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Various properties of the group weight of Feynman graphs in non-Abelian gauge theories are discussed.
Infinitely many skeleton graphs with vanishing weight are exhibited for every compact Lie group. The 1/N 2
dependence of the topological expansion is related to a 1/N 2 expansion in some channels with the exchange

of definite quantum numbers.
I. INTRODUCTION

In the perturbative analysis of gauge theories
it is convenient to represent every Feynman graph
G as the product of a weight factor W, depending
on the gauge group times a momentum integral.
An efficient graphic method to compute W, for
most simple Lie groups has been described.?

We make use of that method to discuss further
properties of the weight factor.?

In Sec. II we show that the weight factors of a
SU(N) gauge theory are polynomials in N2 (apart
possibly from a factor N) and we relate this pro-
perty to the topological expansion of the scatter-
ing amplitude in the channels where definite quan-
tum numbers are exchanged. In Sec. III we ob-
serve that, at first sight surprisingly, infinitely
many skeleton graphs have vanishing weight in
every non-Abelian gauge theory. This feature is
typical of non-Abelian gauge theories and may
be of help in the analysis of perturbation theory,
although a rough estimate suggests that the num-
ber of nonvanishing graphs grows with the pertur-
bative order much faster than the number of the
vanishing ones.

In Sec. IV we derive the projection operators
corresponding to exchanged states with definite
quantum numbers in gluon-gluon elastic scatter-
ing in SU(N) gauge theory.

II. PLANARITY AND TOPOLOGICAL EXPANSION

In this section we discuss the dependence on N
of the weight W, of an arbitrary graph in the SU(N)
gauge theory.’®

At order v in the coupling constant g, the graph
has »trilinear vertices (in the usual way the four-
gluon vertex is replaced by couples of three-
gluon vertices)' some of which being three-gluon
vertices v,, the others being quark-quark-gluon
vy vV=V,+v, The Feynman graph has p=p,+p,
propagators (we do not count the external lines),
that is, p, gluon and p, quark propagators. If
the graph has » external lines, n=3v ~ 2p, the
group factor W is a tensor of rank n. The graph-
ical method described by Cvitanovié is an effi-

cient way to express the generic tensor W, as a
linear combination of a complete set of indepen-
dent tensors having the same rank, the basis ten-
sors, which are associated to graphs without in-
ternal gluons.!

In the SU(N) gauge theory the evaluation of the
group factor W, for any graph only involves the
following two steps, (a) to re-express the three-
gluon vertices in terms of the fundamental repre-
sentation (see Fig. 1),

ifi;w=2 Te(T, T, Ty~ T,T,T); (2.1)

(b) to replace all internal gluon lines with gluon
projection operators (see Fig. 2),
2T )T )5 = 0305 - = 0305 (2.2)

W, is then expressed as the sum of 2% “dou-
ble-line” graphs. As an example, Fig. 3(a) shows
a graph at order g'° in perturbation theory, with
six three-gluon vertices and nine internal gluon
propagators. In Fig. 3(b) there is one of the 2!°
double-line graphs obtained after steps (a) and -
(b). In the double-line graphs may appear index
loops, i.e., fermion loops unconnected to the rest
of the graph and to external lines, each contrib-
uting a factor N, which are called windows. There
are also index paths called boundaries which are
attached to the external lines. There are no bound-
aries for graphs where the external sources are
all color singlets. Each boundary represents a
tensor with rank equal to the number of external
lines attached to the index path. For example,
the double-line configuration in Fig. 3(b) has one
window and one boundary, as shown in Fig. 3(c).

Basic notions are those of planarity and degree
of nonplanarity. It is very convenient to “com-
plete” the graph G by adding one more vertex,
called P_, where all external lines of G are inci-
dent (see Fig. 4). One can now “draw” the com-
pleted graph on a sphere with % handles so that

A2 )

FIG. 1. Graphical representation of Eq. (2.1).
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Lt a2)

FIG. 2. Graphical representation of Eq. (2.2).

lines intersect only at vertices (embedding). The
minimum £, for which the embedding is possible
is a characterization of the degree of nonplanarity
of the graph. The graph is planar if and only if
h,=0.° The graph in Fig. 3(a) has x,=1, that is,
it may be embedded on a torus. The completed
graph embedded on a sphere with %, handles may
be regarded as a polyhedron whose edges are the
lines of the graph. Then the Euler formula relat-
ing the number of vertices V, of edges P, and
faces F holds,

V-P+F=2-2nh,, (2.3)
which in terms of the original graph is
(w+1)=(p+n)+(f+n-1)=2-2n,, (2.4)

where f=F -n+1.

