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We study the propagators for a large class of gravity theories having a nonzero, metric-compatible torsion.
The theories are derivable from a Lagrangian containing all possible invariants quadratic or less in the
torsion and Riemann curvature tensors, except that invariants are dropped if they do not contribute to the
propagator in the linearized limit. Therefore, the torsion in these theories is, in general, a propagating field
rather than one which vanishes outside matter. We study the constraints imposed on the propagator by the
requirement that the theory have no ghosts or tachyons. In particular, we find that the addition of a spin-
2% torsion multiplet does not remove the spin-2* ghost contributed by higher-derivative terms (Riemann
curvature-squared terms). We discuss the phenomenology of theories with propagating torsion. The torsion
must couple to spins with coupling constants much smaller than the electromagnetic fine-structure constant,
or the force between two macroscopic ferromagnets, due to torsion exchange, would be huge, far greater
than the familiar magnetic force due to photon exchange. We briefly discuss the phenomenology of
propagating torsion “potentials.” Theories involving such potentials have been proposed recently by several
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authors.

I. INTRODUCTION

In standard gravity theory, the torsion (equaltothe
antisymmetric part of the affinity I' )‘[u ») is zero.
Starting with Cartan in 1924, many authors have
suggested that torsion should be nonzero and should
be coupled to the intrinsic spin density of matter,
so that the spin part of the Poincaré group can
change the geometry of space-time, just as the
energy-momentum part does.!

Historically, torsion was usually introduced
into gravity theory via a kind of “minimal” sub-
stitution: In the Lagrangian for gravity plus mat-
ter, replace the standard (Christoffel) affinity
{)‘” ,,} by the Cartan affinity rt uv €verywhere.
Then vary with respect to the metric and (say)

B)\uvsr)\uu‘{)\pu}, (1-1)

where B)‘u,, is the torsion-dependent part of the
affinity. Since the standard gravity Lagrangian is
just the curvature scalar R, the procedure is to
replace R{ }] =R[{ } +B], then vary. The new
“field equations” for B turn out to be algebraic
equations, not differential equations, however.
[This happens because R is only linear in the first
derivative of B; hence the Lagrangian does not
contain any (8B)? “kinetic” terms for the B field.]
These algebraic equations can be solved, and they
predict that B is not an independent field but rather
a known function of the metric and the matter de-
grees of freedom. In fact, the theory collapses to
Einstein’s theory, except for some unobservable
corrections to the matter Lagrangian,

Matters might have ended there, except that
there are reasons for considering a gravity La-
grangian which is not strictly linear in R. First,
gauge-theoretic ideas suggest that R? terms (terms
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bilinear in curvature) should be present.>*3 Sec-
ond, adding R® terms can make the theory re-
normalizable (although so far unitarity suffers).*
Third, of course, there is the desire to give tor-
sion a more standard dynamics. Thus Gregorash
and Skinner have written down the most general
Lagrangian containing terms quadratic in the tor-
sion fields, and have derived the corresponding
field equations.®

If one wishes to go beyond the standard order-R
gravity Lagrangian, the simplest way to do so is
to apply the minimal-substitution procedure to an
R + R? gravity Lagrangian. We did this in a previ-
ous paper (hereafter referred to as I) with results
that were not entirely satisfactory.® We wish to
describe those results of I, in order to motivate
our decision to go beyond the minimal-substitution
framework in the present paper. Since we wished
to check the renormalizability and high-energy be-
havior of the theory in I, we derived the prop-
agator, i.e., the inverse of the wave operator for
the linearized limit of the theory. We anticipated
very good high-energy behavior for the gravitation
propagator, leading to renormalizability, because
the propagator P in torsion-free R + R? theory
goes as 1/k* at high energies.? However, we found
only P - constant behavior, too slow a falloff to
bring about renormalizability.

