
PHYSICAL RKVIK% 0 VOLUME 21, NUMBER 4 15 FEBRUARY 19SO

Twisted scalar and spinor strings in Minkowski spacetime

L, H. Ford
Department of Mathematics, University of London, King's College, London WC2R 2LS, United Kingdom

(Received 1 October 1979)

The construction of twisted scalar and spinor field configurations in Minkowski spacetime is described.
Twisted field configurations are normally associated with a nonsimply connected space; however, it is shown
that it is also possible to construct such configurations in a simply connected space. For each choice of a
line in three-dimensional space there exists an inequivalent twisted scalar and spinor field configuration,
referred to as strings. The vacuum expectation value of the energy-momentum tensor of such a quantized
twisted field is calculated for the case of both scalar strings and spinor strings. It is found to be singular
along the chosen line. The energy density off of this line is positive for scalar strings and negative for spinor
strings. However, it is shown that the total energy of both types of strings is zero. Nonrelativistic quantum
mechanics of these twisted field configurations is discussed, and the eigenfunctions and energy levels of a
twisted particle in a Coulomb field are calculated.

I. INTRODUCTION

It has recently been pointed out by Isham" that
in a spacetime which is not simply connected, new
varieties of scalar and spinor fields (twisted
fields) may be defined. For example, in a space-
time with topology S'xA' where the S' direction
is spacelike, there exist two types of both scalar
fields and spinor fields. In addition to the usual,
untwisted fields one may have a twisted scalar
field and a twisted spinor field in this spacetime.
The twisted scalar field satisfies the same Klein-
Gordon equation as the untwisted field but is anti-
periodic rather than periodic in the S' direction.
The local physics of both field configurations is
identical, but their global behavior is not. The
twisted spinor field is associated with a different
choice of the spin connection; however, in the
case of S'xA' it is possible to replace the twisted
spin connection by antiperiodicity conditions.

The twisted field configurations are physically
inequivalent to the untwisted configurations. For
example, the Casimir ene rgies of the quantized
scalar and spinor field in $'xA' are different ac-
cording to whether the field is twisted or un-
twisted. ' The one-loop photon vacuum polariza-
tion in this spacetime is also different according
to whether the photons are coupled to twi~ted
spinors or to untwisted spinors. '

Even in a simply connected spacetime, such as
Minkowski space, it is possible to construct
twisted fields provided that suitable boundary con-
ditions are satisfied. The purpose of this paper
is to discuss such twisted fields in Minkowski
space. It will be shown that an infinite number of
inequivalent scalar and spinor field configurations
may be constructed in any spacetime. For rea-

sons which will become apparent, these configu-
rations will be referred to as strings.

II. TWISTED SCALAR. STRINGS

Consider a given axis in three-dimensional
Euclidean space and establish a cylindrical polar
coordinate system about that axis. The Minkow-
ski-space metric becomes

ds' =dP dr' —x-'dg' -dz'.
The scalar wave equation

(2.1)

(2 2)

may be separated in these coordinates and posses-
ses regular solutions of the form

F ~J (Ky)el(Pet kg -Qlt)
I~I

(2.3)

where K=(e' —k')'". The twisted scalars are
obtained by requiring that g be antiperiodic in 8
or that p, be a half integer. These solutions all
vanish on the r =0 axis. Thus we may understand
how it is possible for a twisted field configuration
to exist in Minkowski spacetime; this axis could
be removed from the space without affecting the
twisted scalars, but the space would then be non-
simply connected.

There is an important difference between the
twisted and the untwisted scalar configurations.
In the case of untwisted scalars, which are ob-
tained from Eq. (2.3) by letting ik be an integer,
the sets of mode functions associated with two
different choices of the axis are related by a linear
transformation. This is not true for twisted
scalars. Because a complete set of twisted scalar
modes which are antiperiodic about a given axis
vanish on that axis, it is not possible to use them

21 949 1980 The American Physical Society



950 L. H. FORD

[y(x, t), rr(x', t)] =t6(x- x').

Then

(2.4)

to expand functions which are antiperiodic about
a second axis but nonzero on the first axis. Thus
each choice of axis gives rise to an inequivalent
twisted scalar field configuration.

