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Gravitational waves from rotating and precessing rigid bodies.
II. General solutions and computationally useful formulas
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A rigid, freely precessing Newtonian body emits gravitational radiation. In this paper I review the
classical-mechanics'results for free precession which are needed in order to calculate the weak-field slow-

motion quadrupole-moment gravitational waves. Within that formalism, I give algorithms for computing the
exact gravitational power radiated and waveforms produced by arbitrary rigid-body freely precessing
sources. I also present the dominant terms in series expansions of the waveforms for the case of an almost-

spherical object precessing with a small wobble angle. These series expansions, which retain the precise
frequency dependence of the waves, may be useful for gravitational astronomers when freely precessing
sources begin to be observed.

I. INTRODUCTION

In this paper I analyze the quadrupole gravita-
tional radiation emitted by a freely precessing,
rigid, Newtonian body. An earlier work' (here-
inafter referred to as paper I) presented the
solutions for axisymmetric objects and, in the
small-wobble-angle limit, an approximate solu-
tion for nonaxisymmetric bodies. Paper I also
discussed some astrophysical applications of
those calculations to neutron stars as sources of
gravitational waves. Here, I give algorithms for
computing the exact results for the gravitational
power radiated and waveforms produced by an
arbitrary rigid Newtonian Object, rotating free of
external torques, in the standard quadrupole-
moment formalism. I also give computationally
useful formulas for the interesting case of an
almost-spherical object precessing with a small
wobble angle. 'These series expansions retain
the precise frequency dependence of the waves-
an important point for observers who may have to
integrate over long times in order to see a signal.
The results are compared with the simpler, ap-
proximate waveforms of paper I. Since that paper
discussed at length the application of these cal-
culations to astrophysical systems, only a few
remarks on that topic are included here.

Section II of this paper reviews some of the
classical Newtonian-mechanics results for free
precession, defines the coordinate system and

terminology used herein, and presents formulas
useful for calculations of the power radiated in
gravitational waves by a rotating rigid body. That
section also gives the dominant terms in the
gravitational luminosity for an object with small
wobble angle, small oblateness, and small non-
axisymmetry, and interprets those terms. Sec-
tion III reviews more of the classical free-pre-
cession results, and uses them to de rive for-

mulas for the gravitational waveforms h, (t) and

h„(t). That section also presents explicitly the
dominant terms, with their exact frequency de-
pendences, for the same astrophysically relevant
limit as in Sec. II. 'The waveforms are interpret-
ed and compared with the approximate results of
paper I. Figures 1 and 2 show the exact results
for h, and h„as calculated according to the al-
gorithm discussed in Sec. IIIC, in two specific
cases, for a variety of observer inclinations re-
lative to the precessing body. Finally, Sec. IV
summarizes the conclusions of this paper.

II. POWER RADIATED IN GRAVITATIONAL WAVES

A. Review of classical free-precession results and
specification of coordinate system

'Throughout this paper, I shall use the physical
conventions of Landau and Lifshitz' in describing
rigid-body motions, and the mathematical nota-
tion of Abramowitz and Stegun' for elliptic func-.
tions and integrals. Much of the material nec-
essarily repeated here in the course of specifying
the problem is taken directly from Ref. 2. I work
in units where .G = c = 1.

A rigid, Newtonian object in flat space has its
inertial properties completely specified by its
mass arid by a symmetric tensor I with components
&,~ = f p(&,~r'-~,.x, )d'~. In some noninertial coordi-
nate system called the "body frame" I is dia-
gonalized, with diagonal components I„I„I„and
the center of mass of the object is stationary at
the origin. Choose the body-f rame unit basis
vectors e„e„e,to form a right-handed coordi-
nate system such th tI, a&I, &I,. (If any two of the
principal moments of inertia are equal, the analy-
sis in paper I applies. ) I shall use Latin subscripts
for components of tensors evaluated in the iner-
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tial-space reference frame, and Greek subscripts
in the body frame. %hen specific components are
referred to explicitly, the letters x, y, and z are
used in the inertial frame and the digits 1, 2, and
3 in the body frame.