How did adding torsion to an R + R? theory alter
the high-energy behavior of the propagator so
drastically? To answer this question in full detail,
one would have to wade through the full calcula-
tion in I; however, the following simple model
gives the essence of the answer. We write down
two wave equations (in & space), linking two fields
g and B to each other and to their matter sources
T and S:
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(1.2a)
(1.2b)

B and G are scalar fields, but may be thought of
as stand-ins for tensor components of B)‘u,, and
guv linkded by the field equations of I. A and M
are constants, functions of the coupling and mass
parameters occurring in the Lagrangian. If the B
terms and Eq. (1.2a) were absent, one would get a
1/k? propagator (inverse wave operator) for g.
However, with the B terms present we must write
Egs. (1.2a) and (1.2b) in matrix form, and the
propagator is the inverse of this matrix:

[AkZ—M AR? ]'1
P«

(AE*-M)B +Ak°g=S,
AR B+(AR*+M)g=T.

AR AR*+M
2 2
=[Ak +M -AR :l(—Mz)'l. (1.3)
AR AR -M

This has high-energy behavior P —k?; just as in I,
we have gained four powers of 2 by adding the B
field. By working backwards from the final answer
(1.3), we can discover how this happened. In in-
verting a matrix, one must divide through each
element of the matrix by a determinant. Matrix
(1.3) would be expected to have a determinant of
order k* because each element is order 2. How-
ever, the determinant turns out to be order k° be-
cause of delicate cancellations between the A%? and
M terms. These cancellations in turn may be
traced to the peculiar form of the original wave
equations (1.2a) and (1.2b). The same mass pa-
rameter M occurs in both equations, and all four
order-k® terms contain the same parameter A.
This pattern of constants is very special; it can
arise only if, in constructing the Lagrangian for
this theory, we restrict ourselves to very special
linear combinations of the available invariants:

£=3A3,(g+B)o"(g+B)+3(g*>-B)M. (1.4)

Analogously, when we adopted the minimal-sub-
stitution procedure in I, we restricted ourselves
to a very special choice of invariants,

If one is willing to ignore the quantum behavior
and consider only the classical limit, minimal-
substitution theory has some interesting features.”
However, clearly minimal substitution does not
guarantee acceptable high-energy behavior or.
orthodox dynamics. [Note that the “propagator”
(1.3) does not propagate: It has no poles in &
space, which means that in configuration space the
B and g fields vanish outside sources.]

In the present paper we abandon the minimal-
substitution principle and derive the propagator
for the most general Lagrangian quadratic or less
in torsion and curvature tensors. (See Secs. II
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and III.) This is quite easy to do (despite the pres-
ence of 17 invariants in the Lagrangian) because
we can use a powerful projection operator machin-
ery developed in I. The high-energy behavior of
the propagator is no longer anomalous.

In Sec. IV we write down the constraints that the
propagator must satisfy to be free of ghosts and
tachyons. If there is only one particle of a given
spin-parity present in a theory, one can tell that
it is not ghostly or tachyonic easily, by inspecting
its kinetic and mass terms in the Lagrangian. If
there are two particles of the same spin-parity
present and they couple (as is the case for J%
=2",1%* 0" in the present theory) then the kinetic
and mass terms in the Lagrangian form a 2X2
matrix. This matrix must be inverted to obtain
the propagator, as at Eq. (1.3); then one can check
for ghosts and tachyons by examining the residues
and locations of the propagator poles. In general
these poles and residues now depend in a compli-
cated way on all of the parameters occurring in the
original Lagrangian., We were especially inter-
ested in checking for absence of ghosts in the 2°
sector after a 2* torsion multiplet is added; in
higher-derivative gravity without torsion, a ghost
always occurs in the 2* sector. Unfortunately, we
have verified from the formulas of Sec. IV that the
addition of torsion does not change this situation:
At least one residue remains ghostly. Section IV
also summarizes the difficulties one encounters
even if one drops the higher derivatives, ignores
renormalizability, and attempts to construct a
purely classical theory of propagating spin-two
torsion multiplets.

