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The Bethe-Salpeter equation for XN scattering with one-boson exchange is investigated for the case in

which the pion-nucleon coupling is described by axial-vector theory. In contrast to the results with
pseudoscalar coupling, good agreement with the experimental data can be obtained for all partial waves.

Also, the deviations from the Blankenbecler-Sugar equation are not as large as they are for pseudoscalar
coupling. In addition, cancellations between the direct and the crossed box graph with pseudoscalar mN

coupling are investigated for the '8& phase shift in the framework of the variational operator Pade
approximation.

I. INTRODUCTION

The Bethe-Salpeter equation (BSE) for total ang-
ular momentum J=O has been described in detail
in Ref. 1, and its extension to J &0 with a complete
description of the kernel was given in Ref. 2. In
these papers the i.nteractionbetween pions and nu-

cleons was considered to be of pseudoscalar (P)
type. It was found that only the isospin J =1 phase
shifts for NN scattering are in fair agreement with
the experimental data. The phase shifts show in
general the deficiency of dropping too fast at higher
energies. For the I=O channels, we found with the
same meson-nucleon coupling constants used to fit
the I=O phase shifts that the nuclear force is in
general much too strong to yield agreement with the
phase shifts.

These deficiencies can be ascribed to the strong
NNm coupling in a pseudoscalar theory, and it is
necessary to weaken this coupling. This can be
achieved by using an axial-vector (A) coupling for
the pion-nucleon vertex. It appears therefore
worthwhile to investigate the axial-vector coupling
in the BSE. We find that much better phase shifts
can be obtained, and even the isospin I=O partial
waves can be described properly.

Although the introduction of the A theory gives
rise to the effective weakening of the coupling of
positive- and negative-energy states, an interest-
ing question is what possible mechanism in a pure
I' theory results in this weakening. One possibility
is the inclusion of the crossed box graph as an ad-
ditional driving force. A straightforward way to do
this would be to calculate the sum of the two-par-
ticle irreducible graphs and use it as the kernel in
the BSE, i.e., in our case to just add the crossed
box graph to the Born term of the one-boson ex-
changes. In practice, however, the numerical cal-
culation of the crossed box graph on the complete

mesh of integration points for the BSE (-200&&200)
consumes too much computer time. A possible al-
ternative procedure is to use the so-called opera-
tor. Pade approximants (OPA). Already in Ref. 3
we have shown that this way of handling the BSE in
the case of one-boson exchanges is more efficient
than the standard method of iterating the BSE and
summing the perturbation series for the on-shell
elements by high-order Pade approximants. Be-
yond that the OPA's can be considered a general
formal procedure to sum the full perturbation ex-
pansion so that the inclusion of the crossed box
graph is performed in a natural way. The [1/1]
OPA can be understood as a Bethe-Salpeter equa-
tion, the kernel of which is not the sum of the ir-
reducible parts but the [1/1] OPA on the irreduc-
ible part. In order to further simplify the calcula-
tion, we consider the off-shell momenta in the OPA
as variationel parameters —a method which has
been surprisingly successful in potential theory. '

In'this framework we calculate the '5, phase
shift. To justify the method as far as possible,
many tests have been performed, and, in particu-
lar, it is shown extensively how the method works
for A wN coupling, since in this case one also has
the standard method for comparison.

In Sec. II we describe the BSE with A coupling
for the NNn vertex. We give details of the kernel
and present our numerical results for the phase
shifts. Section ID contains an extensive descrip-
tion of the method of the variational operator Pade
approximation, and numerical results are given for
the '$, -'D, channel of the ladder BSE with A. cou-
pling. The case of P coupling is studied in detail
in Sec. IV, where the crossed box-graph contribu-
tion is included. It is found that this gives rise to
an effective weakening of the nucleon-nucleon inter-
action so that the I' and A theories give comparable
results. Finally, in Sec. V the variational QPA is



88 J. Fl EISCHER AND J. A. TJON

II. THE BETHE-SALPETER EQUATION VfITH

AXIAL-VECTOR COUPLING

'The Lagrangian for axial-vector mN coupling is
given by

& =g~fr„rp7'4'3„(t,
where the coupling constant g„ is chosen such that

TA.BLE I. Coefficients C(i) for A. coupling, multiplied

by 4; cf. Ref. 2.