The components of a tensor (such as I) in the
body frame and in the inertial frame are related
by the "rotation matrix" R&, =—ez

.e„. At any
moment, the body frame's instantaneous angular
velocity may be described by a vector Q. 'The

total angular momentum of the body is J = I Q, a
constant (if gravitational radiation-reaction tor-
ques are ignored). Choose the coordinate system
of the inertial frame so that J=Je,.

The orientation of the body frame relative to the
inertial system is described by three Euler angles:

is the angle between e, and e„y is the longitude
of the ascending node (that is, the angle between
e„and the line of nodes formed by the intersection
of the e,-e, plane and the e, -e, plane), and P is
the angle in the e,-e, plane between the line of
nodes and e,. (See Sec. 35 of Ref. 2 for illustra-
tions and comments. )

Choose the origin of time and the orientation of
e„and e, such that at t= 0, 0 is at its maximum
value, g= v/2, and + =0; that is, e, lies in the e„-
e, plane and e„and e, lie in the e„-e, plane. (This
completes the specification of the two coordinate
systems, and results in formulas which agree with
the conventions of paper I and Ref. 2.)

If the components of Q in the body frame are de-
noted by Q„Q» and Q„ then the body has rota-
tional energy E =-,'(I,Q, '+I,Q,'+I,Q,') and angular
momentum J=—

~
J~ = (I,'Q, '+I,'Q, '+I, 'Q, ')'~' Now, .

for specificity, make one additional assumption
about the precession: Assume that J'& 2EI,. This
is equivalent to assuming that, in the body frame,
the apparent precessional motion of J is a closed
curve around the e, axis. (If J'=2EI„ the motion
of J is along a curve passing through the e, axis
and the solutions for the gravitational radiation
may be obtained as a limit of the equations given
below. If J'& 2EI» the motion of J is along a
closed curve around the e, axis, and by consis-
tently interchanging the indices 1 and 3 below,
the correct solutions appear. )

'The components of Q in the body frame are
simple elliptic functions of time. Define the ini-
tial-value constants a—= Q, (t=0) and 5= Q, (I=0), —

and the dimensionless time variable ~ according
to the equation

Q, =acn7,

I (I -I ) '"
(2)

Q, = bdn&.

The parameter m of the elliptic functions in
Eqs. (2) is

As m-0, sn7-sin&, cn~-cos7, dn~-1, and the
solutions reduce to the symmetric-object solu-
tions of paper I. The elliptic functions are period-
ic in thei. r argument w, with period 4K where K(m)
is the "complete elliptic integral of the first kind"
defined and tabulated in Ref. 3.

8. Derivation of equations useful for the
quadrupole-moment formalism calculation

The quadrupole-moment formalism4 says that
the total energy radiated per unit time in gravita-
tional waves is

.'(F„4„)wha—ra k„-=J p(x,x, —.'Il„r'}d*x—

The derivatives of the rotation matrices are

i

=~pa& PQr~=& ~~QPir

R „=e„„„Q„Rq„+Q„Q„Rq„—
~
Q)'R)„,

R,„=[~„„,(Q, —~Q('Q, ) 2Q+„Q„Q„+Q„]R,„

(4)

'The angular brackets denote a time average over
a few periods.

The solution for the body's precessional motion
is much simpler in the body frame than in the
inertial frame, so it is profitable to work in the
body frame as much as possible. In evaluating the
total power radiated in gravitational waves, in
fact, one can work entirely in the body frame, and
I shall do so.

Since I»= R&„R»I„„and the body-frame I,„ is
constant, simple differentiation with respect to
time gives

Then

-3Q~Q~R~„.

Taking Eqs. (4) and plugging into the equation for
I» yields I~, =R~„R,„B„„where the body-frame
quantity 8„„is
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B„„=—-6Q„Q„I „+I„„[&„(Q 4IQI'Q. )+2Q.Q. +Q,Q.]+I.,[~,-(Q. —4I&I'Q. )+2Q Q +Q,Q.]

