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Casimir effect and topological mass
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The analogy between field theory at a finite temperature and field theory in periodically identified flat
space-time is discussed and used to deduce the Casimir effect. The renormalization of a twisted scalar field
with a X$ self-interaction in periodically identified flat space-time is also discussed.

I. INTRODUCTION

Although the Casimir effect' for a free field
theory has been known for some time, it is only
recently that the effects of interactions have begun
to be examined. ' ' In particular, the effect of a
P' self-interaction on the vacuum energy and the
self-energy of a massless scalar field in a flat
space-time which is given the non-Minkowskian
topology of S' xR' by making a periodic identifica-
tion' in one of the spatial coordinates has been ob-
tained. " It is found that a field which is mass-
less at the tree-graph level can develop a mass
as a consequence of both the nontrivial topology
and the self-interaction; hence, such a phenomenon
might be dubbed topological mass generation.

The purpose of this note is to discuss the
analogy between this case and field theory at a
finite temperature. We shall also show that a
twisted scalar field' with a it/' self-interaction is
renormalizable to order A.

' where the counter-
terms in the Lagrangian are identical to those for
a scalar field in Minkowski space-time.

II. THE CASIMIR EFFECT AND FIELD THEORY AT A

FINITE TEMPERATURE

Z = Jt d [y j exp d'xg(x)

where the usual rotation of the time axis has been
performed so that the metric is now a positive-
definite Euclidean metric, and where d[P] repre-
sents a measure on the space of classical fields
which enter into the Lagrangian, C(x). We may
use the standard formula for the energy from sta-
tistical mechanics:

(2)

We shall deal first with an ordinary, free, mass-
less scalar field. The functional integration in
Etl. (1) is taken over all fields which are periodic

In quantum field theory at a finite temperature
the partition function may be defined as the follow-
ing functional integral". n pL2L3

90I.,' (4)

Using Etls. (2) and (4), the energy in the Casimir
case is

n' L2L~
90L 3 7

which is the correct result for a scalar field sat-
isfying periodic boundary conditions. '

Consider now a real scalar field with a mass
term and a P' self-interaction. The Lagrangian
which enters into Etl. (1) is

&(x) =- a(si 4)(&'4') —s&tn'&'-4i &'

where m~ is the bare mass, and A. ~ is the bare

in Euclidean time with period P, where P is the in-
verse temperature, and which satisfy periodic
boundary conditions on the walls of a box whose
sides are assumed to be of lengths Li L2 L3
we take the large-box limit (specifically L„L„L,
» p), then we will obtain an expression for Z
which is valid at a finite temperature in ordinary
Minkowski spa. ce-time. If we take the limit P, Ls,
L3 )) Li then we wi 11 obtain an expression for Z
which is valid at zero temperature in a flat space-
time with the topology S'XR'7 where X' is the
spatial coordinate which has been given the peri-
odic identification. Furthermore, it then follows
from Etl. (1) that the expressions obtained for Z
in these two cases wiQ be identical upon the in-
terchange. of P and I, This allows us to deduce
the Casimir effect from the thermodynamic result
for the partition function.

For a free, massless, real scalar field the par-
tition function is well known from thermodynamics
to be given by"

1 Z n'LjL, L„
90p'

(We choose units such that 5 =c =1.) As mentioned
previously, this result holds only in the large-box
limit. To obtain the pa, rtition function in the Casi-
mir case we merely interchange p and L, to give
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coupling constant. The Feynman rules at a finite
temperature are discussed in Ref. 7. It is evident
from Eqs. (1) and (6) that the equivalence described
above between field theory at a finite temperature
and field theory in a periodically identified flat
space-time extends to the interacting case as well,
so that the Feynman rules in the periodically
identified flat space-time will follow from those of
Ref. 7 upon the replacement of P with L,.

The renormalization of field theory at a finite
temperature has been discussed by Kislinger and
Morley, "where a procedure is described for the
renormalization of finite-temperature Green's
functions to all orders in perturbation theory. An
explicit demonstration to order A.