In Sec. V we study the phenomenology of torsion,
emphasizing theories which do not use the mini-
mal-substitution principle. (Hehl et al. have re-
viewed the phenomenology of the minimal-substi-
tution theory with gravity Lagrangian linear in R.!)
It suffices to consider a linearized theory, since
no large-spin source exists for torsion, analogous
to the large mass sources existing for gravity.
(We do not consider possible early-universe ef-
fects.) A linearized theory is completely defined
by its propagator (which we already have) plus a
choice of torsion-to-matter coupling. We choose
a coupling modeled on the electromagnetic one,
and arrive at useful estimates of spin-spin forces
mediated by torsion.

There is another way to get propagating torsion
fields, while retaining the traditional linear-in-R
Lagrangian plus minimal-substitution framework,
One introduces derivatives into the Lagrangian by
writing the torsion as the derivative of a potenti-
al,®:® for instance®

B, =0",.,. (1.5)
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The B? terms in R then become (8¢)* kinetic terms
for ¢. Two points are worth making about these
“potential” models. First, their phenomenology
is quite different from that of models where the
(8B)? terms are introduced “by hand” (see Sec. V).
Second, models proposed up to now in the liter-
ature appear to be ghost-free; however, future
models should be presumed ghostly until proven
otherwise; i.e., the pattern of signs in the B?
terms is quite random, so that there is a 50 per-
cent chance the (3¢)? kinetic term will have the
wrong sign.'°

II. THE LAGRANGIAN

As in I, we choose vierbein and contortion fields
VS and B"u,, as our independent basis set to con-
struct the Lagrangian, because the propagator will
be very easy to calculate if we use the projection
operators already worked out for these fields in
I. B* uv is the torsion-dependent part of the Car-

o |

Then

tan connectionT'*,,, defined at Eq. (1.1). Our
connectionT'*,, is metric compatible, which im-
plies By,, =—B,,. The tensor B*,, is not iden-
tical to the torsion; but B is nonzero if and only if
the torsion is, because the following equations are
invertible:

er*,,,=B",, -B",,. (2.1)

We now write down all possible invariants which
contain a part bilinear in vierbein and/or contor-
tion fields; these are the only ones which can con-
tribute to the propagator. (However, we ignore a
possible cosmological term.) We use the conven-
tions™!

VE=-R/2k +B1g R? +By R ;g R°® +B.pp R(B‘*B,,a ~B%4:y) 8" +BorpR%(B%, ;.0 = B® ) 8"
+BlBuva:BBuva:ﬂ"'ﬁz(B“va:BBuvB:a+B“va:aBuuB;B) "'Bs(B“ ua:BBaBu:v +B“va:vBaBu:B)
+B4(B” uot:BBuow:B) +BS(Buua;BB“BV:a+Bu uoc:aBqu:B) +ﬁs(Bu uu:BBMBa:v +B! ua:uBuBu;B)

A A bN X u A
+B7Buuu:aB vk;u+38(Buuu;aB u)\;u"'Buuu;‘uB a)\:a)+Bs(Buuu;aB uu;)\"'B uy:)\B uoc;a)

+U *(BPgy B) + U 42(BPg, B) + 1. ;*(BPgy B) .

Kk =87G, so that the Newtonian limit comes out
correctly. Repeated covariant or contravariant in-
dices in the 8,-B, terms are understood to be con-
tracted with appropriate gu,,’s. The projection
operators Py, (=T, M,A) in the mass terms break
the torsion up into its trace (T) plus two other ir-
reducible tensors having mixed (M) or antisym-
metric (A) behavior under interchange of indices.®
The six indices on Py, and the three on B have been
suppressed.

One could construct invariants in addition to
those included in Eq. (2.4), but they always turn
out to equal invariants already included, plus a
total derivative or a term which is trilinear or
higher in the fields, therefore does not contribute
to the propagator. For instance the term

Ruuo{ﬁBuvu;B ’ (2'5)

is proportional to the B,,; term. (Proof: Inte-
grate by parts convariantly to transfer the 8 index
from B to R and use Bianchi identities.) Similar
arguments rule out

(BaBa;v"'BaBu;a)R"ﬂ- (2.6)

Again, one could generate six seemingly new terms

R)\ﬂcﬂ:aa{luﬁ}—aﬂ{)\ua}""" ’ (2.2a)
R s=R xac)\fs , (2.2b)
R=R™ ) qg%®, (2.2¢)
V=detV¢. (2.3)