+ 3I„2Q~ [Q~(&~2~Q2+ e62~Q~)+ Q2(&~2~e„„~ + &,2„&2„„)]~ (5)

The problem of calculating the total power radiat-
ed P thus reduces to the problem of evaluating
P = ,($—~27~2)= —,'(B„„B„„).

The terms of B,„are not really as complicated
as they may appear to be when written in ten-
sorial notation. Using the fact that I,„ is diagonal
in the body frame, one finds

B„=6(& Q Q —E Q Q —&,Q, Q Q ),
where

(6)

Q~ =E „.g&~~6 I„,Q, Q6,

Q„=I-'„,Q, Q„I„,Q, —
I
Q

I
'Q,

yg6@'g .T6 6 6~6'UKO KX ff X

Using these identities to remove the derivatives
of 0 from B„„gives

B,2=-4Q2IQI &2+&,Q22Q2 + ' '-3II,I, I,

(10)

Ep3 E, )

The other components follow by symmetry and by
cyclically permuting subscripts.

In order to evaluate the actual power radiated in
gravitational waves, it is necessary to know the
average values over a cycle of sn'7, sn'v', sn'1,
etc. These can be expressed in terms of the com-

The other diagonal components of B,„ follow by
cycling the indices 1-2 - 3 - 1. For the off-dia-
gonal terms

B„=&,(Q, -4IQ I'Q, )+ Q,Q, (2a, - &,)

-Q2Q, (2n 2
—&,) —3Q,'Q2&2 —3Q2'Q2&, , (8)

and the other components of B follow by cycling
the indices and by symmetry (B,„=B„„}.

Equation (5) is quite general and in fact can be
used to calculate for any time-varying rotation
rate Q(t) the inertial-frame time derivatives of

any rank-2 tensor T which is constant in the body
frame. For our special case, where Q is that of
free precession and T is the inertia tensor, the
equations of motion and their derivatives deter-
mine the derivatives of 0„:

I

piete elliptic integrals of the first and second
kinds, E(m) and E(m) (see Ref. 3). The results
of time averaging over a cycle are'

IC —E 1 m 222' 41m'
mE 2 16 32 2048

(sn4v. ) = (sn2~}
21+m 1

3' 3'
3 m 35m
8 16 1024

(sn'v) = (sn'r) —(sn2~)
41+m 2 3 X

5m 5m&

5 15m
16 256

The identities cn'w = 1 —sn'& and dn'& =-1 —m sn'7'

which relate other elliptic functions to st enable
all of the other averages to be calculated from the
above ones. From these averages, the exact
power output in gravitational radiation is straight-
forward to write out.

C. Exact quadrupole-moment gravitational luminosity

The total power P radiated in gravitational waves
depends on the parameters I„ I„and I, (principal
moments of inertia of the rigid body), and a and b

(initial. values of the components of the body's
angular velocity along the e, and e, body axes).

To compute the total gravitational luminosity
for any choice of these parameters, one can pro-
ceed as follows: (1) evaluate the elliptic-function
parameter m from Eq. (3); (2) evaluate the aver-
ages over a cycle (sn'&), (sn2r cn4r), (sn2& cn'7 dn2~},
etc. of the various combinations of even powers of
sn~, cn~, and dn& with exponents adding up to 6,
using Eqs. (11) and the elliptic function identities
which follow them; (3) evaluate the averages
(B„„')for p, v running 1 through 3, using Eqs. (2),
(7), (10}, and the averages calculated in step (2);
(4) add up the results of step (3) and divide by 5
to get P -=-,(B„„B,„), the quadrupole-moment for-
malism result for the luminosity in gravitational
waves.

D. Series expansions for small wobble angle, small

oblateness, and near-axisymmetry

Because the gravitational power radiated P must
be invariant under a reversal of the direction of
rotation (Q- -Q}, P contains only even powers of

Qg and 0,. Def ine coefficients E„, G, and

&„„for each of the types of terms in 0 by
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P = -', (P„(g„)+ G(n, 'n, '6;) +II„„(n„'n„')„„„).
(12)

One can expand E„, G, and FI„„for the interest-
ing case of small oblateness, where the differ-
ences between the principal moments of inertia
are small compared to the principal moments
themselves. 'The results are simple; through
order + 2 ~

E~ = 32&„',

G = 100(+) + +2 + +3 )+ 34(+1+2+ +1+3+~2+3)

H„„=2(13&,+&„)(5&„+&„)for p+ v, (i3)

H, x
—H2, —H33 -=0.

