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Using Hamiltonian techniques, we derive the general solution to Einstein-Dirac equations (with a
cosmological constant and a mass term) when the metric and the spinor field are both invariant under an
Abelian three-parameter group of transformations acting transitively on spacelike hypersurfaces.

I. INTRODUCTION

In recent years, a lot of attention has been paid
to massless spinor fields in curved spacetimes.
Besides general theorems about the coupled Ein-
stein-Weyl equations, ' many explicit solutions
have been constructed and studied (let us mention
the plane-wave solution of Brill and Cohen, ' among
others').

However, to our knowledge, the combined Ein-
stein-Dirac equations with a mass term have only
been solved in a few cases." The purpose of
this paper is to present a new class of solutions
which correspond to homogeneous anisotropic
universes of type I (according to the classification
given by Bianchi) filled with a massive spinor field.

%e use Hamiltonian techniques, particularly
suited to spacetimes possessing spatial isome-
trics. This enables us to derive easily a great
number of conserved quantities, even when a cos-
mological term is included (Secs. II and III). We
then carry out the integration of the equations
(Secs. IV and V). We also discuss the introduction
of torsion (Sec. VI).

Let us describe briefly some of the qualitative
features of our solutions. Most of them represent
anisotropically expanding universes with an ini-
tial singularity (for some values of the integration
constants, the expansion is isotropic and the solu-
tions reduce to the cosmologies studied by Isham
and Nelson4). The behavior in time of the average
rate of expansion —that is, the dependence of the
"volume" ~g of these universes on the proper
time t —is the same as in type-I models filled
with a. pressure-free perfect fluid (discussed for
example in the book by Ryan and Shepley'). As
shown below, this rather intriguing property is a
consequence of the strict conservation law obeyed
by the energy of the spinor field measured
in a comoving frame. The expansion presents,
however, different features from the perfect-fluid
case due to the spin of the Dirac field. For in-
stance, as already noticed by Belinsky and Khal-
atnikov for type-I models filled with neutrinos, '
the principal directions .of expansion, referred to

the usual synchronous invariant coordinate sys-
tems, ' vary with time. Accordingly, one cannot
assume that the spatial metric g,~(t) is diagonal
in these coordinate systems.

Besides its mathematical interest, we believe
that the present study is of some physical rele-
vance since the universe could have been highly
anisotropic during its early stages. Although we
describe the spin--,' particles with the help of a
complex spinor field, the solutions given below
still satisfy Einstein-Dirac equations when the
spinor field components are regarded as "classi-
cal anticommuting numbers. ,

"

ds' = —N'(x')(dx')'+ g„(x')dx'dx', (2 1)

I&(,&'=Ã '(x'), A&,)'=0, b&,)'=0,
(2 2)

l~(, )'(x')b(, )'(x')g. ,(x') =q(„)=diag(+, +, +),
y=y(x'), y=-iy'y(„=q(x') (2.3)

(a, b, ...= 1,2, 3). The intrinsic geometry of the
surfaces of transitivity x'= const is thus flat, but
their extrinsic curvature

K
1 =dgab

ab 2~ ~ab, oy ~ab. o d+ 0 (2 4)

does not vanish in general.
The lapse function N(x') in (2.1) is arbitrary

since the coordinate systems in which (2.1) holds
are determined up to the coordinate transforma-
tions

II. HAMILTONIAN FOR TYPE-I EINSTEIN-DIRAC MODELS

Vfe are considering gravitational and spinor
fields which are invariant under an Abelian three-
parameter group of transformations |",acting
transitively on spacelike hypersurfaces. ' For
simplicity, we use invariant orthonormal frames
b&„&8 (o(, P, . . .=0, 1,2, 3; indices in parentheses
are tetrad indices) chosen so that their timelike
leg ))&&»8 points along the (positive) normal to the
hypersurfaces of transitivity. In suitable coor-
dinate systems, the fields are functions of one
coordinate only:
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"=f( ') (2.5) e'=y& &0&g "4=bX' (2.14}

where u(ab) g (bc)(d (a are six arbitrary infinitesi-
mal functions of xo, antisymmetric in a, b (note
that &o&,» is 'just short for &u&, &&»). In view of this
freedom, the three functions