The multitude of double-line graphs originating
from a Feynman graph has a different number of
faces and handles but the same number of

f+2h=p-u+z=§_§+2. (2.5)

Indeed the number of faces ranges between the
l/<
(a)

W

(b)

O
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FIG. 3. (a) A graph at order g!° in perturbation the-
ory. (b) One of the 2! double-line contributions to the
group weight of the graph in (a). (c) The same con-
tribution as in (b), now exhibiting boundaries and win-
dows,

—\

FIG. 4. The graph of Fig. 3(a) is completed here by
adding one more vertex P, in order to exhibit its degree
of nonplanarity.

maximum f,=2 - v+p - 2A,, and the minimum f,
=0 (if f, is even) or f,=1 (if fy is odd).

The quark loops in the original graph do not con-
tribute to the number of faces of the double-line
graph. Then

f-q=b+w, (2.6)
where g, b, and w represent the number of quark
loops, boundaries, and windows.

The group-theoretic weight W, can then be ex-
pressed

WG =gv ZNowT(m)’

where 7' is one of the basis tensors, the sum-
mation extends over all the double-line graphs,
and the coefficient c,, counts the multiplicity of
the configuration with w windows and the factors
of 2 and (-1/N) arising from steps (a) and (b).

By use of (2.5) and (2.6) the power N* can be
rewritten,

WG =gv z: Cme"a-bT(m)'

=(gVN)!N"N'""/2 3 ¢, NIONTZT) - (2.7)

The coefficient ¢, may contain a dependence on
N only for those double-line configurations which
arise from the singlet subtraction term in step

(b):
1
2(7 AT )= - 8305

For the first such replacement, the double-line
configuration has » ~ 2 vertices and p — 3 propa-
gators, then its invariant f+ 2k is a positive inte-
ger with different parity from the original graph
or any configuration, where instead the replace-
ment

2T ,)3(T )5~ 09065 (2.8)

has been made.

Therefore (1/N) times the value of the double-
line configuration, where the singlet subtraction
term has been used, has the same parity of the
power of N as the graph with the replacement
(2.8) everywhere and both can be written in the
form (2.7) with coefficients ¢,, how independent
of N. The same argument holds for multiple use
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of the singlet subtraction terms and Eq. (2.7)
holds for the general graph, with coefficient c,,
independent of N.

It is then clear that if one is interested in pro-
cesses with fixed number of boundaries, for in-
stance, processes with color-singlet sources only
(b=0), then Eq. (2.7) arranges the contribution of
each graph in decreasing powers of N%. Or one
may sum over the perturbation series and take
the limit N - with g2N =2 fixed and one would
obtain that the contribution to amplitudes with
fixed number of boundaries and quark loops are
arranged in decreasing powers of N? and are as-
sociated with increasing degree of nonplanarity.*

A simple remark may shorten the computation
of W,. Step (b) [Eq. (2.2)] may be substituted by
the simpler replacement (2.8) when (i) the gluon
connects two three-gluon vertices, or (ii) the
gluon connects one three-gluon vertex with one
quark-quark-gluon vertex.