(2.4)

—
from the B; terms with £=2, 3, 5, 6, 8,9, by changing
the plus sign inside each set of parentheses to a
minus sign. For instance from B, one could obtain

6Q(B“mx;BBuuB:m"Buucz:czB"uB:B)' (2'7)

This term turns out to be equal to a total deriva-
tive plus a term trilinear or higher in the fields.
[Proof: apply covariant integration by parts to the
B derivative on the second term in Eq. (2.7); in-
terchange the o and B8 derivatives, which gener-
ates a trilinear term of order RB? apply integra-
tion by parts to the a derivative.]

III. THE PROPAGATOR

As in I, we now drop all but the bilinear terms
in the Lagrangian (£- £) and transform to mo-
mentum space., Using the covariant projection op-
erators developed in I, we break contortion and
vierbein tensors B and V up into multiplets having
a definite spin-parity J£=2* 1* or 0% so that
£® decomposes into mutually disjoint sectors.
The propagator is then (-1) times the inverse of
£,

The J¥=2",0" sectors of £* contain one multi-
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plet each, while the JP=2" 1%, 0* sectors contain
two multiplets each, When written as a 2X2 ma-
trix, each of the latter sectors has the form

£@ [ (A k% +ay, /K)Pyy ARV Py, ]
Alzkz‘/erzl (Mg k? +ay, /K)fpzz ’
(3.1)

The projection operators P;; are defined in I; the
constants-A;;, a;;, and f for each sector are pre-
sented in Table I.

[Note: To aid in dimensional analysis, we have
renormalized our vierbein basis slightly, at Eq.
(3.1); we have switched from V& to V&/Vk as
basis, so that B and V/Vk both have the same di-
mension, 1/length. Because of this switch, there
are some extra factors of k in the f column of
Table I; also, every matrix element in Eq. (3.1)
has the same dimension, (length)?.]

Equation (3.1) is easily inverted to give the
propagator P (note the projection operators are
normalized by P;; P;,=6,,P;;):

P =(-1/det£®)

x[(Azz B? +ay,/K) Py, -A 1, RPVF Py, :I
-A BV Py (A1 B®+a,,/K)Pyy ’

(3.2)

We shall analyze the poles and residues of this
Green’s function in the next section. Before doing
this, let us also record the propagators for the two
1X1 sectors, which contain torsion multiplets hav-
ing J°=0"and 2":

(3.3)
(3.4)

P(0)
P(2)

—[pa? =B, -B) R P5(07),
=[py® = (B + 2B E?] " PR(20).

1l

IV. THE 2* SECTOR OF THE PROPAGATOR

We now write down the constraints which prop-
agator (3.2) must obey if it is to be free of tachy-
ons and ghosts. We do so using the 2" sector as
an example; the constraints for the 1* sector will
look slightly different because the function f is
slightly different [see Eq. (3.2) and Table I].

The poles of the 2" propagator are given by the
zeros of the det£® factor in Eq. (3.2):

det£® =[k*detA +(A 1, @y, +A a1, B2/k

+ay, a,, /K] k%K, (4.1)

detA =A,; Ap - A7 (4.2)
The factor of k2 in Eq. (4.1) produces the usual
zero-mass graviton pole. In addition, the quan-
tity in square brackets in Eq. (4.1) can produce as
many as two massive poles. This double-pole
structure is expected. We have added J*=2" tor-
sion fields, which should give rise to one massive
pole. In addition, we have added order-R? terms
containing more than two derivatives acting on g, ,,.
These additional derivatives should give rise to a
second massive pole, since an order-R? higher-
derivative theory is equivalent to a two-derivative
theory containing one auxiliary massive field.'?

The condition for no tachyons is that det£® have
no negative roots, . That is, we must have

TABLE 1. Constants occurring in each sector of the Lagrangian of Eq. (3.1). The first column gives the spin-parity
of the sector. The second column specifies whether the sector links a B multiplet to another B multiplet or to a V
(vierbein) multiplet. In the latter case, the 2 index in Eq. (3.1) always refers to the vierbein multiplet.