Singlet L =J Coupled triplet L =J + 1

1 —E6Q J+2pq ZJ.
-(E,—2)Z,

3 —(E5—2p q )QJ.
4 —(E6+ 2q2)Z ~
5 (E,+ 2p')Q,
6 E(SJ
7 4pqSJ
8 —2ZJ
9 2QJ.

10 2(l —q )SJ
ll ESRJ —2pq Q J.
12 -(Eg+2q )Q J
13 —ESZ J+ 2 pq(E Q J+qp Z J)
14 -{(E(p)-E(q)l +kp jSJ.

2'

15 E2Sg
16
17 2(1—p')S,
18 -2R J
19 2QJ
20 2(p ZJ -pq QJ)
21 E6Q J —2pq RJ
22 (E,—2)R~
23 (E,—2p'q')Q,
24 —2(p +q )SJ
25
26 -2(pq Q, -q'R, )
27 —Ef,SJ
28
29 (E6+ 2q2)R
30 —(E5+ 2p )Q J.
31 —E)Z~+2pq QJ.
32 . (E5- 2)Q J
33 (E6 —2p q )R J'

34 {[E(P) E(q)]I+@p)S~—
35 E2SJ
36 EiS,~
37

—ESZ~+2pq Q J.

(E6-2)Q&
(E,—2p'q')R,
EGR J —2pq Q J

—(Ee- 2)Q g
—(E,—2p'q')Z~

EgS J

E(SJ

—(E,+2q')Q,
(E5+ 2P2)Z J
E)SJ

(E,+2,2)Q,
—(E~+ 2P )R J.
—2QJ

2Z J'

-2SJ
2SJ
2QJ

—2RJ
—(E5 —2)Z J

2(P'Q&-pq ZJ)
(E5 —2)R J

—2(P QJ-Pq RJ)
-E5Q J+2pq ZJ.

E5Q~ —2pq R J

investigated for the higher partial waves, where it
turns out that extremely good results can be ob-
tained for A coupling by using only one off-shell
momentum as variational parameter.

It should be mentioned at the end that the varia-
tional OPA with P interaction works well enough so
that its application to a renormalizable theory of
the NN interaction' can be expected to yield proper
phase shifts as well.

the physical (on-shell) S-matrix elements are the
same as for pseudoscalar coupling with g~'/4)(
=14.2. The corresponding spin structure of the
vertices (cf. Ref. 1) read

y(1) I)(P) — gA $(1) (1) (2)$(2)
4m'

g„'/4v = 3.09,

gp '/4)(=0. 43,

g~P/4)) = 11.0,

g, '/4w =. 7.3,
gp =6.0,

A2 =g 8~2

where m =nucleon mass.
While the S waves are reproduced very accurate-

ly with these parameters, there are some prob-
lems with the P waves. First of all, the Po and
'P, are too repulsive. In a y' fit in terms of the
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FIG. 1. So and S~ nuclear bar phase shifts. The ex-
perimental data are taken from Ref. 12, Tables IV and
VI, respectively. The dashed lines are obtained from
the BBS equation with the same parameters as used
in the BSE.

50

where the four-vector k is the momentum transfer
carried by the pion. The cutoff is chosen as in
Refs. 1 and 2. In Ref. 2 a general form of the ker-
nel was written down, and accordingly it is neces-
sary only to specify some coefficients C(i), i
=1,2, 3. ... For A. coupling these coefficients are
given in Table Ifor singlet L =J and coupled tripletL
=J k 1, respectively.