C
~&gb& 2 'L~ &a&b, 0~ &b&

@&b&ceO &a&' (2.7)

are completely arbitrary. It is sometimes con-
venient to impose the gauge conditions

where f(x') is an arbitrary function of x' (such
that f,g 0) and i&'b is an arbitrary 3 by 3 constant
matrix (such that detA e0). If desired, one can
make N=1 by a suitable choice for f(x') in (2.5).
The corresponding time coordinate, denoted by t,
is caQed the proper time.

In. the same way, the spacelike legs h(», are not
completely determined by the relations (2.2). In-
deed, one still has the freedom of performing ar-
bitrary spatial rotations (depending only on x'),
the infinitesimal form of which reads

6I&
&, &'(x ') = &0 &,

b&(x')h
&,&'(x'), (2.6a)

5&(x') =~„„(x')3'"P(x') ~'" = -'f& "' x"'l
(2.6b)

abg = Q and Z'"K = Qab (2.16)

and cannot, in general, be diagonalized together
with the metric g,b and the extrinsic curvature
K,b. It identically vanishes in the exceptional case
when the three eigenvalues of K,b are equal (iso-
tropy).

The set of equations (2.9), (2.11), and (2.12) (i.e.,
all the nontrivial Einstein-Dirae equations) can be
deduced from a variational principle applied to the
canonical action

S= ~
(x&'& I &„.,+yt&&, -NX-n X&"&)dx'

eJ

(spatial indices are lowered and raised with g„
and its inverse g"), and

X" =I& 'I& 'X""& K" & =ytS""'&& (2.15)1/2 (l ) (771)
' 1/2 y 1/2

When taking the derivatives of K with respect to
the metric coefficients g,b in (2.12), one keeps
n'b,

&&, and Qt constant. The stress tensor of the
spinor field [i.e., the last two terms in the left-
hand side of the G„equations (2.12)j has two no-
ticeable properties

(ab) (2.8a) (2.17)

which are equivalent to

(a)c, O 2 (a) gbc, O (2.8b}

In this gauge, the triads h&„' are parallel propa-
gated along the geodesics x'= const. Note that the
transformations (2.6) with constant &u&.» preserve
the conditions (2.8).

It is straightforward to write Einstein-Dirac
equations for the tetrads (2.2) and the spinor field
(2.3). We assume some familiarity with the now

classical work of Arnowitt, Deser, and Misner.
The Dirac equations read'

X,O
= ~(ab)~""X—N~ r"'X

~ (2.9)

where we have introduced the weighted spinors

X=g"'y, g=detg. , (2.10)

in order to get rid of the extrinsic curvature in
the right-hand side of (2.9), while the Einstein
equations become

36=g'~'(»"—&&„——,
' )+&2&&g'~'&my~@ &'&X-=0,

(2.11)

~(ab) ~(ab) +~ (ab)
g 1/2

3e&ab& —& (+&a&bI &b& &b&bP &a& )Q 2

(2.19)

(2.20)

We can of course introduce a Poisson bracket
structure in the space of the dynamical variables

(2.21)

(all others vanish) and rewrite the equations as

~
&& &bo [@o &o +]t 4A0 [ Ay H], etc. ,

where the Hamiltonian is a linear combination of
the normal and rotation generators X and X"b):

in which the independent variables are the spatial
components h«), of the tetrads, the spinor field X,
their conjugate momenta v"" and pt—thus pt is
not regarded as a function of y in the action —and
the Lagrange multipliers N, 0(,». The quantities
m" are treated as the following functions of the
momenta g")':

(2.18)

whereas the "super angular momentum" K"b)
=-X' "is defined by-

~&ab
(2.12) 0 BC(ab)

(ab)

In (2.11) and (2.12), we have defined, for reasons
to be clarified soon,

v"= (SC"-Sag")g"'-Z=Z' ~=v' (2.13)

(N, Q, b& arbitrary).
Varying the action with respect to the Lagrange

multipliers N, 0&,» one gets four first-class con-
straints on the dynamical variables
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3:=0 X(»=O

[x,x)=o, [x,x&b&]=0,

[X(ab) X(cd)] )
( ~ (ac)X{bd) ~ (bd&X(ac)

7

+ &I
(ad&X&bc) + )7 &bc)X(ad)}

(2.22)

(2.23)

which are mere consequences of the various in-
variances of the type-I Einstein-Dirac system for
the transformations depending on arbitrary func-
tions of the time x' described above.