' is given for A. P'
scalar field theory at finite temperature in Min-
kowski space-time. The mass and coupling-con-
stant counterterms are shown to be temperature-
independent to this order. Using the mathematical
equivalence argued above, it then follows that the
corresponding theory in periodically identified
Qat space-time is renormalizable to order X'. It
is also shown in Refs. 8 and 11 that there is a
temperature-dependent one-loop contribution to
the (mass)' which, upon the interchange of P and

L„gives an L,-dependent (mass)' of

d k 2 g y 2
—,'X~ Jl, (k'+m~') ' '(exp[L„(k'+m~')' '] —1)-'

(l)

in periodically identified flat space-time. The
A. „and me which appear in Eq. ('l) are the renor-
malized values of the bare constants appearing in
Eq. (6).

Ford and Yoshimura' considered only the mass-
less theory, ns„= 0, in which case it is easy to see
that Eq. ('I) reduces to their result of XR/4! L,'.
The method of calculation which was used in Ref.
3 was first-order perturbation theory where the
divergences were dealt with by &-function regu-
larization. No renormalization was performed
using this procedure since all of. the divergences
disappeared; however, it has been emphasized
by Kay' that this will not hold true if the fields
are massive.

III. RENORMALIZATION OF THE TVfISTED SCALAR FIELD

The notion of twisted fields was introduced by
Isham. ' A very brief description of this idea is

included here for completeness; however, the
reader should refer to Ref. 6 for the full details.

Since a real scalar field defined on some space-
time manifold M assigns a real number to each
point of the manifold, we could regard the field
as the cross section of the product vector bundle
whose bundle space is M&&R', whose base space is
M, and whose fiber is R'. Isham noted that one
could equally well define a real scalar field as the
cross section of some nonproduct vector bundle
with a base space of .M and a fiber of R', since
locally the bundle space is still MxR'. He called
such scalar fields twisted scalar fields, and the
bundles twisted vector bundles. The number of in-
equivalent twisted vector bundles which is allowed
for a given space-time is determined by the
space-time topology. In the ease of Minkowski
space-time only one type of scalar field is al-
lowed, corresponding to the usual notion of a scalar
field. If however, we take the manifold M to be a,

flat space-time in which a periodic identification
is made in one of the spatial coordinates, then
there are two types of scalar fields allowed. In
addition to the usual scalar field, which is periodic
in the identified coordinate, there is also a twisted
scalar fieM which is antiperiodic in the identified
coordinate.

The Feynman rules for a scalar field satisfying
antiperiodic boundary conditions at finite tempera-
ture foQow in a manner which is similar to those
discussed in Ref. 7 for fermions. The rules for
a twisted scalar field in a flat space-time, in
which the X' coordinate is periodic with period
L„will then follow from these rules upon the in-
terchange of P and L,. They will then be the usual
momentum-space rules except that k' = (v/Z„)
x (2n+ 1), where n takes on all integral values, is
discrete, and where fd'k/(2v)' is replaced with

~„L, ~ (2v)'

We shall use dimensional regularization" to
deal with divergent Feynman integrals, where
fd'k/(2~)' is replaced by p,

' fd" 'k/(2v)~ ' and
then analytic continuation is performed to a
neighborhood of co =4. Here p, is the unit of mass"
which is introduced so that the coupling constant
remains dimensionless in e dimensions. The
summation formula"

I

1 dk, ""dk, ,~uf
~

—(2n+1) = ' — ' f(k ) — .
-' (e '~&"& +1) '[f(k )+f(-k )j2r & „;,2r

(8)

is used to convert the summations which occur in
Feynman integrals into contour integrals. The
second contour in Eq. (8) is closed in the upper
half of the complex k, plane which encloses any

t

poles of f(k, ) +f(-k,).
Define Z(p) to be the sum of all one-particle-ir-

reducible self-energy graphs, where p denotes the
four-momentum of the external line. The contribu-
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tion to Z(P) of order X„comes from Fig. 1(a);
the contributions of order X„' arise from Figs.
1(b)-l(e). In Fig. 1 a black dot denotes a coupling-
constant counterterm, while a cross denotes a
mass counterterm. The contributions of order A, ~'

'

to the vertex function I""'(p„p„p„p,) are shown
in Fig. 2, where p„p„p„p4 label the external
mom enta.