A given configuration may be quantized by the
usual canonical procedure: Let p be an anti-
periodic Hermitian operator solution of Eq. (2.2)
and m =P be its conjugate momentum. Impose the
equal-time commutation relations

twisted generating functionals. Although this is
an interesting possibility, it will not be pursued
further here.

Let us now turn to the calculation of the energy-
momentum tensor for a scalar string. The two-
point function is

G(x, x') =(0
~
j(x)y(x') ~0), (2, 7)

where P is a twisted scalar field antiperiodic
about a given axis and ~0) is the associated vacuum
state. In Appendix A this quantity i.s calculated
explicitly and shown to be

$ =Q(a„F +atF&), (2.5)
G(x, x ) =(2v') '(rr')'~'cos 62[8r'+r" +2rr'

[a)„a),.] = ~ ~ ). (2.6)

A Fock space of states may now be defined. The
vacuum state so obtained is not rotation or trans-
lation invariant. Each possible axis produces an
inequivalent field theory and hence a distinct vac-
uum state; the selection of any particular vacuum
results in the spontaneous breaking of translation
and rotation invariance.

It will be shown below thai even the vacuum
state of the twisted field theory is associated with
a nonzero density of energy in space concentrated
about the axis of antiperiodicity. For this reason
the twisted field configuration is called a "string"
(the state will here be assumed to be the vacuum,
but one could investigate "excited strings" as-
sociated with other state vectors). These strings
should not be confused with those introduced in
other contexts, such as the Dirac string in the
theory of magnetic monopoles. ' In this paper it
will be assumed that the strings are straight and
exist in a Minkowski spacetime. Both require-
ments could, however, be relaxed. Twistedness
is a topological property, so it is possible to con-
struct strings of arbitrary shape and in a general
background spacetime.

The quantization pres cr iption which has been
adopted here treats the twisted scalar field as a
distinct quantum field to be quantized separately
from the untwisted field. Avis and Isham' have
proposed combining twisted and untwisted fields
into a single field theory by taking the generating
functional to be a linear combination of those for
untwisted and twisted fields. In such a theory,
the twisted and untwisted configurations are iden-
tified with different sectors of the same theory
rather than distinct quantum fields. In the present
context this proposal would require either select-
ing a subset of all the possible twisted configura-
tions or else summing over an infinite number of

where IF~) are a complete set of antiperiodic func-
tions of the form of Eq. (2.3) and where

+(az)' —(at)'] ', (2.9)

where 0 is the square of the geodesic distance be-
tween x and x . Define the renormalized Green's
function by

G„(x,x') =G(x, x') —G(x, x'). (2.10)

In the coincidence limit this quantity is finite ex-
cept at r =0:

G, (x, x) =- 1
(2

The energy-momentum tensor for a twisted
scalar field is of the same form as that for an
untwisted scalar field. In flat spacetime it is

T„,=(I 2~)y „y-„-,'(1 —4~-)g„,y, y ~

h424;pv& (2.12)

where E is an arbitrary parameter which takes the
value zero for minimal coupling and. & for con-
formal coupling. The finite vacuum expectation
value of this tensor may be defined as

(T„,) = lim, [(1—2()s„s,, ——,'(1 —4F)g„,s s~

—2)V~9,]Gs(x, x ), (2. 13)

where V& is the covariant derivative at x in the
metric Eq. (2.1), &„ the ordinary derivative at x, and

8„ that at x'. After some calculation, it is found
that the nonzero components of (T„,) are

32$ —5
P'i~) = (&-)=256,.r-.

16g -3'( ")=256+r'
(2.14)

+(«)'- (&t)'] "'
x[r'+r" —2rr' cosa8 +(«)' —(th, t)'] ',

(2.8)
where h, 0 = 0 —0', etc. The two-point function for
the untwisted scalar field is

1
G(x, x) =-

4m'0

=(4m') '[r'+r" —2rr' coss8
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The energy-momentum tensor is singular on the
~ =0 axis. Similar behavior often occurs in the
expectation value of the energy-momentum tensor
of a quantized field which is subject to boundary
conditions on an arbitrary surface. If we define
the total energy of the string as

Y(t) =g(B„+c )tf" '~" (2.22)

--,'m-'"(B, +C,), (2.23)

in the case of' a three-dimensional space. The g
function Z(s) has a simple pole at s =-—,

' with resi-
due

E = T„d'x, (2.15) so we may write

then the energy is infinite unless ( =+.
However, an alternative definition of total energy

is obtained by first defining the Hamiltonian opera-
tor

(jt) . .. , —
r,')t 'e'r')—,'. efte'te term) .-i -i2&B~+C.