P =~be(I, -I,)'+-', a'b4(I, -I, ,)', (14)

where I, , is som. e average of I, and I„ the pre-
cise nature of which is irrelevant to this order.

'This simple result for the gravitational lumi-
nosity is also quite reasonable. 'The first term,
(32/5)b'(I, -I,)', is the standard result for a rigid
body freely rotating about its principal axis I, at
angular velocity b. The second term is the small-
wobble-angle limit of the energy radiated by a
freely rotating axisymmetric rigid body, ' with
equatorial moments of inertia I, = I,.

The equation E„=32&,2 is in fact exact to all
orders in &„. The E, terms in P, which are pro-
portional to a sixth power of a single body-frame
angular velocity, are precisely (32!5)(I,—I,)'(Q, '),
(32/5)(I, —I,)'(Q,'), and (32/5)(I, —I,)'(0,'). These
are familiar from the case of rotation about a
principal axis, where there are no other terms.

'The expression for P in terms of E~, G, and

H„„still contains unevaluated averages of angular
velocities. In the astrophysically relevant case of
small wobble angle, small oblateness, and near-
axisymmetry those averages can be conveniently
expanded. Small wobble angle means that the ratio
of the body-frame angular velocities Q, (0)/Q, (0)
= a/b «1. Small oblateness implies that (I, —I,)/
I, «1 (since I, (I,&I„ there is no need to mention

I, here). Near-axisymmetry causes (I, I,)/-
(I, -I,) «1; that is, the equatorial moments of
inertia are close to each other compared to their
difference from the polar moment. If equal
weights are given to all three of these small para-
meters, the power radiated by a freely precessing
rigid body can be expanded to give, at lowest
order,

III. GRAVITATIONAL WAVEFORMS FROM FREE
PRECESSION

A. Further review of classical free precession results

The calculation of the waveforms radiated by a
precessing object is both simpler and more com-
plex than the calculation of the total power radia-
ted by that body. It is simpler in that only two
time derivatives occur, instead of three, and that
only terms linear in I occur, instead of terms
quadratic. It is more complex in that the Euler
angles of the body appear explicitly. It is also
complicated somewhat by the appearance of one
more parameter, the observer's inclination angle
i relative to the invariant J direction.

The components Q„Q„and 0, of 0 in the body
frame are periodic in time, with period

4Z
- 111 2

b (I3 —I~)(IS —I,)

[see Eqs. (1)-(3)].
The Euler angles 8 and g are also periodic,

with period T/2:

(15)

13bcos8= ' dn~

44 —inn
«vf&(s, (s)l=

2zt a

+ sm&

where o. is a solution of sn(2ioK) =iI,b/(I, a) and

34 is a theta function in the notation of Ref. 3.
(Because of the common periodicity of the elliptic
functions and the 0 functions, all solutions n are
equivalent. ) If K'(m) =—K(1 —m) and q

-=exp(-vK'/
K), then a useful series expansion of q), can be
written

p, (t)= g „sis( )sish(ssss); ((8)„,n 1 —q'"

I,(I, I,) '~'cn—7'

~I, (I, —I,) st
Here and throughout I use the notation and initial-
value choices of Sec. IIA and of Ref. 2, wherein
the classical free-precession results which I
quote are derived. Note that if the oblateness of
the body is small, the period T is very l.ong. As
I, -I, and the object approaches axisymmetry,
m - 0, 0, (t) —constant, and T —2vi, /[0, (I, —I,)],
the usual. free-precession period of a symmetric
body. Note also that for precession around the e,
axis, /&0.