Taking the above matrix elements for one-pion
exchange, the BSE was studied with the same me-
son exchanges as used in the earlier papers.
Since our calculations are very time consuming, no
attempt was made to perform a )(' fit (for possible
time reductions see Sec. III).

To obtain a reasonable fit to the NN phase shifts,
we varied g„, g, , g~, g~, g~, and the cutoff A

(cf. also Ref. 1). The results shown in Figs. 1—8
were obtained with
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FIG. 4. Same as Fig. 1 for D&, D2, and D3.

Blankenbecler-Sugar equation (BBS) by Verho
even, ' these deficiencies are very nearly the same.
This is not so, however, for the Py which comes
out too small in our calculation, and similarly for
the c,. Apart from these deviations from the ex-
perimental phase shifts, the overall quality of our
results is comparable to that obtained in Ref. 7.

In Figs. 1, 2, and 3 we have also shown some re-
sults obtained by means of the BBS equation
(dashed lines) with the same parameters as used
for the BSE. With

g, 2 j4w =V.34, gp =6.8, A =1.5m',

and the other parameters the same as before, the
deviations from the BSE eouM be taken care of,
except for the 'P„which is nearly the same as
with the above parameter set.

To conclude, we find with axial-vector mN cou-
pling the following results: It is easier to find a
good fit for the I=1 partial waves. It is possible to

obtain at the same time an acceptable fit for the
I=O phase shifts as well. Also, the Pade approxi-
mants converge much better. 'The deviations be-
tween the BSE and BBS equation are not as large
as with pseudoscalar coupling (cf. Ref. 1), but they
are still appreciable in some channels.

III. THE OPERATOR PADE APPROXIMANT

In Ref. 3 some preliminary results were pre-
sented on the applicability of operator Pade ap-
proximants" as a method of solving the BSE for
the '$, phase shift with A coupling and our present
parameters.

Expanding the operator K (K matrix) with re-
spect to the strong coupling constant:

2 2 2

K = K + K + ~ ~ ~

4~

where K, and K~ are operators as well, the [1/1]
OPA is

10'
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FIG. 3. Same as Fig. 1 for &1 and P~. FIG. 5. Same as Fig. 1 for D2 and ~2.
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1

II/lj = K,(K, —
4 K,) K, ,

which is the lowest-order approximation to the
summation of the full perturbation theory in strong
interactions. In particular, it solves the Bethe-
Salpeter equation in ladder approximation exactly.
Writing the latter as

(C and S are the kernel and the two-nucleon propa-
gator, respectively), it can be solved formally,

y=c(c-a) 'c,
where D =CSC (direct box graph), which is the
[1/1] OPA summation of the (geometric) ladder
series.

In momentum space the corresponding matrices
are labeled by the "spine" (including positive- and

negative-energy states, frequently denoted as "p
spin") and off-shell momenta. Discretizing the lat-

ter ones, we are dealing with finite matrices. It
turns out that this way of handling the BSE is su-
perior to the iteration and summation of the Born
series by ordinary Pade approximants. First, this
method is less time consuming since only relative-
ly few discretized off-shell momenta are needed to
reach stability, and second, the final result is less
sensitive to the accuracy of calculating the higher-
order diagrams.

In applying the method to the coupled
channel, the choice of the first off-shell point is
crucial for the rate of convergence of the OPA. It
is most important to include from the very begin-
ning a point -p/2, p being the on-shell momentum.
In Table II the rate of convergence with increasing
number of off-shell points is shown for the case of
A coupling at jIOO MeV. The off-shell points are
the same as in Ref. 3, except that the order is
changed in that the first off-shell point is chosen to
be p/2. As a result, the convergence rate is dras-
tically improved. Similar results hold for other
energies, and the final results agree very well with

5
4

8 [degrees]
TABLE II. Convergence rate and stability of OPA's

with 3-10 off-sheQ points for A YrN coupling at 100 MeV.
The points are chosen as in Ref; 3. BSE gives the
"exact" result obtained with the standard Pade method.