(2.24)

H = T„d'x (2.16)

(] 2It 2 + 4~2m2 L 2)l/2 (2.17)

where $„, is the nth zero of Z~„„2~(x) and where
n =1,2, . . . ; E=O, +1,+2, . . . ; and m =0, +3,+2, . . . .
The vacuum expectation value of II is

(II) = —,'gv„,
nt nt

Def ine the f-function-regular ized energy as

(2.18)

and then imposing a regularization-subtraction
procedure. This does not in general yield E; the
two operations do not commute. This noncom-
mutativity occurs in the case of the Casimir effect
f'or a minimally'coupled scalar field' and in the
case of a quantized electromagnetic field in the
presence of curved perfectly conducting boundar-
ies. ' One might expect the same to be true in the
present case. Indeed, the energy per unit length
obtained by f-function regularization" vanishes.

To show this, consider a twisted scalar field in
a cylinder of radius A and length L; that is, we
require that Q(r =It!) =0 and p(z+L) = p(z) in addi-
tion to P(8 +2m) =-P (8). The resulting eigen-
frequencies are

The coefficient B4 vanishes in the present case"
because the curvature of the space is zero. The
coefficient C4 is unknown, but depends upon the
details of the boundary (in this case the cylinder).
If C4e0, then the pole term in Eq. (2.24) must be
subtracted. The details of how this is performed,
whether by the introduction of a surface counter-
term in the action or by some other procedure,
and of whether some of the finite term is removed
as well, are irrelevant to our present purposes.
The result must be of the form

(II&„„=It 'f(L/It). (2.25)

Thus if A- ~ with L/It fixed, then the renor-
malized. energy must vanish:

(H)„„-0as A- ~ . (2.26)

Hence we conclude that the energy per unit length
of the string is zero.

How is this result to be reconciled with the pre-
vious result that (T«&&0 if rx0? The simplest
resolution is to assign a singular negative energy
to the line r =0 which is such that the integral of
the energy density over all space vanishes. The
energy density may be modeled by considering the
choice

(II&, =-2'Q(u„, "=-2'It 'Z(S),
nl nt

(2.19)
-4

32$ —5
2567)' -3e ', r« (2.2 "I)

Z(e) =$tr ', (2.20)

where X& =X„, =&„,'+4pnz'R'L ' are the eigen-
values of -V' subject to the above boundary condi-
tions.

I.et

where Z(s) is the g-function of the operator -V2 in
acting on twisted scalars in a cylinder of unit
radius and length L/R Explicitly, .

in the limit of smal. l.e. Critchley, Dowker, and
Kennedy" have recently proposed the introduction
of such singular surface energies in order to rec-
oncile the discrepancy between f&T«&d2x and (II&
in the presence of boundaries. This interpreta-
tion leads us to conclude that the twisted scalar
string is a configuration of zero total energy but
nonzero energy density.

III. TWISTED SPINOR STRINGS

Z(s) = Y(t)t' 'dt.I' s

The function Y(t) may be expanded as"'"
(2.21) In analogy with the twisted scalar strings, it is

possible to construct twisted spinor field configura-
tions in Minkowski spacetime which are inequiva-
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lent to the usual Poincare-invariant field theory.
Let us first recall. the tetrad formalism for the
description of spinors in a general metric. The
Dirac equation for spinors of mass m is

eP =gP eP =gP

e~ = 5~& cos8 —62~r 'sin8,

e2~ =5~~ sinH +52~x 'cos8.
(3.8)

iy~V„) —m) =0,

where the spinor covariant derivative is

(3.2)

and 1
&

is the spinor connection. The y matrices
satisfy the ariticommutation relations

(3.3)

The connection satisfies

(3.4)