The Euler angle p, unfortunately, is complicat-
ed; if it is written as a sum y =—p, + y„ then the
function p, can be expressed by
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The function y, (t) is periodic in t with period T/2.
The other part of p is a linear function of time,
y, (t) = 2((t/T', where

2v Z 2i8,'(i~a)
r' I, r 8,(z7(c()

J 2b (I, I,)(-I, -I,) '('

would, in the usual astronomical convention, de-
fine the body's inclination to be angle t.

As in Sec. II, it is advantageous to work as much
as possible in the body frame. Using the relation
I» I„„——(R&„R„„+2R&„R~„+Rz„R„„),and substituting
the results for R&„and R&„ from Sec. IIB, Eqs.
(4), I obtain

,„sinh 2nmn .
a=i &-e'" (19)

Thus, cos(y, (t)) has a period T' not in general
commensurate with T, and so the body's motion
typically is nonperiodic. The period T'-2', /Z
as the body becomes axisymmetric.

B. Derivation of equations for the quadrupole-moment
waveform calculation

The general expression for the wavef orms
radiated is a simple one: In the transverse-trace-
less gauge of Ref. 4, the dimensionless gravita-
tional-wave amplitudes are

where

A „„=-2
I
Q [ 'I„„+(&5„~Q5+ Q„Q„)I„„

+ (a~„„Q((+Q„Q„)I„„+2&6„„&„„„Q6Q„I„„(21}

is defined completely in terms of body-frame
quantities. Combining Eqs. (20) and (21) with the
definitions of 8, gg, and inclination i, I obtain

h, = [(cosiR„„-siniR, „)

&&. (cosiR„„—siniR, „)—R„,R„„]A„„, (22)

h„=—(cosiR„„—siniR, )R„„A„„,
2
y'-

h =h- =-h--= (I- I )---+ OV tnfr + VV CORI

--I-- ~X ee & ve

(20}
where the explicit components of A„„are

A„=2(&,Q,' —&,Q,'),
A„= (&, —&,)Q, Q, + &,Q,

(23)

In these equations, x is the distance from the
observer to the source of the radiation, and 8 and
~z are unit vectors transverse to the waves' direc-
tion of propagation. Specifically, for a source at
the origin of the inertial frame and a distant ob-
server in the e„-e, plane at colatitude i from the

e, axis, the vectors 8 and zP may be defined as
8-=e„cosi —e, sini and zg= -e„. Such an observer

= (&, —&, + &,'/I, )Q,Q, ,

and symmetry and cyclic index permutation give
the rest.

'The components of the rotation matrix R&„ in
terms of the Euler angles 8, y, and P are repro-
duced here for convenient reference. 'They are

cosg cosy —cos8 sing siny -sing cosy —cos8 cosg siny sin8 siny
'

R jcost)=siny+ cos8 sing cosy -sing siny+ cos8 cosg cosy -sin8 cosy (24)

sin8 sing sin8 cosg cos8

C. Exact quadrupole-moment gravitational waveforms

'The gravitational wave amplitudes radia, ted by a
freely precessing, Newtonian rigid body depend
on the parameters I„ I„and I, (principal moments
of inertia of the body), a and b (initial values of
the components of the body's angular velocity
along the e, and e, body axes), f (inclination angle
of the observer relative to the invariant J direction
of the body), and time t.

To compute the gravitational waveforms h, and

h&, for any choice of these parameters, one can

proceed as follows: (1) Evaluate the elliptic func-
tion parameter m from Eq. (3); (2) evaluate the
constant o. defined by sn(2inK(m)) = ii, b(I/, a)
[following Eq. (17)]; (3) evaluate the time para-
meter w using Eq. (1), the angular velocities Q„
Q„and Q, at time & using Eqs. (2), and the Euler
angles 8, y, and g using Eqs. (15)-(19); (4) eval-
uate the components of A„„and R~, using Eqs.
(23) and (24); (5) plug the results of the preceding
evaluations into Eqs. (22) to compute h, (t) and

h&& (f). This algorithm was used to calculate the
waveforms shown in Figs. 1 and 2, which are dis-
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cussed in the following subsection.

be small. This allows expansion of cosg. The as-
sumption of small & is equivalent to the assump-
tion that the body's nonaxisymmetry is not too
large.