Proofs are straightforward:

FinFom=4 Te(T T T y= T,T T )Tr(T, T, T, ~ T T, T,)
= 2Tr(T,T,T,T, - T,T,T,T,

-TT,T,T,+ T,T,T,T)). (2.9)

1T m

[s/2] [s/21

For point (ii) we have
i(T ) foy;= 20(T T (T, T, T, - T, TT,)

=i[T, T,p. (2.10)
Therefore, in all Feynman graphs where there
are no gluons which directly connect quark lines,
the number of double-line graphs originating from
a simple graph is reduced to 2%. Of course this
happens in a pure SU(N) gauge theory (without
quarks). Then one finds that for two-point func-
tions and three-point functions, where there is -
just one basic tensor (respectively §,, and f,,.),
the group weight W, of the generic Feynman graph
is ,

fs/21
Wg=0,,(Ng?)s i c (N ?)"F at order g?s, (2.11)

P=0
[s/2]
Wg = frp.8(Ng2)* Z c s(N?)"F at order g2s*,

=0
(2.12)

where the leading coefficient ¢, is different from
zero if and only if the graph is planar.'®

As is shown in Sec. IV, for the four-point func-
tion one has six basic tensors, three of which
(4, B, C) have one boundary and three (D, E, F)
have two boundaries. At order g?** one finds

[s/2

Wc=g2(g2N)‘{A D aiN?)P+B 3 b PrC Z] c (N?)P
0

0

-

s/2] s/2

1
+§[D

] 0

Higher n-point functions have weights W, ex-
pressed in the same form after one has taken
care of the N factors associated with the number
of boundaries of the basic tensors.

As one can see from (4.3)—(4.8) in Sec. IV, the
first four projection operators do not mix basis
tensors with different boundaries or they mix
them with the proper pure factor N. Therefore
the gluon-gluon elastic scattering amplitude in
those channels will be a polynomial in N2, apart
from an overall normalization independent of the
order in perturbation theory, while the scatter-
ing amplitude in the channels associated with the
last two projectors loses the simpler dependence
on N2,

II. VANISHING GRAPHS

It is easy to show that in non-Abelian gauge
theories there are infinitely many skeleton graphs

[s/21 [s/21
GNP E S N PR S fp<N2>-P]}.

Q

(2.13)

with vanishing weight. They are identified in an
obvious way by only using the antisymmetry prop-
erty of the three-gluon vertex so that the results
of this section hold for any compact Lie group.

It is convenient to restrict ourselves first to a
pure gauge non-Abelian theory. From the graph-
ical rules' it is obvious that a graph containing

a subgraph with vanishing weight will also have
vanishing weight. Furthermore, since there is

a single independent tensor of rank two and a

oy

oy an m

FIG. 5. A generic graph G whose weight is considered
as a convolution of the weights of the subgraphs G; and
G,.
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(a)

(b)

FIG. 6. (a) The lowest-order graph with four extern-
al lines that has a symmetry plane through the external
lines (y,6). (b) The corresponding vanishing graph ob-
tained by convolution of the graph in part (a), with a
three-gluon vertex f,,g.

single one of rank three, we may restrict our-
selves to skeleton graphs with vanishing weight.
In fact, each such skeleton will produce vanish-
ing graphs if arbitrary self-energy or vertex
insertions are made. While it may be difficult
to give necessary and sufficient conditions for
the vanishing of the weight of a skeleton graph
in a general non-Abelian theory, our remarks
select a large class of vanishing graphs.

Let us consider the weight Tfl__,,kfl...fm of a
graph G (see Fig. 5). It may be obtained by par-
tial saturation of the weights of the subgraphs
G, and G,

G =7% Ga
LIERET 7% SERTE , 01 e oOpyee eyt @y TyeneT,

A simple sufficient condition for the vanishing

(a)

(b)
FIG. 7. See caption for Fig. 6.

(a)

(b)
FIG. 8. See caption for Fig. 6.

of TC is that 7° and 7 °2 are respectively sym-
metric and antisymmetric in two corresponding
saturated « indices. In particular, a vanishing
weight is obtained for any three-gluon diagram,
which is the product of a three-gluon vertex times
a four-gluon tensor symmetric in the two saturated
indices. Because of the nature of the three-gluon
vertex every planar, or nonplanar, four-leg graph
with a plane of symmetry through two of the ex-
ternal lines is associated with a tensor W, sym-
metric in the couple of indices (say «, B) of the
external gluons not lying in the symmetry plane.
The lowest-order'! examples of such symmetric
skeleton graphs are shown in Figs. 6(a) - 9(a).