The Lagrangian is given in Eq. (6), and we ex-
press the bare quantities in terms of the renor-
malized ones as"'"

ao 00

Xzz+ Q Q ( 4)pv=1 j=p M

be L„ independent; this remains to be shown.
The contribution to Z(p) which is of order A.„is

contained in Fig. 1(a) and is

+ oo 1 de ~$P
zz) Q f (2 )(u-1

t" 2 . -1
x k'+ —(2n+ 1) +m;z'

L~

Using the summation formula, Eq. (8), and expand-
ing about co =4 gives

00 oo

:.n, '=m, ,' 1+ g g,((d —
g

(10) d'k
+Pe ~t, , (u, '(e~&~&+I) ' (14)

The field renormalization constant is expressed as

Z=l+ Pg "')„~„.(d—

Here a„., 5.,„., "„.are coefficients to be chosen
such that the renormalized two-point and four-
point functions are finite as we let & tend to 4.
Specifically, "they are to be chosen such that

where v, = (k'+ms')'~'. Since the divergent part
is the same as in Minkowski space-time, the co-
efficients of order A. „which appear in Eqs. (10)
and (11) are the same as those in Minkowski
space-time. " It is also seen from Eq. (14) that
there is a negative l„-1'ependent (mass)' term of

lim Z[p'+me' —Z (p) ],
~~4

(12)

3

, (k +m„') '~'(exp[1., (k'+nz~')'!']+1) '.
2r 3

(15)

lim p,
* Z'[-Z + I'"'(p„p„p„p,) + O(z„')] (l3)

ar'e both finite. Unlike the situation in Minkowski

space-time, "we have no guarantee that the co-
efficients are mass independent or that they will

In the case of a massless theory, Eq. (15) reduces
to -A. „/48L, '.

Letting [p„(w/L, )(2l+1)], [p„(z!/I.,)(2m+I)]
label the incoming momenta, Fig. 2(a) gives a con-
tribution of

4 1 d 2 -1
2 (-x„)'p,' ~ Q—,k'+ —(2!z+ 1) +nz~'

(2zz)

x (k-pz —p, ) + —(2n+1) ——(2l+1) ——(2m+1) +nzs'r 7T

L~ L,

to the four-point vertex function. Using Eq. (8) to deal with the summation, the divergent part of this is
seen to be -(X„'/16z!')(v —4) ' which is independent of the external momenta; thus, Figs. 2(b) and 2(c) have

an identical divergent Part. The divergent Part of the vertex function to order As' is then -(3Xs'/16m')
x(~ —4) which is the same as in Minkowski space-time. It then follows that to second order in A~ the

coefficients a„appearing in Eq. (8) are the same as those which occur for Q theory in Minkowski space-
time. '4

The contributionsto Z(P) of order X~ are shown in Figs. 1(b)-1(e). Figure 1(b) gives

24
" 1 +" 1 d~ ~k d" q

2 1

-'(-&&)'(V')' g —g —,, k'+ —(2n+1) +nz~' q'+ —(2m+1) +m, '„r., ~ (2~) -' (2v) -' L,

After using Eq. (8) for each sum, the divergent part of this expression may be seen to be

2 2 2 2 2

(~ —4) ' — 4 2y —1+2ln z (a& —4)
4zp,

'

+ " z" (~ —4) ', (k') 'cu„'(e~z~&+1) '+ ",(a) —4) ', (u '(e~z"! +1)-'. (16)
64zz . (2'!z) " 32z!' (2z!)'