The canonical decomposition of the Einstein-Di-
rac action in the general case (no symmetry} has
been studied by Dirac" and more recently by Nel-
son and Teitelboim" (see also Ref. 12}. In fact,
the work of these authors has been our starting
point for getting (2.17) since we have simply in-
serted in their results the particular form (2.2)
and (2.3) of the fields, a procedure that is always
justified in type-I cosmologies. " The reader,
unaware of these developments, will easily check
that the equations derived from the action (2.17)
are indeed equivalent to Einstein-Dirac equations.
This is rather straightforward once the following
key points are understood: (i) The Poisson brack-
ets between the metric [viewed as a function of
the triads —formula (2.2)] and v" [given by (2.18)]
read

[g„,g„]= 0, [g„,v'd] = ,'(6,'6d+ bd—5,'), (2.24)

as in the usual canonical metric formulation of
pure gravity, but

III. CONSTANTS OF THE MOTION

The linear coordinate transformations

x"= x' x"= (A ')' x'
b

where A is an arbitrary constant matrix posses-
sing an inverse A ', induce the following changes
in the canonical variables:

(»a a (»b &

&&i())a (A-1)a detA &(&&)
b (3.1)

(remember that the momenta &("' are vector den-
sities of unit weight). These transformations are
not canonical, unless detA = 1,- i.e., unless A be-
longs to SL(3). From the discussion of the pre
vious paragraph, we expect the eight infinitesimal
generators of SL(3),

As a final comment, we note the decoupled
form of the super-Hamiltonian which is a sum of
two terms, a purely gravitational one and a purely
spinorial one. This rather remarkable property
is due to the homogeneity requirements (which
suppress the coupling terms containing spatial
derivatives), of course, but also to our choice of
the weighted spinors &&

and (II)t as spinorial vari-
ables (instead of i&I and g' '(I» "&). In fact, the
variables g and P & already play an interesting role
in the general Einstein-Dirac system. "

[Vab +cd] L(g cXa+bgdXad+bgccXbd+agbd Xac}+ 0 ~a +(l )ag 1 pa+(l )cg ~a 0b (l )b 3 b (l )ct a (3.2)

(2.25}

The equations g„,= [g„,H] thus reproduce the
definition of the quantities n in terms of the me-
tric and its temporal derivatives, whereas the
Hamiltonian equations for m" are just the G„Ein-
stein equations (2.12) (the contribution to [ ', H]
due to (2.25) is precisely the stress tensor of the
spinor field, owing to the super angular momentum
constraints (2.22)). (ii) If one expresses the La-
grange multipliers 0(,» in terms of the triads
h(», and their temporal derivatives with the help
of the Hamiltonian equations h&», c= [h«&„H], one
finds the definition (2.7) again. This is because
the super-Hamiltonian is a function of the momen-
ta &(""through the combinations (&

b only. (iii)
The Hamiltonian equations for z(»' are basically
equivalent to those for m" since, by virtue of the
super angular momentum constraints (2.22), one
has

~(l)a 2~(l) &ab ~ (™)Il a
b j./2 (rn) (2 26)

a relation which contains the momenta z"' only
through the symmetric combinations m" in its
right member.

to be conserved quantities and one indeed checks
that they commute with the Hamiltonian (in the
Poisson bracket sense):

[z'„xj= o, x'"'] = 0. (3.3)

6h„,.=~[h„... &"&'h,.„]=~h„... (3.4)

(dilatations in which one forgets about the weight
of the momenta v" &') also gives rise to a con-
served quantity. However, since the kinetic part,
the potential A. )&g, and the mass term have differ-
ent weights for the linear transformations (3.4),
w(& "h &», is not, in the general case (A. e 0, m co),
a constant during the motion.