By convolution with the bare three-gluon vertex
fras (Or equivalently with any three-gluon Green’s
function I';,,) one obtains a vanishing graph [see

(a)

(b)
FIG. 9. See caption for Fig. 6.
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Figs. 6(b) - 9(b)].

This procedure suggests a very rough estimate
of the number of such symmetric four-leg skel-
etons. At large order » in the coupling constant,
the number of symmetric skeletons with only the
two external vertices lying in the symmetry plane
is roughly x(3n), where x(m) ~m! is the number
of skeletons (which in this level of estimate are
as many as the generic graphs)'? at order m.
Therefore the ratio R of the vanishing skeletons
versus the nonvanishing ones for the three-point
function would be, at order »,

R~@Gn)!/n!.

This estimate neglects the facts that (a) there
are symmetric skeletons with vertices on the
symmetry plane, (b) not all symmetric four-
point skeletons lead to three-point skeletons [see
for example Fig. 7(b) or 9(b)], and (c) depending
on the specific gauge group of the theory, there
are nonsymmetric four-point skeletons having

a symmetric tensor.’® While (a) and (c) would
increase the estimated ratio R, (b) would decrease
it. It seems, however, that none of these points
can substantially change the very rough previous
estimate.

We can now consider a non-Abelian gauge theory
with a multiplet of fermions transforming as the
fundamental representation of the group. Again
one may look for four-point gluon graphs with a
symmetry plane, as in Fig. 10(a). When convo-
luted with the three-gluon vertex, they originate
vanishing graphs, as in Fig. 10(b). Since the
reflection around the symmetry plane must also

(a)

(b)

FIG. 10, (a) A graph with four external gluons and
one fermion loop, which has a symmetry plane through
the lines (y,5). (b) A vanishing graph obtained by con-
volution of the graph in (a) with the three-gluon vertex.

a 3

(a)

(b)

FIG. 11. (a) A graph which does not have a symmetry
plane through the lines (y,8) but whose weight is a ten-
sor symmetric in the indices (@,B). (b) A vanishing
graph obtained by convolution of the graph in (a) with
the three-gluon vertex.

preserve the direction in the fermion path, one
expects that only special ways of replacing a
gluon path with a fermion path in the vanishing
gluon graphs will still give a vanishing graph.

One may note, however, that even in some
cases where the reflection around the symmetry
plane does not preserve the direction of the loop,
one may still produce a vanishing graph because
of additional properties of weights depending on
the gauge group. For instance, in the SU(N) case,
it is easy to check that the tensor T,,;,, which
is the weight of the graph in Fig. 11(a), is a sym-
metric tensor in (a, ), although the graph has
no symmetry plane through (v, 6). Therefore the
three-point graph in Fig. 11(b) has vanishing
weight.'*

We also remark that for any given graph with
three external lines and vanishing weight one can
obtain a vanishing “vacuum” graph by “complet-
ing” the former with one more coupling of the
type f,. or (1,)%. Next by stereographic projec-
tion (as was mentioned in the definition of pla-
narity in Sec. II) from another inequivalent ver-
tex of the vacuum graph, one may obtain a new
vanishing three-point graph. For instance, in
this way one shows that the vanishing graph in
Fig. 12 is related to that in Fig. 11(b).

We finally mention that the study of graphs with
definite symmetry properties can be pursued in
an algebraic way'® through the study of the spec-
tral properties of the adjacency matrix. Itis amus-
ing to notice that the two lowest-order vanishing
graphs, already exhibited in Ref. 1, when com-
pleted by one more trigluon vertex, are just the



FIG. 12, This three-leg graph may be proved to van-
ish by first completing the vanishing graph of Fig. 11(b)
and next by “stereographic projecting” from a three-
gluon vertex.

first representatives of a peculiar class of graphs,
sometimes called cages.!® We checked that all
five cages with trilinear vertices, exhibited in
Ref. 16, have vanishing weight due to the mech-
anism previously described.