JP  Links  ay ag f Ay Mgy Ay

0" BtoV ppk =1 k% —(By+B3+B/2+B 2(6B15 +2B45) (2)1/2(3B 18 +Paga)
+ 337/2 +3Bs)

1*  BtoB  puk  wk 1 H=B1~2B,/3 —B1—4By/3+B3/3 —B4/2 (2)/2(—2B,— B3— Bs+Be) /3
+2B5/3+p, | —2B5/3—B¢/3
+2B5/3—2B¢/3)

1 BtoB pPk  urk 1 —(B1+4By/3 —(By+2B,/3+B,/2 (=4B,/3—=285/3—=2B,/3.
+B4/2+2B5/3 +B5/3+B¢/3+3B1/2) +Bg)/ 2112
+2B¢/3)

2t BtV  pl + B —(By+B3+By/2+B) Bag Bagn/(2)%/2
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km 2 E‘{.—(aazAu @y N gp) £ [(@pp A gy +a55 A p,)°
—4a,, a,,detA ]/ 2}/2detA>0. (4.3)

The condition for no ghosts is that each element of
the diagonalized propagator must be of the form
Q/(-k%+m?) with @ =0, In computing the signs of
residues, one must keep in mind that the projec-
tion operators P,; in Eq. (3.2) reduce to +1 or -1
at poles, according to whether the sector contains
multiplets of even or odd intrinsic parity. At the
k%=0 pole it is easy to see that the quantity a,, /«
determines the residue, hence

ay /k=1/2k>0 (4.4)

must be satisfied in order to avoid a ghost. Of
course we must also impose Eq. (4.4) in order
that the potential in the Newtonian limit have the
correct sign. At the massive poles, we do not
have to diagonalize the matrix (3.2) in order to
obtain the residues. We need only note that at a
pole

det(residue matrix) =det£® =0, (4.5)

where “residue matrix” is the matrix (3.2) with a
factor of (-1)/det£‘® deleted. From Eq. (4.5), if
the residue matrix were diagonalized, one of the
eigenvalues would be zero. Since the residue ma-
trix is only 2X2, the remaining nonzero eigenvalue
must equal the trace of the residue matrix. Hence
we can find the residue at the pole just by taking
the trace of Eq. (3.2); we do not need to diagonal-
ize. After taking into account some factors con-
tributed by det®®’, we find, for the residue at
k*=m.?,

LA +A o m 2 K)m,* & +(ay, +apym 2 k)]
[(@z A1y +ay, A 5,)° - 4ayya,, detA]?m 2k -
(4.6)

A negative residue would imply a ghost, hence

residue =+

(A +A g 2K)m 2k +(ay, +apm, %k) 20, (4.7a)

Ay +Aoom 2k m_ 2k +(ay, +am_2k) <0, (4.7Tb)

In the Introduction, we stated that the higher de-
rivatives contribute a ghost which is not removed
by coupling in a 2" torsion multiplet. We now prove
this statement, by showing that no choice of pa-
rameters will satisfy the constraints (4.3), (4.4),
(4.7a), and (4.7b). Sincethe proof involves straight-
forward algebra, we give only an outline of the
proof, to demonstrate that we have considered all
possible choices for the magnitudes and signs of
the parameters.

(1) Assume detA(27)#0. (If detA=0, the high-
energy falloff in the 2" sector is not rapid enough
to produce renormalizability.)

(2) Assume a,,(2")>0, [See Eq. (4.4).]

(3) Either (a) a,,(27)<0; or (b) a,,(2)>0; or
(c) @,,(2°)=0. Consider each alternative in turn.

(3a) If @,,(2%)<0, then 1 ,%<0, and the 2" prop-
agator, Eq. (3.4), will have a ghost or tachyon
pole unless (8, +38,)=0. If (8,+38,) =0, 2" ex-
change will be nonrenormalizable. Abandon altern-
ative (3a) and try alternative (3b).

