particle separations it is neces-
sary to evaluate the integral in Eq. (3) numerically.
Clearly with four particles it is necessary to re-
strict the configurations analyzed. We have in-
vestigated in detail two configurations of particle
pairs which appear appropriate to the comparison
of the relative importance of two- and four-body
potentials in the specific case of T baryonium con-
sidered in Sec. IV.

The two configurations which we term "planar"
and "crossed" are shown in Figs. 2 and 3, res-
pectively. In the latter case the two pairs are
oriented at right angles. The two parameters
are d, the spacing of the elements of the pairs,
and 1, the pair separation.

Figure 4 shows (N/4) W~ for the planar configura-

&4--& 2 d r 1+cos m O, P 1+ cos w l, r

(I5)

In Fig. 5 (N/4) W4 is displayed for the crossed
configuration. Here as d- ~ 5'4 tends to zero in
accordance with the asymptotic form from Eq. (9),
as there are no particles remaining in close prox-
imity.

IV. T BARYONIUM

With the numerical evaluation of S'4 in Sec. III
we are ready to compare the two- and four-body
contributions for the two configurations of Figs.
2 and 3, which are reasonable T-baryonium struc-
tures. From Eq. (61) of WJ the complete dimen-
sionless potential takes the form

C
a

1

a
3

aalu aa tI
2 3

(GG) (QG) T bar yonium

FIG. 1. The color-string diagra, m for 7." baryonium,
together with its normalized color projection operator.
(Greek color indices take values 1,2, 3. ) Each string
junction represents a Levi-Civita tensor in the projec-
tion operator.

FIG. 2. "Planar" configuration of four particles in
two pairs described by separations d, l.
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FIG. 3. "Crossed" configuration of four particles in
bvo pairs described by separations d, E. The bvo pairs
are oriented at right angles.

FIG. 5. Graph of Q/4)&4(I, d) for the crossed con-
figuration of Fig. 3.

W„-..—(yi,yt y3 y4)

=l Z Wt(y; yg)+a%(yt y2)
g=i, 2
y=3, 4

+ ~2(y3 y4) + W4"*"'(yi, yt'y3 y4) . (18)

It should be stressed that the two-body terms link-
ing the quarks at yi, y2 and those linking antiquarks
at y3, y4 were found in the course of reducing the
derived many-body potentials of T baryonium to
true many-body form.

For the planar configuration

W(l, d) = —,
' Wt(l) + —,

' Wt((l + d )' )
+ W, (d) + Wf'~~(&, d),

while for the crossed configuration

W(l, d) = W2((l +d /2)' )+ W2(d)+ W4"" (E, d) .
(18)

We have computed the two-body potential as well
and in Figs. 6 and 7 we display for planar and
crossed configurations, at l =0, the potentials
with (curve b) and without (curve a) the four-body
terms. From Figs. 4 and 5 it is clear that the dif-
ference decreases as l increases. The correction
is localized in the crossed case but due to the

asymptotic constant value, the four-body poten-
tial lowers the large d value of W(0,d) in the
planar configuration by approximately 8%.

V. DISCUSSION

It is clear from the previous sections that the
four-body dimensionless potential terms can be
quite appreciable for certain configurations. We
were interested to observe that the magnitude of
the four-body term can be large compared to that
of the O(1/m, ) corrections to the two-body instan-
ton-generated potential which were investigated by
Callan et al. and by Aragao de Carvalho. While
it is clear that our four-body static potentials must
eventually dominate over two-body O(1/m, ) terms
for sufficiently heavy quarks, it is interesting that
for a quark mass of 5 GeV the maximum of the
spin-spin potential of Callan et gl. , which is 11.25
(2mtmt) ' (oiot), becomes 0.224 (otal) while the
four-body potential has a maximum depth of ap-
proximately 2.4 for T-baryonium in the planar
configuration. While the four-body potentials can
be sizable, compared with the corrections to the
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FIG. 4. Graph of (N/4)W4(l, d) for the planar config-
uration of Fig. 2.

FIG. 6. Graphs of 8'(E =O, d) for the planar configura-
tion of 7.' baryonium: curve a without the W4 contribution,
curve b complete fEq. (17)j.
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cially the suggestion that the role of the two-body
instanton-generated potential is very large, we

prefer to compare our many-body potential with

the two-body ones at the dimensionless level to
avoid these extra assumptions. Naturally the real
potential will be of a somewhat different shape
from the dimensionless one after enfolding with

the instanton- size distribution. For example,
with

(20a)

Q+g ~
)&].

q (20b)

then we find the relative strengths for V2(x) re
normalized:

FIG. 7. Graphs of W(l =O, d) for the crossed configura-
tion of T baryonium: curve a without the W4 contribution,
curve b complete [Eq. (18)].

(p)
Vp(x) -x a dp 4 as x-0

p
(21a)

static two-body potential, it appears from Figs.
6 and 7 that the two-body potential terms in Eqs.
(17) and (18) may provide a reasonable approxima-
tion for the T-baryonium system. This should
not be considered to devalue the work in WJ since
the form of these equations with their combina-
tions of two-body terms emerged from the reduc-
tion of many-body terms encountered in calculating
the potentials of the multiquark state.

It is also amusing to note that the two-body term
weightings in Eqs. (17) and (18) match the QCD-
inspired phenomenological potential

v(/x, .)) =gg —,'x',.x,'v(x,. - x,.),
a

where the expectation value is taken over the co-
lor part of the wave function of the multiqua, rk
configuration, in which some theoretical interest
has been shown. (For antiquarks X; - Xf .) Mc--

Dougall has shown that it is possible to carry out
the scale-size integrations for the potentials of
Callan et al. by making assumptions about the be-
havior of g (p) for large scale sizes and about the
range of validity of the one-loop calculations of
't Hooft on instanton quantum effects for large
coupling.

While the results are very interesting, espe-

-5 dp 2
+—

cfp as xD(p) c D(p)

p X p
(21b)

showing how the harmonic term is more sensitive
to small-scale-size instantons.

VI. CONCLUSION

The four-body potential term due to instantons
which we derived previously for the family of
multiquark states of current interest has been
analyzed in detail and shown to be appreciable
(in T baryonium in particular) in comparison with
the heavy-quark expansion of the two-body inter-
actions.

While the many-body terms in the multiquark
potential are appreciable in certain configurations,
it appears that the overall features of multiquark
states are controlled by the two-body static limit
terms, with many-body and 0(1/m, ) term correc-2

tions. The two-body terms in the multiqua, rk
state potential emerge from the many-body analy-
sis of our previous paper and agree with the forms
commonly in use in multiquark calculations. '
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