'The resulting expansions of the cosines of the
Euler angles are

cos&=~M [1+-,'m(cos2v —1)+0(m')],

cosg = sinv[1+ (5+-,'m) cos'v+ 0(&', m', ~~)], (25)

27Kg 1 2

PTER

2
cosy = cos, + ()m sinh(2va) sin, sin2&+ 0(in ) )

where v —= vw/(2K) = 2vt/T.
One may now plug in and grind these explicit

Euler angles through the equations for h, , and h,„.
'The results are simple and interesting for the
astrophysically important case of small wobble

angle, small oblateness, and near axisymmetry
discussed in Sec. II:

h, = (1+ cos'i)(I, —I,)Q'cos(2Qt)r
sin(2()

( (al,
)

(2w)' (2xi)

h„=—cosi(I, —I,)Q' sin(2Qt)

(26)

+—sin)(i, —i, ,)(—')( —,)'Bin(, ),

D. Series expansions for small wobble angle, small
oblateness, and small nonaxisymmetry

While arbitrarily accurate values for k, and h,„
may be computed using the algorithm described
above, for many purposes it may be more useful
to have available the first terms of a series ex-
pansion of the gravitational waveforms. In making
these expansions one must be careful not to lose
the correct, exact frequency dependence of the
waves. Experiments to detect nearly monochro-
matic gravitational radiation often need to inte-
grate for long times in order to build up an ob-
servable signal. Hence small errors in the calcu-
lated power spectrum ar.e dangerous. There also
may exist several closely spaced frequency com-
ponents in the radiation, which will be confused
and confounded by a series expansion that fails to
preserve the correct frequency spectrum.

'To make the expansions possible, in addition to
demanding small elliptic function parameter m,
it is also convenient to demand that the wobble

angle be small and that the parameter

I, (I~ —I2)

where 0 —= (2m/T') —(2m/T) and I, , is an average
of I, and I, (as before). These are the dominant
terms in the radiation; corrections are of higher
order in m, &, al, /(bl, ), (I, —I,)/I„and (I, -I,)/
(I, -I,). Equations (26) do, however, retain the
exact frequency dependence of the dominant parts
of the waves in the period T'. (The cost is that
T' obeys a messy transcendental equation. ) The
results here agree with Eqs. (2) of paper 1, where
a simpler expansion was made which only gave
the waves' approximate frequencies.

As was the case in Sec. II, the dominant com-
ponents of h, and h„[Eqs. (26)] have a simple
physical interpretation. 'The waves at frequency
2Q with strength independent (to this order in the
expansion) of the wobble angle are from the dif-
fering moments of inertiaI, andI, . They are
identical in strength, frequency, and angular dis-
tribution to the waves produced by a simple rigid
rotor (a spinning dumbbell, for example). The
waves at frequency 2v/T' are the small-wobble-
angle limit of the waves produced by a freely
precessing, axisymmetric (I, =I,) object [Eqs. (1)
of paper I]. As in that case, the mean frequency
of pulses seen from a spot fixed on the body's
surface is not equal to the gravitational-wave fre-
quency; the two differ by the precession frequency
2m/T. As discussed in paper I, this frequency
splitting may cause difficulties for some gravita-
tional-wave detectors which rely on a high-Q sys-
tem, mechanically synchronized with a pulsar's
electromagnetic pulses, to integrate up an ob-
servable signal. On the other hand, if the fre-
quency splitting can be observed, it will provide
a direct measurement of a pulsar's oblateness.
Other details of the gravitational waveforms give
information about wobble angle, inclination, and
nonaxisymmetry —information difficult or impos-
sible to obtain by electromagnetic means. See
paper I for a detailed discussion.