The conservation law obeyed by the eight gen-
erators of SL(3) (acting on the coordinate indices)
is not peculiar to the spin--, field. It is in fact a

(3.3) follows from the fact that X and X""&are den-
sities of unit weight under changes of coordinates,
and thus invariant for SL(3).

If the cosmological constant X and the mass of
the spinor field both vanish, the quantity n""h(»„
which generates the i'nfinitesimal transformations
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property valid for all type-I models filled (or not)
with a matter field. What is peculiar to the spin--,
case is the completely decoupled form (2.11) of
the super-Hamiltonian, and this leads to a,dditional
conserved quantities. These are the energy den-
sity (multiplied by vg ) of the spinor field'4

(3.6)

(which is a good gauge since g't'& 0), the eight
differential equations for the eight unimodular
triads k'(l )

k'„, —k(„p,b, —C,~)k (4.6)

(which are linear homogeneous equations) are im-
mediately integrated by matrix exponentiation.
This gives

which generates "y ") transformations"
k ko (eyr')o (e-cro) ()')

(l )a - (P)b a (l) (4 t)

and the spinor part X,&t)z & (= -Xc&'"') of the super
angular momentum. Let us remark, however, that
Q z/z

' commutes with the Hamiltonian 0, only when

0&,» =0 [see the commutation relations (2.23)].
We shall thus work in that gauge from now on.

Before proceeding further, let us rewrite the
super-Hamiltonian K in terms of the conserved
generators. Since

a j a 1 a 1 (lm) a~ b 3~ O'll' ~P b+ 2+0 ~(l) ~(m)b

we get

x =g 't'(-.'f '~'. + ,'-x&'"&x --& v')

+ 2)&g't' -m&t& ty &o&)( = 0,

(3.6)

(3.7)

and we conclude that the super-Hamiltonian con-
straint (the Goo equation) can be used to express
m as a function of g'/' and the constants of the
motion p'„X, ,"&)t&z.„(y).

IV. THE TETRADS AND THE METRIC

Let 2p,'» 2C" ), and e be the actual values of
the conserved quantities P b Ky/, ), and 7« for a
given motion.

Hamilton's equations for the tetrads and the
metric read, using the relation (3.6),

h(g). ,=Ng-'t'(h(,
&,)z'. —C&,~&h(~&. —~oh(, &,z&), (4.1)

Zro, o &g (grrpo+Zcopo'skroz'&) &

from which one deduces

(g't'), =- —,'xw .

(4.2)

(4.3)

g„=g't'f.„detf., = 1,
1/6h()), =g k&, )„k(&),k, =f,o.

Indeed, in the gauge

N=g' ', g' 'dx =dt

(4.4)

(4.5)

The problem of solving the Einstein equations is
thus reduced, owing to the constants of the motion,
to the problem of solving the (redundant) first-or-
der differential equations (4.1)-(4.3) and (3.V).

The structure of these equations suggests making
the following conf ormal decomposition, familiar
from the study of the vacuum anisotropic models, '

0 0 0 (lm)f,~
= k (&),k(m)~q- (4.9)

Since the signature of a metric is preserved by
the linear transformations, f., is always positive
definite if it is positive definite at the time x =0.

The integration constants k(„„C(™,and p, 'b are
not all independent. This follows from the fact
that (3.6) with the index a lowered is symmetric
in a, t). Hence we have the relations (true at any
instant if true initially)

far» foe)z r- k()&ok( &o ~ (4.10)

which can be used, for example, to express the
constants C(") in terms of the 16 j (l). p'b The
relations (4.10) have an important consequence:
they imply that the matrix fo,p', is in gener, al
asymmetric. Consequently, one can show the fol-
lowing.

