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Gauge invariance and the choice of gauge for one-gluon-exchange corrections to quarkonium
mass spectra
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The gauge invariance of the bound-state energy correction due to one-gluon exchange between a quark
and antiquark is demonstrated under the assumption that, in zeroth order, the bound state is described by a
Bethe-Salpeter equation with an instantaneous and local interaction kernel, which does not include one-
gluon exchange. It is argued that the most convenient choice of gauge for the gluon propagator is the
radiation gauge.

I. INTRODUCTION

The purpose of this note is to comment on some
questions involving the choice of gauge for gluon
propagators in the calculation of the mass spec-
trum of a bound quark-antiquark system ("quark-
onium") .

We recall that in the early models of the psions, '
the gross structure was assumed to be describ-
able by a nonrelativistic Schrodinger equation
with a potential V„„,(x) which is local, spin-inde-
pendent, and confining. It was soon realized"
that this simple picture had to be modified to ac-
count for the fine structure (splitting of the 'P

~
states) and the "hyperfine" structure (splitting of
the 'S and 'S states). These splittings were as-
sumed to arise from (v/c)' corrections to the non-
relativistic Schrodinger problem. The most
natural way of including such corrections is to
begin with a Bethe-Salpeter (BS) equation

(p =p, p.)-
(A-M)(A-AKu) f&(a,u'W(=o'ld'o'. h &)

The kernel I(p, p') is then assumed to contain a
confining part I„„,(the long-range part), and a
part I„, due to one-gluon exchange (the short-
range part). The usual reduction to large com-
ponents is carried out.' The zeroth-order po-
tential is then given by V„„,(r), coming from

coming from I„. The potential to order (v/c)'
will then have contributions from both I„n, and
I„and these terms will contain spin-dependent
and spin-independent parts. To accomplish the
program, it is necessary to make an assumption
about the Dirac character of the confining kernel
I„„,. It is now common practice to assume that
I„„,has a substantial scalar piece" .,a (a
part which is independent of the Dirac matrices

associated with 1 and 2) as well as a vector piece
I~,„,bilinear in y,' and y,". In this approach, the
question of the choice of gauge for the gluon pro-
pagator does not arise in zeroth approximation.
Of course, if one imagines that I„„and I ~„f arise
from multigluon exchange, the functional form of
these quantities would depend on the choice of
gauge. However, at the present level of under-
standing of the forces which bind the q-q system,
one usually takes a semiphenomenological point
of vie%' and rega'lds both I conf a d I conf as adjust-
able functions, so that the question of gauge for
gluon propagators remains implicit. '

Nevertheless, even in this approach, the question
of gauge arises explicitly when one considers the
effects of one-gluon exchange. For example, if
I„„,is imagined to arise from the exchange of
two or more gluons, one can consider the effect
of I„(without encountering the danger of double
counting). The question of the choice of gauge for
the gluon propagator then re-emerges explicitly
since I„is of the form

where the r,.(k) are the vertex functions for g]uon
emission by a quark and D„, is the dressed gluon
propagator. This question is of interest, because
of some recent progress in obtaining a fit to the
quarkonium spectrum within such a framework.
In that work, ' the v'/e' correction to the spin-
independent part of the level shift &E"', arising
from one-gluon exchange between the quark and
antiquark, plays an important role and it is just
this part which appears to depend on the choice of
gauge for &,„.

The major aim of this note is to point out that
when I„„,is approximated by an instantaneous
and local operator [I„„,=6(p, —p,')&(p —p')], as
has been the case in the literature, the quantity
&E"' is independent of the gauge of the gluon pro-
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pagator. Under these circumstances, there is no
ambiguity in the calculation of &E"', and the ques-
tion of the choice of gauge is just one of con-
venience. In the next two sections we exhibit the
mechanism which assures the gauge invariance of
&&"', first for a heliumlike system, then for
quarkonium.

U(r). In addition, there is an interaction between
the fermions due to the exchange of a photon
("gluon"). This interaction is treated in lowest-
order perturbation theory. We may think of this
system as helium or a heliumlike ion.

The zeroth-order solution to the bound-state
problem is a product of single-particle solutions

II. THE "HELIUM" CASE

To show that the perturbed energy &E"' is inde-
pendent of choice of gauge for the gluon pro-
pagator, we consider first the analogous but
simpler problem of two charged spin —,

' fermions
of equal mass bound to an external local potential

+., =(."'(p )0'"(p.),

where

0„"'(p,) =b(p. , -~„)e„"'(P,), i=i, 2,
with (t) /~i(p, . ) satisfying the Dirac equation

(2.l)

(2.2)

(2.&)

(ni ~ ps+()I —c,„.)( „"'(p)= —fU(i()('„"'(p,+i()d'e () =1, 2) . (2.4)

(2.5)

Here o. and P are the usual Dirac matrices and U(q) is the Fourier transform of U(r) which, although
Hermitian, can have nontrivial spinor properties.