The connection calculated from Eq. (3.7) vanishes:
I'„=0. This tetrad field is in fact the parallel one
associated with a rectangular coordinate system
and leads to the usual Poincard-invariant spinor
field theory. An alternative choice of the tetrad
field is

(3.9)

which are tangent to the coordinate lines of the
cylindrical coordinate system. Let

where I"~„are the Christoffel symbols for the
metric g~. Let e~ be a field of tetrad vectors
which satisfy

e"egg„„='g g and e"eg'g =g+, (3.6)

yP Paya

Then the spinor connection becomes

(3.10)

(3.11)

where q,~
= diag(1, -1, -1,-1). Greek indices are

raised by g~ and Latin indices by g". If g' satisfy
Iy', y')=2@'~, then the matrices defined by iy"V P —m)=0, (3.12)

It is possible to remove the connection by a
similarity transformation. If P is a solution of

y"=e (3.6) then
satisfy Eq. (3.3). The spinor connection in the
absence of an electromagnetic field may be ex-
pressed as

p=s '$

is a solution of

(3.13)

(3.7)

where s"~= My', yp] and the y matrices are those of
Eq. (3.6).

Different choices of the tetrad field yield differ-
ent spinor connections. Normally, two such
choices may be related by a similarity transfor-
mation, but this is not always the case. ' The exis-
tence of multiple spinor structures is manifested
in the existence of inequivalent spinor connections.

An example of a nonsimply connected spacetime
is S'xR, flat space with periodicity in one spatial
direction. The usual untwisted spinor field in this
spacetime is obtained by choosing the vectors e,"
at different points to be parallel to one another.
However, another possible tetrad field is obtained
by requiring the vectors to undergo a 2p rotation
about the axis of periodicity as one moves in the
direction of periodicity. This choice leads to an
inequivalent spinor field configuration, the twisted
spinor field. That this configuration is physically
inequivalent to the untwisted spinor field is evi-
denced by the fact that the two configurations give
rise to different Casimir energies and different
one-loop photon vacuum polarizations.

If the metric of Minkowski spacetime is given
by Eq. (2.1), a suitable choice of the tetrad field
is

iy" V„g —mP =0,

where

and

y" =8 y"8

I,et

V~=8 VpS.

g=q f'i'~2 —c»,g+y2y~sjn-8

Then

(3.14)

(3.iS)

(3.16)

(3.17)

(3.18)

and y" becomes the y matrices defined by Eqs.
(3.6) and (3.8). However, if $ periodic in 8, P
must be antiperiodic:

(3.19)

Thus in this representation the twisted spinor field
satisfies the same wave equation as the untwisted
field but is distinguished by its antiperiodicity.
Note that this antiperiodicity is not to be confused
with the effect of a 2m rotation on a spinor. If
R(9) is the operator corresponding to a rotation
by an angle 8, then R(2v)$= —P. This is, however,
true for both twi. sted and untwisted spinors,
whereas only the twisted spinors satisfy Eq. (3.19).



TWISTED SCALAR AND SPINOR STRINGS IN MINKOWSKI. . . 953

The untwisted spinors are single-valued solutions
of Eq. (3.14) with V„=S„:

P„(8)= P„(8 +2m) . (3.20)

5g =if .
&0

(3.22)

All possible choices of tetrad field and hence of
the spinor connection may be reduced to one of
these two- possibilities. As in the scalar case,
the antiperiodic spinors all vanish on the r =0
axis so the region of space where they are nonzero
is not simply connected.

The canonical quantization of the twisted spinor
field is analogous to that of an untwisted spinor
field. Let us work in a representation in which
the twisted spinor field is a (single-valued) solu-
tion of Eq. (3.12). The associated Lagrangian
density is

g = i pV „p—m /t'ai, (3.21)

where P =Py . Because f'e =0, the momentum
conjugate to P is

3a+C =0. (3.31)

A-8 —C -D =o. (3.34)

Thus in this case &T„,) is determined entirely by
the constant A; in Appendix 8 it is shown that

1
128' (3.35)

for a twisted neutrino field. That is,

1 1
&Tgt) =-&T„)=3 2 (Tee) =-(T..) = —

126 4 ~

(3.36)

The fact that the components of &T„,) must be in-
variant under I orentz boosts in the z direction
implies that