Theoz em: the metric f„(x')—and thus also the
conformally related metric g„(x')—can be diago-
nalized by a constant coordinate transformation
x"=A'bx' if and only if one of the following con-
ditions holds:

(i) The three constants C" ' all vanish (this im-
plies severe restrictions on the spinor g), or (ii)
the metric admits a revolution axis, z say, and
can thus be written

ds' = —dt '+ a'(t) (dx'+ dy') + h'(t)dz'.

In that case, only C„,= —C,„can be different from
zero. When a and 5 are equal, the model is iso-
tropic (k=0 Robertson-Walker cosmology) and
there are no restrictions on the spinor angular
momentum C"

The demonstration of this theorem is straight-
forward and left to the reader. It uses some al-
gebra and the relations (4.8), (4.10).

From this theorem, we conclude that the gen-
eral case is not diagonal, unlike the vacuum or

where k (»b are a set of eight integration constants
(they are restricted by the preserved-in-time con-
dition detk &», = 1).

Equation (4.7) leads to the following expression
for the unimodular metric f.,:

f 0
( eFr )c (ePr )4 (4.8)

with
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(4.11)

~-=~ ~b +C(™C
b a (lm)

= l (u'"+ u")(u., + u,.) (4.12)

perfect-fluid solutions. Nevertheless, the coor-
dinate transformations x"= A', x' and the rota-
tions of the tetrads can be used to simplify the
"initial" data (for example, f„initially diagonal,
or e&„, )C""' along k&», . . . ).

To get the metric completely, we still need to
find the square root g'~'=-y of its determinant.
This is accomplished with the help of the super-
Hamiltonian constraint (3.7) and the relation (4.3)
which, in the gauge (4.5), lead to

y (n + ey + 2'')'~'
where

is strictly positive, except in the isotropic case
(characterized by n =0). This equation, which is
the same s in the pressureless perfect fluid
type-I models, gives g' ' as a function of x' and
is easily integrated. For the sake of clarity, we
shall discuss here the simpler equation

d3 + dt I t I (3)1/2t
(n+ ey +2'')'~' (4.13)

which relates the square root of de+, ~ to the more
physical proper time t, and we shall assume that
the physical condition e& 0 holds. The cases A.

& 0, A, = 0, and A. & 0 need to be considered sepa-
rately. One gets, with a suitable choice for the
sign and origin of the t coordinate,

(a) A&0 (i) n=e'-8na&0:y= cosh(02y t'+k)-
lm

e
coshk = &1, k&0

(ii) a =0:

(iii) o &0:

e
y=4 [exp(v'2~ t')-ll, e&o

y =exp(v'2y t'), e=O
~II[

y = sinh($2g t'+k)—

e
sinhk=

7

]. ' (et'I
(b) x = 0 (i) e & 0:y =-

~

+ ~n —ne k2

(ii) e=0:y =Mat', noO

y =const, u =0

(c) A & 0 (o & 0): y = - ~ sin(v' 2g t '+ k) +
vo . , e"

(T

e
sink =- (& —1)

duce to the vacuum solutions" as is easily
checked.

V. THE SPINOR FIELD

y(t) =exp(-my&"t)y' (5.1)

(y'=constant spinor). From (5.1) and (2.14) one
then gets

It is straightforward to integrate the equations
(2.9) for the weighted spinor X (with N=1, 0&,»
= 0).

-- ~k&0.r
2

Pt(t) =iy texp(my&'&t) . (5.2)

All these models possess a singularity (vg =0)
at t =0 [except when n =0, e = 0, but A. & 0 corre-
sponds to the de Sitter model, whereas A. =0 is
Minkowski space; in both cases T„@(g)=Oj. When
the cosmological constant is negative, the expan-
sion of the universe is followed by a reconstruc-
tion and another singularity. Near the initial sin-
gularity, i.e., to first order in t, the volume g' '
of the universe grows as t in the anisotropic case
a 0, and as t' in the isotropic case n =0.