No. of
points 3S1 3D

50 100 150
I I

200 250
EL b[MeV]

3
4
5
6
8

10

34.47
38.59
38.18
38.58
38.44
38.44

—13.90
-12.56
-12.89
-12.86
-12.91
—12.91

3.19
0.79
1.27
1.32
1.26
1.26

FIG. 7. Same as Fig. 1 for &3 and &4.
BSE 38.78 -12.88 1.30
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the one obtained by applying ordi. nary Pade approx-
imants to solve the BSE.

What one learns from this result clearly is that
only a few off-shell momenta are important. The
question arises what the number of points is which
one has to choose in order to obtain reliable re-
sults. One answer to this question is to vary the
off-shell momenta and investigate the stability of
the result. One i,s thus naturally led to a variation-
al principle, i.e., one considers the off-shell mo-
menta as variational parameters and looks for sta-
tionary points of the phase shifts. Within the
framework of the Schrodinger equation"'" and the
BSE" this method can-be deduced from the
Schwinger variational principle and has been ap-
plied very successfully to calculate phase shifts
numerically.

In the case of the BSE with A coupling, we have
found that an OPA with four off-shell points besides
the on-shell point (in the following denoted by

[1/1],) gives very accurate results for the 'S,
phase shift. Choosing the first three points as de-
noted by crosses in Fig. 9, the results at 100 and
200 MeV are plotted in Figs. 10 and 11, respec-
tively, for 5('S, ) (curve 0) as a function of the
fourth off-shell point, chosen according to Fig. 9.
The '$, phase shift is practically constant as a
function of the off-shell momentum. We have also
tried out OPA's for the 'S, phase shift with fewer
off-shell states, but, without applying a systematic
search routine for finding stationary points in all
off-shell momenta simultaneously, we did not find
satisfactory accuracy in these cases.

5 (3S1) [degrees )

150'— P
tl

Y'

p fp)
FIG. 10. The S& phase shift at 100 MeV as a function

of the off-shell momenta. & indicates the position of
point No. 3 and the height of the corresponding mini-
mum.

and negative-energy states. One possible mechan-
ism to weaken this coupling is to include in addi-
tion the crossed box pion-exchange graph in the
calculation.

At first we investigate the cancellation between
the direct and the crossed box graphs on shell.
For various cutoffs our results are given in Table
III for 100 MeV. Since the cancellation is expected

IV. THE CROSSED-BOX-GRAPH CONTRIBUTION

In this section we discuss results obtained using
E coupling for the pion. The very strong attraction
found previously when we used the pseudoscalar
theory for the mÃ interaction can mainly be as-
cribed to the very strong coupling between positive-

D ( S1) [degrees]

150'—

P

3-
100'-

cQ.
2

3

50'-
P+X

I

Y

0 i+ ' 3+
1 2 5 6

0

FIG. 9. Variation of the off-shell points. The four
off-shell points are numbered 1-4, and their region of
variation is indicated by dashed lines. FIG. 11. Same as Fig. 11 for 200 MeV.
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TABLE III. Cancellation for the on-shell K-matrix elements between the direct (D) and crossed (X) box graph for 100
MeV and various cutoffs. The result from the Blankenbecler-Sugar equation (BBS) is also shown. Only partial agree-
ment according to Fig. 12 is obta, ined.

D
K(2 K22 Kg) K22 Kg)

BBS
K)2 K22

2.85 x10-2 4.52 x10-4 8.45 x10-4
2m2 4.01 x10 2 9.05 x10" —g.75 x10

8.56 x10 2.27 x10 —g.86 x10

—7.27 x10 3

-9.26 x10 3

1.05 x10-2

g.52 x10 '
1.40 x10-4
3.21 x10-4

4.33 x10
—3.48x10 ~

2.3g x10-&

8.80 x10 3

1.58 x10-'
6.18 x10"2

6.86 x10 4

1.23 x10 3

2.75 xl0 3

—8.6g x10 4

-9.52 x10
-9.23 x10-'

to be due to the long-range part of these graphs, it
should be more significant for smaller cutoffs.
This is in fact so, but the expected agreement be-
tween the second-order result with the BBS equa-
tion and the sum of crossed and direct box graphs
according to Fig. 12 is not achieved. In the calcu-
lation of the crossed box graphs, the same cutoff
procedure has been used as in the one-boson-
exchange interaction.