(3.32)

Finally, if m =0 the expectation value is traceless,

(s.ss)

so that

The equal-time anticommutation relations

lP(x, t ), m(x', t)] = i5(x, x') (3.23)

(3.24)

Then we may write

g(skux +f Rex )1 (3.25)

are imposed. Let (uq] and (eg be complete sets
of positive- and negative-frequency solutions of
Eq. (3.12) which satisfy

The energy-momentum tensor for a twisted, four-
component spinor field is, in the massless limit,
twice that given by Eq. (3.36). As in the scalar
case, the energy density becomes singular at r-0.
Here, however, it is negative. One may also cal-
culate the total energy by first forming the Hamil-
tonian and then applying regularization, as was
done in Sec. II for the scalar case. Again one
finds that the total energy is zero, so the spinor
string is interpreted as consisting of a negative
energy density given by Eq. (3.36) and a compen-
sating positive singular energy at r =0.

where

is~, u'v] ={&~,t'v] =6~v. (3.26)
IV. NONRELATIVISTIC QUANTUM MECHANICS OF

TWSTED FIELDS

T~~ 2i[p (sop) (sop )g] (3.28)

The expectation value of T&„must be invariant
under inversions of the t, 8, and z coordinates
and is hence diagonal. On dimensional grounds it
must be of the form

The energy-momentum tensor is

T~= '[Q„„p+Q„V„p—( &$)7 g —(V„pQ„p].

(3.27)

In particular,

It is well known that the Dirac and Klein-Gordon
equations reduce in the nonrelativistic limit to
the Schrbdinger equation. " This is also true for
the twisted spinors and scalars discussed in pre-
vious sections. A twisted spin-0 or spin- —,

' par-
ticle satisfies the. usual Schrodinger equation

O'P+ V(x)$ =i —,1, . sp
2m

(4.1)

where the wave function must be antiperiodic about
a given axis:

&T„„)=x 4diag(A, B,Cr', D)

in the limit that m =0. Because

we have that

(3.29)

(3.30)

y(e) = -y(e+2v) . (4.2)

[Equation (4.1) is written for the case that the
vector potential X =0, but twisted particles satisfy
the same equation as untwisted particles in all
cases. ]
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V = Ze'/p,

where

(4.3)

It is apparent that solutions of Eq. (4.1) which
satisfy Eq. (4.2} will have very different properties
from the familiar periodic solutions. As in the
relativistic case, all such solutions vanish on the
r =0 axis. Let us consider the "twisted hydrogen
atom" problem. Take

Compare this result with the usual hydrogen-
atom energy eigenvalues

m g»e4
En 2» n =1~2, 3

2n
(4.10)

The separations between the energy levels are
different in the two cases, so the spectrum of the
twisted hydrogen atom is quite distinct from that
of the ordinary hydrogen atom.

p (y2 ~ Z2)1/2 (4.4)

'g =p+z. (4.5)

Then (g, q, 8) are the parabolic coordinates. The
solutions of Eq. (4.1) subject to Eq. (4.2) are
easily obtained by comparison with the periodic
solutions; they are

=~e-~f &+»/2((2))I v I/2L, I 2 I(ug)glul(~q)

x e~u ee ~~~ (4.6)

where & is a constant, n, and n, are non-negative
integers, p. =a-,', +—„.. . , I.„ is a Laguerre poly-Ipl

.

nomial, "and

n =2I fE/.

The allowed energy eigenvalues are

(4.7)

This is just the Coulomb potential energy of a
charge e in the field of a charge Ze located at the
origin.

Equation (4.1) is separable in spherical polar
coordinates if V= V(p). However, it is not possible
to obtain a normalizable set of eigenfunctions in
these coordinates. The solutions of the angular
equations are the spherical harmonics F", where
the antiperiodicity in the azimuthal angle requires
that g =+—,', +—,', . . . . These functions are singular
on the axis ~ =0 and cannot be normalized. This
is a consequence of the fact that Eq. (4.2) implicit-
ly breaks the rotational invariance of the system.
Hence one cannot construct a complete set of
simultaneous eigenfunctions of the Hamiltonian and
of the orbital angular momentum operator L».