Figure 1(c) makes a contribution of Z(p) of
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4„'" & d 2

~ (-&&)p' g —~, k'+~ —(2n+ 1) +m~'
(2v) -'

p

where 5A. = —(3X„'/16m')(u& —4) ' is the coupling-constant counterterm to order As which follows from
above. The divergent part of this expression is

3A, 3
~a

8X G7 '0
5S2~4 l, 4&92 27r

'

Figure 1(d) gives a contribution to Z(p) of

1 ~d 'k, n
2 -2

~(-As)(-6m )u Q —
~l q k + —(2n+1) +wg

where 5m'=-(A. „m„'/16v')(u —4)-' is the mass counterterm to order A~ which follows from above. The
divergent part of this expression is

A. d'k
", ((o —4)-'+ " ", (co —4)-' y+ln) ",

(
— "," ((o —4)-' J,2

„(k') 'ur, '(e ~ &+1) '. (18)

Figure 1(e) makes a contribution to Z(p) of
+oo ] +Do 't2

, (-&„)'(g')' g —g —,k'+ —(2n+ 1) I +m~'
(2v)

-' J., i

F n r r )2 -1
x q'+ —(2m+1)

~

+m~' (k+q -p)'+ —(2n+1)+—(2.n+1) -—(2l+1)
~

+n«„
Lj L, L,

where [p, (n/L, )(2l+1)] is the external four-momentum. Due to the overlapping divergence this graph is
the only nontrivial one to evaluate. The divergent part may be shown to be

2' 2 2

(&u-4) '+
72 «(v —4) ' P'+6m„' —12 (y —1)n«~' —12m+'1n~

where p' is the square of the four-momentum of
the external line.

We see that each of the graphs in Figs. 1(b)-1(e)
separately contains L,-dependent divergences. In
order to obtain the total contribution of order A.„'

I

to the self-energy we must add Eqs. (16)-(19).
When this is done it may be seen that all of the

L,-dependent divergences cancel and we are left
with

2 2 2 2

1

A.

'8OVav'(

(a) (b) {c)

which is' the same as the divergence that one ob-
tains for a scalar field in Minkowski space-time.
As a result, all of the counterterms to order A.~'
are the same as those for an ordinary scalar field

{e)

FIG. 1. Contributions of order Xz and g&2 to the self-
energy.

{c){b){a)
FIG. 2. Contributions of order X+2 to the vertex func-

tion.



in Minkowski space-time, namely, "
33.~, (u) —4) '+O(X~')8. R y6

z = 1+307~2, ((o —4) '+ O(z „').

Thus, we have shown that there is a mass-inde-
pendent and E„-independent renormalization pro-
cedure, at least to order A. ~', for a twisted scalar
field with a P self-interaction in a periodically
identified flat space-time.

IV. COMMENTS

In principle, there is nothing to stop us from
extending the calculation of Sec. III to higher or-
ders in A.~; however, in practice it proves very
difficult to do. In addition to the problem of over-
lapping divergences which is present in the higher
loop graphs, one also requires more terms in the
Laurent expansion about co =4 of the integrals
which occur.

Finally, we remark that a convenient approach
to problems such as those considered in Refs. 2
and 3 is a calculation of the effective potential. "
In addition to giving us the vacuum energy density
and the radiative corrections to the mass, the ef-
fective potential also allows us to discuss possible

symmetry breaking by searching for its minima, .
We have completed a calculation of the one-loop
effective potential for a real, massless scalar
field with a P se]f-interaction in the cases of
periodically identified flat space-time for both
twisted and untwisted scalar fieMs, Minkowski
space-time in the presence of flat parallel con-
ducting plates, and in the Einstein static universe.
Furthermore, as a consequence of the renor-
malizability discussed above, the contribution of
the two-loop effective potential to the vacuum en-
ergy density has been found. (The complete ex-
pression for the two-loop effective potential ap-
pears to be very difficult to obtain. ) Except in
the case of Minkowski space-time in the presence
of parallel conducting plates, we find agreement
with Refs. 2 and 3. In this latter case we find a
finite contribution of Xz/18432L, to the vacuum en-
ergy density in contrast to Ford' who obtains an
infinite result, and a constant (mass)' term of
A. „/96L,' in contrast to Ford and Yoshimura' who
obtain a result which is both negative and spatially
dependent. A complete discussion of this caIcula--
tion and of symmetry breaking will be reported
in another paper.
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