Figure 1 shows the computed waveforms k, and

h& for a freely precessing, nearly axisymmetric
body (I,/I, = 0.99, I,/I, = 0.991) moving with a
fairly small wobble angle (a/b = 0.1). The exact
solution as graphed agrees with -the first terms
in the series expansion [Eqs. (26)] to within the
expected accuracy of - 10'- [a/5

~

- &. The parti-
cular choice of initial conditions at t =0 used in
this paper, and the location of the observer in the
e -e, plane, produces the particular phase rela-
tionship between h, and h„evident near t= 0. At
later times, the frequency splitting due to the (in
this case slow) body-frame precession changes
the relative phases of the two wave polarizations.
The -10/o contributions from terms not retained in
Eqs. (26) also cause slow (timescale T) amplitude
variations of the waves; the variations are espe-



.004

h

I~b/r

—.004-
.004

—.004. .

.004

n~,

'
A

3.— l1
I
1

1
l
I
1

I
I, I

I
I

1
I

l

1 1
I

1

1 l
l
I

V I
1

I"—bt~
II

1

l
I

h
1

—bt- -=

II
I
I
1
I
I
I

1l
1l

i =50'
1
1
1

I
I
I

I
I

l

l1
l1

r%
1
1

v. :
II

RA V ITAT IO NA L %AVES FRROM ROTATING AND . II.

/\

~ ~ ~ ~ ~

l

897

l1
1
1
1

1 1

l 1
I
I
I

l' j '10
1

I
l I
l gl

l'10

—.004. -

.004
i =90

. , p;, n., p;, ;-P',
-3'

n
i =60'

"r ~'A
i ™% l

AI)-'
J', , ' 'g' J', .'V'

FIG. 1. Gravitational radia '")"

al ori
essing, rigid, New

e J

ions of Sec. III
e

ith i i l moments of inertia — . n
gu

se, solu-
g pa ' ' nc ion

p
n precession r

imensionless t w ich h is plotted are

—'"=""'"(-'*'-)(- -'200 rad sec- &

(1 kpo

cially visible at ' =0. frfrequencies of tht = . 'The fr
ourier componen

e
ponents as calculated in

In Fig. 2g. , the waves emitted at v
' esg

in g with a large b a = wn
1 3= 3, I2/I

es y

e wo ble angle ae (a/b= I) are shown.

corn
e wo timescales 7'

m ni udes, and themparable mag 't
and T' are of

inclinations i e h'b
e waveforms at ll

their source.
of information about

IV. CONCLUSIONS AND 0OPEN QUESTIONS

The results given in Secs. II
r an waveforms produ

paper
p o y

p
q po

ss ia system. Aa
i ealized calc

o e astrophysicall r o aica y realistic case of a

FIG. 2. Graravitational rad' t'
l' ) d dashed lines m

ms, (solid

of th f l.

is
ig. 1, the dime i

's plotted are GI3b /rc
its in terms of which h

rapidly rotating neutrorapidl ' ron star. 'The

x eriments are '

rapid rate; it
improving at a

, i is conceivable that som
od e etectable w'ody sources will b d

a some precessing-

ecade. 'The res l
within the next

help save others
results presented here may then
ers some corn uta '

slow-motion
an II have onl dy ealt with weak-f l,

, small-stress sour ar(
g ra re ativsty)

GM/rc'-0. 2
' t

ave rather strorong fields, since
in typical models. I

ion approximat
at the stron - ', -mo-g-field, slow-mo-

a ion to general r '
giv

precisely the s
relativity will giv

e same waveform p
'

m, if the momormalism
oes

q d upole-moment tenso s

igation. It mi ht
more realistic mod

res ing.
p

~ ' ~ ~

, w ere the assum i
ing

rigidity and zero e t
ump ions of infinite

(Paper I, Sec. II
ro external tor uq es are relaxed.

, suggests but doe p
su ' mo elswillt ic ' r
significantly fy rom the models c

ypically not differ

except for ha '
e s calculated here

aving a longer r ' s
T.) Finally

precession time s al
, more work on thee interpretation of



898 MARK ZIMMKRMANN 21

the gravitational waveforms might be valuable;
paper I discussed how to deduce information about
the source from the waves, but only for the cases
of axisymmetric bodies and of small-wobble-
angle precession for triaxial bodies.
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