It is, however, possible to obtain well-behaved
solutions in parabolic coordinates. The separabil-
ity of the Schrodinger equation in these coordinates
for the hydrogen atom was demonstrated in the
early days of quantum mechanics. "" A textbook
discussion of this problem is given, for example,
by Sehiff '8 Le

V. DISCUSSION

%e have seen how twisted scalar and spinor
field configurations may be constructed in Min-
kowski spacetime. There are an infinite number
of inequivalent configurations. The vacuum state
of the quantum field theory of such a twisted field
is associated with a singular distribution of
energy (a string). The total energy of the string
is nonetheless equal to zero. The one-particle
states of the theory might be regarded as describ-
ing "twisted particles. "

Although the mathematical construction of twisted
field configurations is. relatively straightforward,
the physical interpretation is less clear. Does the
singularity in the vacuum energy density of the
twisted strings render the twisted field configura-
tions physically unacceptable' Perhaps not. It
is conceivable that the twisted field description is
a good approximation at low energies but one which
breaks down at high energies or short distances.
If this were the case, the singular behavior might
be avoided. It is not clear, however, what would
determine the limits of validity of the twisted
des cr iption.

Another unresolved question is whether tunneling
between different configurations is possible. If
this is possible, then ordinary electrons might
under appropriate circumstances become "twisted
electrons" and be described nonrelativistically by
Eqs. (4.1}and (4.2). Such an occurrence should
give rise to observable effects, as typified by the
twisted hydrogen atom. Various stringlike objects
have been proposed in recent years as models of
hadrons. "" Vfhether the strings discussed in
this paper may be used to form the basis for a
hadronic model is a subject for further investiga-
tion.

where

2mg»e4

(2n+ J

s =~1+~2+ lu I+2

(4.8)

(4.9}
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APPENDIX A Take the limit that A and L- ~. Then

Here the two-point function for a quantized
twisted scalar field will be calculated. Let us
confine the field to a finite quantization volume in
order to obtain normalizable mode functions; this
may be achieved by imposing the conditions P(z)
=P(z+L,) and P(r =ft) =0. Then the mode functions
are

—F =N j, (K r)e&&&&+i/ & +22 ~2& (Al)

As pg-~,

(„,- v(n+ l I&+ l l- l),

so that

(A5)

(A6)

IF ~l'~-g d'x=(2~) ' (A2)

where K„, =A 'g„, and g„, is the nth zero of Ji„»2i(x).
The normalization constant is determined by the
condition

(AV)

Furthermore, using Eq. (A3) and the asymptotic
form

to be
l lj2

N i 4&/(0LR dh fbi i &/2i (g )t)
0

The two-point function is

G(x, «') = &o lb(x) e(x') lo}

+nlk + +nlk +

(A8)

(A4)

1/2

Z,(x) - — cos(x - -2' &/&/ ——,
'

&/), x- ~

we find that

) )./2

N„, 4 ~), LB-~.

Thus the two-point function becomes

(A8)

(A9)

00 00

G(x, x ) = g dK dkK&d 'Z (Kr)J' (Kr )e 'I '"'&
j=-~ 0 ~ 00

(A10)

where b.8=8 —8', etc.
Let b, t =0. Then the sum and integrals appearing

in Eq. (A10) may be explicitly evaluated by use of
the relations" "'

~ ~ ~

dI2(k'+K2)' 'e'~'= 2K,

(Klutz

l), (A11)

where gQ is a modified Bessel function,

dKKJ)$ + j/2 i
+ Jig+//2i ~ +Q

0

=-2(2&/) '"(«') '(u' —1) '"O'I&'+&/2i 1/2(u)

(A12)
where Q2 is a Legendre function of the second
kind,

However, invariance under Lorentz boosts in the
z direction requires that hz. .and b, t appear in the
combination (hz)2 —(Af)2. Thus two-point function
for arbitrary x and x' is given by Eq. (2.8).

APPENDIX B

In this appendix (T„)for a massless twisted
spinor string will be calculated. The Dirac equa-
tion for a twisted spinor, Eq. (2.12), with the con-
nection of Eq. (3.11) may be written as

l
y's, +y'e, +r 'y'se+y's, +~ y'p=o

u =(2rr') '[r'+r" +(Az)']

q'„/2„, (cosh/2)=2
2

. l
e ' .