The next step is to investigate the off-shell con-
tribution of the crossed box graph. 'This is done
in the framework of the OPA by simply adding the
contribution X from the crossed box graph to D in
Eq. (6). It is easily seen that this [1/1] OPA is the
solution of a BSE whose kernel G ' is the [1/1] OPA
to the irreducible part,

G'=G(G-X) 'G.

At this point it should be mentioned that when we
use P coupling we have never fully succeeded in
solving the ladder BSE for the '9, phase shift by
applying the standard method of scalar Pade ap-
proximants. The interaction apparently becomes
so strong and the corresponding perturbation. ser-
ies so badly divergent that the ordinary Pade ap-
proximants do not converge and are extremely
sensitive to the mesh used for numerical integra-
tion, i.e., to the accuracy with which the higher-
order ladder graphs are calculated. Applying the
[1/1], variational OPA as before, we obtained very
pronounced minima which are also stable with re-
spect to the choice of mesh. In Figs. 10 and 11 the
solid curves I' give the results at 100 and 200 MeV.
Also shown are the results (dashed curves I') ob-
tained with half the number of mesh points. From
this we see that the stability is satisfactory with

respect to integrations. 'The curves for A. and P
coupling in Fig. 10 show the essential difference

FIG. 12. Cancellation between direct and crossed
box graph, to be compared with the Bl.ankenbecler-
Sugar equation (left-hand side).

that for A coupling the [1/1], is almost a constant
as a function of the off-shell momentum, while for
I' coupling quite a variation of the phase shift (with
a minimum) is observed. From this it becomes
clear that the stability of the OPA for A coupling
with increasing number of off-shell points is very
much due to the fact that the result is independent
of the choice of the off-shell momentum, since
then it is irrelevant where one puts additional
points. This is not so, however, in the case of P
coupling, and, in fact, even with a larger number
of points no stability is reached. Therefore, we
consider the variational principle as decisive,
where it is understood that one has to perform var-
iations in all off-shell momenta. One must expect
that for more and larger off-shell momenta further
extrema of the variational [1/1]„(n = 5, 6, . . . )
exist. In potential theory with potentials of chang-
ing sign the situation is similar. One observes in
the potential case that the [1/1]„variational OPA
for low n (2 or 3) gives "excellent precision at any
energy and coupling strength. "' Since there is no
particular justification for any other choice, we
have to do the same in the case of the BSE, i.e.,
use only a few and low off-shell momenta. For the
'S, with A wN coupling we obtain (without a sys-
tematic multivariable search —which might im-
prove the situation) very accurate results with four
off-shell momenta. This result will be taken as a
guide for the other cases. In Sec. V we demon-
strate that only one off-shell momentum is neces-
sary for higher partial waves.

Including the crossed box graph, one observes as
much structure in the 'S, phase shift as a function
of the off-shell momenta as for the P coupling dis-
cussed above. While for the A coupling it does not
matter much what off-shel1. points have been sel-
ected, here one has to perform variation in all four
off-shell momenta. Choosing the off-shell points
as previously (the positions denoted by crosses in