If one sets C" ) =0 and e=0, the solutions re-

The integration constants g', e, and C" ) are
of course related by

e ™Xy

C(ltd) gxOfg(lm) 0

Near the singularity, the trace of the energy-
momentum tensor T„8 (= mug) behave-s as eg '~'
i.e., as t ' in the anisotropic case agO or as t '
in the isotropic case a =0. This demonstrates
that the singularity is a true physical one.
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=+ &-' '~'&ft .
(o. + & + 2'')'~' (6 8)

This equation has been solved in the previous
paragraphs. Note that the "torsion energy" is on
the same footing as the anisotropy parameter n.
Thus, even when o. =0 (isotropy) the behavior of
the volume g' ' near the singularity is in t, not in
t' [the isotropic universe with torsion grows more
rapidly —or collapses more rapidly if one rever-
ses the sign of t —than the torsionless one (see

VI. A SOLUTION TO THE EQUATIONS PROPOSED BY

WEYL"

In the zero-mass case, which we shall consider
from now on, the above method can still be ap-
plied when a torsion term is included. The physi-
cal and theoretical motivations for such a. modifi-
cation of the Einstein-Dirac theory have been dis-
cussed elsewhere, ""and we shall not repeat
them here. Although we take m=0, we do not as-
sume that the spinor field is an eigenstate of y(»

'Ll
(w th r &5&

=r &0&& &»&&.&&'&3&) ~

As noted in Ref. 16, the modified equations for
the metric and the spinor field can be deduced
from the usual Einstein-Dirac Lagrangian to which
the following spinor quartic interaction 2& =-X&,

'g-(A &.p'&5&4) (A "'r
&5&4) )

has been added. In the canonical formalism, this
contact term simply adds to the super-Hamiltonian
which, for type-I models, reads

x=g '~'(&&"&T„-—,'&&') + 2).g '~'

32' "(4'r &.&& &.p &»x) (4"~&»~" 'y&»x) .
We remark readily that g'"K has a completely de-
coupled form; we thus conclude that, besides P',
= 2&&'~, the quantities K,&~&,

"& = 2C{™and g' 'X, =t
~ 0 commute with the Hamiltonian. Accordingly,
the integration for the tetrads and metric pro-
ceeds as before: the unimodular k„„and f„are
given by the same expressions as in the torsion-
less case, whereas g' ' is determined by the su-
per-Hamiltonian constraint $C = 0 which becomes
here

Ref. 18 in this context)].
Let us now compute the Poisson brackets of the

real vector density components v( ) defined by

(6.4)

One finds

[v&0» v&a&]-0, [v«» v&»] ——8Ã,&,«». (6.5)

The Hamiltonian equations for v( ) thus read, in
the gauge 0(~y) Op

-1/2 b)
«) o ~ (~).o g (~ V(» &

and are immediately integrated if one chooses
N= g'~' [condition (4.5)]. They give

-3C~o
"&o&="&o& "&.&-(' " )&.&""&~& (6.6)

where v(„) are a set of integration constants. We
can at present solve for the spinor y, which satis-
fies the now linear equations

(n)
, 0 =l-. ~ y(0)y((y)y(5)X

These imply

(6 7)

(ab) o~(~0) e-3c&~&,&s x

p[( C&Q5&S &6 v 7 &0& Y&~&V &5&)& ] x

(6.8)
where y' is a constant spinor. To get (6.8), go
first to "rotating" tetrads in which v(„) is con-
stant (perform the rotation e'c" which does not
affect the components C&,"), solve the equations
for the spinor y in these frames, and finally come
back to the original tetrads satisfying Q(,» =0.

Since the spacetime scalar g 'v'"&v&„& (- "'R
near t = 0) blows up as t 'as one goes towards the
initial singularity, one concludes that this singu-
larity is a true physical one.

As a final comment, we would like to emphasize
once more the power and elegance of the Hamil-
tonian techniques, which plainly relate the con-
served generators to geometrical and physical
properties of the type-I Einstein-Dirac models.
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conventions for the y matrices as in that paper,
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y ( ) y (~)+y (~)y ( )=2 diag( —,+,+,+),

+(0) ~ (0) s ~ (a) ~lg)
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