(3b) If a,,(2*)>0, then either m.?=m_? or m,?
#m.% If m.2=m_2, one shows easily A ,(2")=0;
graviton and torsion multiplets then decouple, and
the decoupled theory is known to contain ghosts.*
If m.2#m.% the mass constraints require A ,,<0,
while the residue constraints require A ,,>0.
Abandon alternative (3b) and try alternative (3c).

(3c) If a,,(2*) =0, one of the m ? vanishes, sug-
gesting that there is now a torsion pole at k=0,
in addition to the usual graviton pole. There are
now two residue constraints at 2*=0, rather than
the one constraint Eq. (4.4). The propagator,

Eq. (3.2), becomes (-1/k?) times a 2 X2 matrix of
residues, and there must be two constraints to
ensure that both eigenvalues of this matrix are >0.
It is easy to convince oneself that a 2 X2 symme-
tric matrix will have eigenvalues >0 only if both
diagonal elements are =0. Thus constraint (4.4),
a,,/k>0, continues to hold, because a,/k deter-
mines the sign of one of the diagonal elements.
(The case a,,/k =0 is excluded because the propa-
gator would have a 1/k* pole.) We shall not need
any other 22=0 constraint. If we now examine the
massive pole, we find it is necessarily a ghost or
tachyon. We have now exhausted all three altern-
atives (3a)-(3c), and the theorem is proved: Ad-
ding a 2* torsion multiplet does not remove the
higher-derivative ghost. )

We could consider dropping the higher deriva-
tives (A, =A;,=0). The theory would be nonre-
normalizable but perhaps acceptable classically.
However, there are a number of theorems in the
literature which state, essentially, that it is im-
possible to construct a ghost- and tachyon-free
theory involving spin >3, if the Lagrangian con-
tains <2 derivatives and the spinning particle is
massive.'3'* 1 If theparticle is massless, one can
construct a satisfactory linearized theory, but the
extension to a fully covariant theory does not al-
ways go through.'’® Because of these theoretical
difficulties, we will assume in the next section that
all exchanged torsion multiplets are spin <1.

V. PHENOMENOLOGY OF TORSION EXCHANGE

Gravity has never been quantized, but it is sat-
isfactory as a classical theory. In the present sec-
tion we shall accept a torsion theory if it is satis-
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factory in the classical limit, even though there
may be difficulties when the theory is quantized.
Thus we exclude theories with spin-two propagat-
ing torsion, because the difficulties (with ghosts,
tachyons, and covariance) mentioned in the previ-
ous section all affect the classical theory. Con-
versely, we do not exclude theories with spin <1
propagating torsion even though their quantum the-
ory may be unsatisfactory. [Possible difficulties
with quantization arise as soon as the torsion mul-
tiplet is coupled to matter, It is natural to couple
torsion to the fermion axial-vector current, since
one wants the B field coupled to spin, but this cur-
rent may develop triangle anomalies which spoil
renormalization.’” Also, in those theories where
one replaces B by 8¢, as at Eq. (1.2), the matter-
to-¢ coupling becomes a derivative coupling which
is probably nonrenormalizable. ]

We assume that the interaction Lagrangian £,
containing the torsion-to-matter coupling has the
following form (all tensor indices are suppressed):

£, =gy0yB. (5.1)

That is, (i) the interaction contains a coupling
which has the dimensions of a charge (g?/4n7c is
dimensionless); (ii) the interaction couples each
fermion field ¥ to the contortion field B [defined at
Eq. (1.1)] via an operator O which is probably
YuYs; however our order-of-magnitude estimates
below will not be affected if O is Y- Note that if
the reducible tensor B"p,, is split into irreducible
components and the part containing spin 2% is dis-
carded, the remaining two irreducible tensors
form a polar four-vector and an axial four-vector.®
(iii) £, contains no derivatives. In potential models
[B~8¢; see Eq. (1.2)] (iii) is replaced by (iii)":

&£, contains one derivative and ¢ is a massless
particle. To be consistent with the minimal-sub-
stitution philosophy of these models, we shall also
assume that ¢ couples with strength g=1.