The first-order energy correction due to one-gluon exchange in perturbation theory is illustrated in
Fig. 1 and is given by

.2

n, m P1~P2 &gND Pl —Pl & +„, P1P2 ~ p +p —p'- p' d p d P.

where, for a general gauge (including the possibility of both covariant and noncovariant gauges),

D, „(b)=g „„Ib'+f(b)b,b„+g(b)(n, b„+b,n, ), (2.6)
with n„being a timelike vector. The quantity N in (2.5) is a constant which depends on the normalization
of 4', it need not concern us here.

The proof of gauge invariance in this order will consist in showing that the contributions of terms con-
taining the gauge functions f and g vanish. It will be adequate to demonstrate this by illustration with the
term proportional to k„n„. The contribution of this term to &E"' is

n, m npl g &pl pl 1 1 n pl m p2&p2 pl p2 pl p2 '+Pj P jJyJ, a

where we need not be concerned with the form of R (p„p,') and

8=r p' ~

Use of the Dirac equation (2.4) in (2.7) yields

=N — Pl Uq Pl+q + ~Pl —q Uq Pl d q

(2.7)

(2.8)

, 2
xg(0; p,'- p.)&.(p„pl)b"'(p. +p. —p|'- p.'), (+p;)(+p;) .

j='(.
(2.9)

If one makes the transformations p,'-p,'+ q pl pl
+ q in the second term in Eq. (2.9), 'f'„ is seen, to
vanish. The same holds for all of the other gauge
terms. The gauge invariance of &E"' has thus
been established.

III. QUARKONIUM

We are now ready to turn to the problem of in-
terest, that of quarkonium. We shall assume that
the zeroth-order BS kernel is instantaneous in
relative time and local in space. This implies

I

that, in momentum space, it is a function of the
relative three-momentum transfer, and not of the
total four-momentum P, . [We take P, =2b, -
= (2b, 0).] The BS equation for the zeroth-order
Green's function becomes

s-&(q) =4I (3.2)

s,-'(b+ p)s '(b p)G, (p, p')

=&"'()' 0')+f &(i-i)")@,(p , p')&(". (s.()— "

where
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FIG. 1. Level shift AE ~ arising from one-gluon ex-
change in the helium case. The effect of the interaction
of the constituents of the bound state with the external
field (dashed lines) is completely contained in the bound-
state wave function 4n ~ as shown in Eq. (2.5) of the
text. The wavy line denotes the gluon propagator in a
general gauge defined by Eq. (7.6). The boxes denote
bound-state wave functions.

There is a corresponding homogeneous equation
[see (l.l)] for the wave function with b -b„(the
bound-state energy).

We can now use the "helium" case as a guide.
The diagram analogous to Fig. 1 is that of Fig. 2.
The exchange of a gluon in the presence of the
zeroth-order interaction involves any number of
"rungs" of a U ladder crossing the gluon, just as
in Fig. 1. However, while the ladders collapse
into the wave function for an external field (due to

FIG. 2. Level shift 4E arising from one-gluon ex-
change in the quarkonium case. The dashed lines denote
a local, instantaneous binding interaction and the open
circles symbolize the Green's function defined by Eq.
(3.1) of the text. The third term on the right-hand side
of the equality sign is necessary to avoid double counting
of one-gluon exchange without binding corrections.

the product nature of the zeroth-order wave func-
tion for "helium" ), Green s functions as well as
wave functions survive in the quarkonium case.
This phenomenon is known as correction for
binding and will turn out to play an essential role
in the proof of gauge invariance.

Our argument follows the lines of the one for
"helium". We concern ourselves with the term
k„~„ in the propagator D„„and consider its suc-
cessive contributions to &E"' which arise from
Figs. 2(a), 2(b), and 2(c). The contribution due to
Fig. 2(a) is

b b p 2 n p b +A'/2 p+2k&p + 2k Sl bn p +b p k p+p (3.3)

Now insert

S,-'(b„+P)S,(b„+p)

to the left and

Sl(b„+p+ k) S, '(b „+p+ k)

to the right of |((") in (3.3) and use the identity (i.e., the Ward identity)

S(q)gs(q+ k) =S(q) —S(q+ k) . (3.4)

We obtain

p S~ b„+p+k S2 bn-p —S, „+p 2 „-p (3.6)

p S -' b +p (2% p

x g(p P )Qp(f P (3 6)

Let us take the first operator in the square brac.-
kets to be acting to the right on Gb, &2 and the
second as acting to the left on 4', (p) and use the
equations of motion, just as in the "helium" case.
The two terms proportional to the kernel U will
cancel (just as for "helium" ) after a suitable change
of momentum variable is made in one. of them. It
is crucial for this cancellation that the kernel U

be both independent of the total energy variable
b and also a function only. of the relative momen-
tum transfer. A term remains, due to the inhomo-
geneous part of the Green's function equation and
&"' becomes

bn

We repeat the same calculation for the contri-
bution of Fig. 2(b), obtaining

e, ps, "b„+p ~'4, p

x g (P —P ')(f P (f P ~

Figure 2(c) gives a contribution directly:

(3.7)

V
(c) y (p)( p'(1) g(il))g(2)y (pi)

n bn n

xg(P —P')d P (3.8)

Equation (3.8) cancels the sum of Eqs. (3.6) and,

(3.7) and once again, after carrying out the same
procedure for the other gauge terms in &„„,we
have succeeded in demonstrating the gauge in-
variance of &E"). [Note that the proof holds also
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if U in (3.1) depends on p, —po', i.e., if the kernel
I is not instantaneous. ]

IV. ADDITIONAL COMMENTS

In order to emphasize the importance of all
terms (large and small components, retardation,
binding corrections, etc.) in the proof of the gauge
invariance of &E"', we shall look at the problem
of the calculation of &E"' in a slightly different
way. Let us examine (in two separate gauges) the
contribution to &E"' arising from the exchange of
a single gluon in the non-retardation limit (i.e.,
we neglect binding corrections). In this limit, the
interaction can be written in the form of potentials
in position space. Let us consider the Coulomb-
Breit potential

X= &+ '
& — 'M X„,,

and to leading order in (v/c)' we have

(x fc fx)=&x„ fc„„fx.,&,

where

(4.9)

(4.10)

c„,= 8M, [p', [p', r]] (4.11)

(4.4) and (4.5) no longer holds if particles 1 and 2

are bound to each other by a potential, say U»(r).
In this case, the zeroth-order equal-time wave
function X(r) is no longer a product function. To
show that the level shifts due to VcB and V„F are
not the same in this case, let us assume U» is
small compared to M and let g„denote the wave
function in the nonrelativistic limit. Then

Vcs (y) =—[1——,'(n, ~ n2+ n, Pn, f']

and the Mufller-Feynman (Mi'") potential

VuF(r) =—(1 —n, ~ n, ) .

(4.1)

(4.2)

is independent of spin. Thus, t/'c~ and V„F are
equivalent in this approximation insofar as spin-
dependent terms are considered, but not with re-
gard to spin-independent terms. ~'

&u,', u,'
f
T s f

u„u,) =
& u,', u'

I
7'MF Iud u2& (4.3)

where the u's are Dirac spinors, these two po-
tentials make the same contribution to the on-shell
scattering amplitude of fermions 1 and 2 to lowest
order in A.. If 1 and 2 are each bound to a local
external potential U(r, ) (helium problem) then the
lowest-order level shifts

(4.4)

and

++MF = &~ I
I MF f ~) (4.5)

are still equal. This follows from the fact that""'

C-=v„,—v„=--,'x[n, p„[n, p„r]].
We then have

(4.5)

&yfV„,—Vcsfy&=-,'X&y f[H„[n, p„~]]fy)=O,

(4.7)

where

If' = nq
' pi+ pq~+ U(rq), j = 1, 2 (4.8)

and we have used the fact that P is a product wave
function P'"(r, )Q"'(r, ) and U(r&) is a local potential.
'This gauge independence is precisely what was
found in Sec. II.

'This equivalence of the right-hand sides of Eqs.

These can be obtained by Fourier transformations
of the c.m. system one-gluon exchange matrix
amplitudes, &c~ and TM» calculated in the radia-
tion and Feynman gauges, respectively.

Since

V. CONCLUSIONS

Now that we have shown (in Sec. III) that the level
shift &E"' due to one-gluon exchange in quarkon-
ium is gauge invariant, we are free to do our.
calculation in any gauge. The question is: Which
gauge is most convenient to use& The answer is
the radiation gauge. 'This is so because binding
corrections cause the least complication for it;-

In this gauge, for the transverse propagator part,
to order (v/c)' we can take

(5.1)

and of course D«(h) is already a function of k'
only. The binding corrections now do not appear
since the relevant gluon propagators are instanta-
neous in relative time and if we tried to repeat the
construction of Fig. 2 we would find that no U

rungs would cross the gluon propagator. 'This
means that, in this gauge, the entire contribution
to &E'" would be given by an expression of the
form (4.4), with Q-X.

Using a different gauge, say the Feynman gauge,
there would still be no difficulty with D,&, but Dpp

would be a function of the four-vector k squared,
O'. This means that binding corrections involving
Green's functions would have to be used to calcu-
late a gauge invariant &E"'. We would be faced
with a much more tedious calculation than in the
radiation gauge and the analog of Eq. (4.5) would
not be correct. For the case of positronium, such
a calculation in the Feynman gauge has been at-
tempted. ' In that case, (v/c)'-n', and the spin-
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dependent parts of the potential are independent
of the gauge through order m&4. However, the
spin-independent part of the potential gives (in.
the Feynman gauge) not only gauge-dependent,
but even spurious mn', mn'inn, and ma~inn
contributions. Only if one takes binding correc-
tion effects painstakingly into account are these
terms seen to vanish. On the other hand, in the
radiation gauge the lowest-order spin-independent
(v/c)' energy contribution is of order mn~ and no
binding corrections are needed to obtain it.
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