2sinhn j
The result is

(A18)

(A 14)

if m =0. Choose a representation in which

/'0 I) (0 g&)

y —, , y —, , '=1, 2, 3

where the g' are the Pauli matrices and I is the
2x2 unit matrix. If we let

G(x, x') l, „=(2e)-'(rr')' '
x cos 2'/&e[r'+r" +2rr' + (A ) ]z'/2'

x [r'+r" —2rr' cosh, 8+(6 ) ]z'2.

(A15)

(s
gX/

where P and g are two-component spinors, then
Eq. (Bl) may be written as
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and

conditions

u)(z) =u), (z +I,) (B15)

8 X+9 8„+—X +r 0' Beg+0 8 X =0.

F
f(l 8+he- zt )

G
(B6)

Solutions of Eq. (B4) may be obtained in the form

F„(r=fl) =O.

We could choose to replace Eq. (B16) by a condi-
tion upon G & without altering the final results.
In analogy with the scalar case, we now have

(B17)

E
F=-i v —k G

dr r (B7)
where g„, denotes the nth zero of Jp, /, (. The
normalization condition Eq. (3.24) implies

d 3+2—+ '
G = -i(u) + k)F .

dr r (B8)

2mL dr r F I + G„,I
0

In the limit that A- ~, we fi.nd that

(B18)

Combine Eqs. (B'7) and {B8)to find

d'F 1 dF (l ——,")'
dp pdp p

where p =kr and K=(uP —k')'I'. Hence regular
solutions are of the form

K((u —k)
4' LR (B19)

(for all values of l). Positive-helicity (antineu-
trino) solutions of Eq. (Bl) are

F=NJ(( „,)(p). (Blo)

Because g is required to be single-valued, l is an
integer. From Eq. (B'7) we obtain

and satisfy

(1+iy, )v „=0. (B21)
G = iNK(co —k) 'J„—„,(Kr),

if L» 1, and

G =iNK((u —k) J ( ~)2{Kr),

(B11)

(B12)

The two-component spinors

Fx
et (L 6+hz+ vt)X~=

G
(B22)

if l+0.
A negative-helicity (neutrino) solution of Eq.

(Bl) is

(B13)

where A. = (nlk) and satisfies

(1 —iy, )u), = 0

with y, =(-g) '~'yoy, y,y, . We take the quantization
volume to be as in Appendix A and impose the

(0 IT«lo) ——Z~~v~v~.

Regularize this quantity by separating the points
at which the field operators are evaluated. The
regularized quantity may be written as

(B23)

are solutions of Eq. {B5). If the normalization
factor is chosen as before, the vz satisfy Eq.
(3.24).

The formal vacuum expectation value of 7« is
obtained by substituting Eq. (3.25) into Eq. (3.28):

(T (z, x')) = —Q(uqv~q(x') v), (x)

1 OO

dKK dke' '
((u —k) Q J(, „,((Kr)J(, ,q, ({Kr )

1T Q ~ OO l=-~

+((u +k) Q J„„,(Kr)J„„,(Kr')
l =1

0'pz, „,(x,)z, „.(x. ).«--" I,OO

where the fact that

(B24)

dZ dZ dk
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as I.,R- ~, has been used.
Set t = t' and evaluate the sums and integrals using Eels. (All}, (A12}, and (A14} and

dkot e'~" = — K,(Khz) =—— —Ko(Khz),J ~a
lhzI ' hz dz

where we take hz —z & 0. The result is

(T«(x, x )}, , =-,' tt '(rr') '([r'+r" +2rr' +(h.z)'] '"[r'+r" —2rr' eosn8+(az)'] '

—2[r'+r" +2rr'+(a z)']"'[r'+r" —2rr'cosine+(Lz)']~] .

(826)

(827)

Let r =r' and 8=8'. Then as hz-0,
I 1

(~tt(» x ))t t' =, e e —--
( )4i6m(b, z)

, +0((az)').1

(82S) 126 (829)

The term proportional to (b,z) ~ is the usual
diver gent Minkowski-space vacuum energy. The
finite energy density for a string is obtained by
subtracting this term:
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