In addition to a coupling, we also need a prop-
agator. If B is massless, with kinetic term A (6B)?2
in the Lagrangian, then the propagator will be
1/AR? in k space or 1/4m7A in configuration space.
Since the force will be long ranged, initially we
consider a macroscopic source where we can ben-
efit from the cumulative effect of as large a num-
ber of (aligned) spins as possible, i.e., a ferro-
magnet. The potential between two spins in two
such sources would then be Coulomb-type:

Via(B) ~g*(o1) 74?27«72) . (5.2)

(We have taken O =v,y,; for O= yu replace {o;)
by (1).) Assuming a A of order unity and a
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(g?/4w#c) of order 1072, we find this force would
be huge, far larger than the magnetic force be-
tween the same two spins:

i

Vi) 00 o o) (g ) 5.9)

where the last factor comes from the Bohr mag-
netons,

If we perform the same analysis for a potential
model, B-~98¢, the kinetic terms contain a factor
1/k, since they originate in the R term in the
gravity Lagrangian, which is multiplied by 1/«.
Hence the ¢ propagator is gravitylike, equal to
k/4mv in configuration space. We anticipate that
the factor of 1/7 will be turned into 1/7° after it is
acted upon by the two derivatives of the ¢ field,
one from each vertex. Compare the magnetic di-
pole interaction Eq. (5.3), which also has one de-
rivative at each vertex. [The vertex responsible
for interaction (5.3) is the —‘l_)"uvll’Fuv part of the
Gordon decomposition of the electromagnetic cur-
rent.] We find

Vi) ~km*o)) gz o) () - )

We have multiplied and divided through by factors
of fermion mass, to aid comparison with Eq. (5.3).
Evidently the V,,(¢) potential is too weak to be
readily observable, in contrast to the potential
V.»(B), which is too strong.

Can we make the too strong potential (5.2) weaker
by giving the exchanged multiplet a mass? Tor-
sion forces would then become weak for the same
reason that intermediate -vector-boson forces are
weak in 8 decay: The exchange is short range.
There appears to be no satisfactory way to give the
B multiplet a mass. We cannot invoke spontaneous
symmetry breaking and a Higgs-Kibble mechanism,
because there is no internal symmetry to be bro-
ken.’® We cannot put in a mass “by hand” without
creating a ghost. [For example, suppose we take
the mass parameter u ,%#0 in Lagrangian (2.4);
this is a natural choice because it makes the axi-
al-vector part of the B multiplet massive; and the
axial-vector part couples to matter via O = Yu¥s
in Eq. (5.1). The propagator for the fourth com-
ponent of this axial vector is given by Eq. (3.3);
from that equation we must take p ,*>0 to avoid a
0" ghost. As for the space components of the four-
vector, they are propagated by the 1* sector. When
@ ,2>0, the parameter a,, in this sector must be
positive, from Table I. Furthermore, we must
take a,, =0 in the 1" sector, since we do not want
any spin-two torsion multiplets; from Eq. (3.4)
a,, is essentially the mass of the 27 multiplet. It
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is now straightforward to apply the methods of the
preceding section and show that with a,,>0, a,,=0,
the 1* sector has at least one ghost or tachyon.]
We conclude that giving the B multiplet a mass is
out and that g2 in Eq. (5.2) must be very small if
it is nonzero. Using ¥ =1m and an electron mass
in Egs. (5.2) and (5.3) we find g?/e® must be less
than (Z/mc)?~10725, This limit from macroscopic
experiments with ferromagnets is so stringent that
it may rule out the possibility of detecting a torsion
interaction of the type (5.2) via precision micro-
physics experiments with elementary particles.
Next we turn to the potential model interaction,
Eq. (5.4). Since this interaction is too weak, we
ask whether there are ways to make the effective
coupling k(m)®larger rather than smaller. Kaempf-

fer notes that x as conventionally defined includes
a proportionality constant, the ratio of active to
passive gravitational mass; if there is a different
proportionality constant for the ratio of active to
passive intrinsic spin, then xk must be replaced by
a different constant k¥’ in Eq. (5.4), allowing a
stronger coupling that would be easier to see.”
The phenomenology of ¢ exchange merits further
study, and we intend to return to it in a future
publication.
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