IV. BASIS TENSORS AND PROJECTORS

In order to discuss the cases where the 1/N
expansion is actually a 1/N? expansion (see Sec.
II) and for completeness reasons, we write here
the SU(N) tensor basis for processes with »=4
external gluons (no external quarks) and the lin-
ear combinations of the basis tensors which are
associated to the exchange of definite quantum
numbers. The set of all distinct traces over » T;
matrices form a natural tensor basis, but the
tensors of rank », » > N so obtained are not lin-
early independent.!” Actually in a pure SU(N)

=4
A=z + ><
b d b d
a c a c
= L
B—2 +
b d b d
a c a c
c=4 +
2
b d b d
a c
a ¢
D= E=
b d
b d
a [
F=
b7 d

FIG. 13. Basis tensors for gluon-gluon scattering in
SU(N).

21 GROUP WEIGHT AND VANISHING GRAPHS 977

gauge theory, by the rules (2.1) and (2.2), com-
plete and independent bases are obtained by sym-
metrizing (or antisymmetrizing) traces of prod-
ucts of T'; matrices, which are graphically fer-
mion loops of even (odd) length. By the Furry
theorem, this is also true if the Lagrangian con-
tains fermion fields.'® Therefore, for »=4 one
has six instead of nine basis tensors, i.e.,

A=3[Te(T,T,T,T,)+Tr(T,T,T,T,)],
B=3[Tr(T,T,T,T)+Tr(T,T,T,T,)], (@.1)
c=3[Tx(T,T,T,T,)+ T (T, T, T,T,)],

D=08,,0.5 E=08,:8, F=38,,0,.

They are shown in Fig. 13.

One may define a product of basis tensors as
a convolution in the “vertical” channel (that is,
KL =H means H,,,=K  ,L ... Since the fermion
loop is symmetrized, this product is commuta-
tive; D acts as the identity and one easily finds

1 1
2_ 1 —
A?= ?2-(D+F)———4N(B+C)+16N2E,

1 ‘
16N2E’

AF=A, BF=C, CF=B,
E=CE=1(N-1/N)E,

AE=:—1-E, FE=E, F*=D,

AB=AC=;—4]\1](B+C)+

(4.2)

4N

2 1 1
Bzécz=% [NB -N(B+C)+<§—ﬁz- +Z)E],

BC=%[NC _%(lszﬁucH(z—]—\l,7 +%)E],

E*’=(N%2-1)E. .

The linear combinations of the basis tensors
that are mutually orthogonal projection operators
and that represent the exchange of a state with
definite quantum numbers in the vertical channel
are here labeled with the dimension of the irre-
ducible representations in the decomposition of
the product (N -1)® (N2 -1) and by the symmetry
(or antisymmetry) property in the exchange of the
indices a and ¢ (or b and d)*°:

PI,S = (ZV—1——1>E (Pomeron channel), (4.3)

4
Pyz,y 4= I (B - C) (antisymm. adjoint channel),

(4.4)
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4N 1
Pyzy 5= -m(B +C ~ —Z_N—E>

(symm. adjoint channel), (4.5)

_ -4 1
P (y2_4) 4221/ 4+ P=0) WP-1)/ 4,4 =N (B-C)+z(D-F),

(4.6)
—24-_2%_B+0)
PN2(N~1)(N+3)/4.S— “N+2 *
+i(D+F)+——1——E
1 2N+ )V +2) T
(4.7)
=24_--2 _(B.,C
Py2(y-n (vsv/ 4,5 == “N-g ¥t )
HAO+F) s st F
E 2N-1)Wv-2) 7’
(4.8)

for N =3 the representation ;[N*(N - 3)(N-+1)] is

not present and indeed the last projection op-
erator vanishes because of the relation® [valid
only in SU(3)]

8(A+B+C)=D+E+F.

In N =2, more relations exist (see, for instance,
Ref. 1) and one is left with only three channels
associated with P, s, P, 4, P; .

Note added. By using the Lie commutator for
the quark representation, one easily shows that -
the tensor described by the graph in Fig. 11(a) is
indeed symmetric in the indices (a, ) for every
semisimple Lie group. Our point was only to
show a simple example of a tensor, symmetric
in a couple of indices, represented by a graph
which does not exhibit that symmetry.
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