Fig. 9), we find curve I of Figs. 10 and 11. Then
we have also looked for stationary points in the
other off-shell momenta. The region of variations
is shown in Fig. 9. We have adopted the following
procedure: For other choices of point No. 3 we
calculate the minimum as a function of point No. 4.
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Curves II and III in Fig. 10 show these results.
From this we determine the values of points 3 and
4 for which we have the lowest minimum. Subse-
quently, using these values we looked for a mini-
mum as a function of point No. 2. A flat minimum
is obtained at p-6p (curve IV). Finally, fixing the
value for point No. 2 at the minimum of this curve,
point No. 1 was varied to determine the lowest
minimum. The positions of the off-shell points
found in this way are shown in Fig. 9 as dots. In
order to see whether we can improve on this, we
varied again point No. 4. As a result, we found
that the minimum did not shift. This result is
shown as curve V. The lowest phase shift obtained
in this way is 5( $,) =48.0'. Finally, using this
choice of off-shell points, we calculated also the
phase shift when the crossed box graph is neg-
lected. The results are show'n in Figs. 10 and 11
(curve V'). From this we see that the result drops
significantly as compared to the original off-shell
points. However, the results are substantially
larger than the corresponding results with the
crossed box graph included. Taking into account
that we have not performed a systematic multivar-
iable search (i.e., not with a fitting routine) for
stationary points, these numbers may come down

slightly, but comparing the obtained results with
the P interaction one sees that the inclusion of the
crossed box graph gives rise to a weakening of the
NN interaction, so that there is also a closer
agreement to the results obtained with A coupling.
Concerning the variations of the 'D, and 6y we ob-
serve that these stay within limits of 5%%u~. In Table
IV we give a complete compilation of all results for
100 and 200 MeV.

40'-
'So

00

lp
1

~ 4

3p

motivated by the experience with A coupling. Al-
though three off-shell points give acceptable results
in that case, the accuracy obtained with four off-
shell states may be achieved only by applying a
systematic fitting routine which really finds the
stationary point in the six variables [8 x(modulus
of momentum+relative energy) j. In any case quite
a few off-shell points are used for the 'S, calcula-
tion owing to their complicated structure. To support
the idea that one should use a low number of off-
shell points, we demonstrate in this section what
results when only one off-shell point is used as
variational parameter for the higher partial waves
(see also Ref. 8).

Figure 13 gives results for various partial waves
at 100 MeV. There are "poles" in the phase shifts
(the poles are actually poles in tan5), but always
the first minimum gives an extremely good approx-
imation to their correct value. To remove the
ambiguity of taking the minimum or maximum, one
has in principle to consider their dependence on the
x'elative energy variable p4. For this purpose we
have calculated for the '90 channel at 100 MeV and

V. VARIATIONAL OPA FOR HIGHER PARTIAL %(AVES

Taking into account four off-shell points as vari-
ational parameters for the '$, calculations was

TABLE 1V. For 100 and 200 MeV the results for pseu-
doscalar (P), P including the crossed box graph (P+X),
and axial-vector (A) coupling are presented as caluclated
from a [1/1]b variational OPA. The given numbers cor-
respond to the minima in curves V', V, and 0, respec-
tively, of Figs. 10 and 11.

-20'-

20'

De

-20'-

3
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D1

100 P
P+X
A

94.5 -14.4 -1.7
48.0 -14.0 3.7
38.2 -12.9 1.3

200 P
P+X
A

56.1 -30.2
34.2 —24.6
15.3 —19.9

0.60
3 4
0.65

Energy (MeV) Interaction $'& f I I I

10 20 20 40 50
l I I

60 70 M

p (0.025m )

FIG. 13. U. /1j» variational OPA for A coupling and
various partial waves at 100 MeV; the meaning of the
symbols is: 0= "exact" value (obtained by standard
Pade's) at the position of the first minimum; x= matrix
Pade only on-shell momentum, but off-shell. in "spin";
6,= scalar Pade.
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ational princi le d

nergy. It should be no ted that the vari-
ip e oes in fact yield the

phas sh ft o 1per y, which neither the...1.,- ...-."". ~-'ma rix" off-shell in

) ppa d' approxim
er y as been observed in y as

well. " in potential theory as
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