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Superconvergence sum rules and charmed-baryon couplings
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Superconvergence sum rules have been obtained for the invariant amplitudes of the elastic as well as
inelastic and exotic as well as nonexotic scattering processes involving pions and charmed baryons. The
assumption of saturating these sum rules by the known low-lying states is then exploited to determine the
pion —charmed-baryon coupling strengths,

I. INTRODUCTION

Recent experimental discoveries of charmed
baryons in electron-positron annihilation and in
neutrino interactions as well as in photoproduction
experiments tempt us to study the hidronic pa-
rameters of these states. These states have so
far been detected with charm+ 1. The lowest-
mass state is an isospin-singlet state C,' (with
J =-,'' and mass 2.26 GeV). Next states are iso-
spin-triplet states C, (with 8 = —,

'' and mass as
2.43 GeV) and C*, (with J = —,"and mass 2.48
GeV), respectively. ' The latter states are re-
sonant states and the experiments indicate their
decay into AC+, states. However, the experimental
data are still incomplete and preliminary. It is,
therefore, desirable to predict theoretically the
hadronic parameters of these states so that in
the future when the experimental data become
available on the hadronic production of these
states, they can be experimentally verified. Re-
cently we have used' Adler's consistency condi-
tions for the elastic as well as inelastic pion-
charmed-baryon scatterings to evaluate the
charmed-baryon couplings. The purpose of this
paper is to obtain and use superconvergence sum
rules for various meson-charmed-baryon pro-
cesses for determining charmed-baryon couplings
with the pion. This investigation will thus lend
an alternative theoretical test for our previous
findings.

Much literature' ' exists on the practical utiliza-
tion of superconvergence sum rules based on the
saturation with the low-lying states in the narrow-
width approximation. This approximation becomes
indispensable because many of the processes for
which superconvergence relations are written are
not accessible to direct experiments at the pres-
ent time. In the past, such an attitude has often
resulted in useful algebraic relations among the
masses and coupling constants. Such relations
are linear in the squares of the coupling constants
for elastic scattering andjor in products of
coupling constants for inelastic processes. In
this paper, we obtain superconvergence sum rules

for the crossing-antisymmetric invariant ampli-
tudes of the following processes:

m'+ C, —m + C', +,

m' + C1- m + C~1++,

m+ C0- m+C0,

m+ C0- m+ C*, .

(2)

(3)

(4)

Processes (I) and (2) are exotic exchange re-
actions but (3) and (4) are nonexotic processes.
These sum rules when saturated with low-lying
known charmed states yield algebraic relations
which can be solved to determine the coupling con-
stants g~c c ~ g7c c*~ g~c c ~ g~c c*r and g~c*c*.0 0 1 1 1 1 1

II. SUM RULES

If a certain crossing-odd invariant amplitude
E(v} satisfies an unsubtracted dispersion relation
at t= 0 and behaves asymptotically for large v as
v ' ', with c & 0, it must satisfy the supercon-
vergence relation, '

where v = (s -u)/4m and s, t, and u are the Man-
delstam variables. Such sum rules were obtained
by several workers' ' for exotic exchange pro-
cesses by assuming that the possible t-channel
Regge trajectories with I= 2 for such processes
have negative intercept at zero-momentum trans-
fer (as is suggested by the absence of low-lying
meson states with such quantum numbers}. So
for the meson baryon elastic process (I) we can
write the relation as follows':

where B is the usual invariant amplitude. Here
the superscript 2 denotes the value of the t-channel
isospin.

A large number of sum rules can be constructed
for processes involving particles with higher spin,
for example, processes (2) and (4). The analysis
of sum rules for such processes is rather difficult
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(8)

Jf Imb'13'(v, 0)dv=0. (9)

Similarly we get for the process (4) the follow-
ing superconvergence relation:

in certain cases due to the existence of a large
number of independent amplitudes. For process
(2), if q, (p,) and q, (p,) are the four-momenta
of initial and final pion (baryon), respectively,
we can write the four invariant amplitudes as'

C~~(p3)Mv C1(p1)

= C*,„(p.) [(o.f'„+~.Q„)

+ &r ' Q(&7 p
+ b.Q~)]r,c,(p,),

where P=(p, +p,)/2, Q= (q, +q,)/2, C~», is the
Rarita-Schwinger wave function for the spin- —',
particle C*„and C, is the Dirac spinor for the
particle C,. Then from the high-energy behavior
of these amplitudes we can safely write the fol-
-lowing superconvergence sum rules'. r ImB

"~ (v, 0)d v = 0 .
0

(12)

Equation (12) is only an approximate relation.
However, in the absence of experimental data,
we find it useful for getting a relation between
the decay widths of C*, and C, into the C,m channel.
%e would then be able to compare this relation
with the relations found elsewhere. '"

&u, so that the integrand ImB(v) in (5) may be re-
placed by its asymptotic form when v ~ co and
we get"

4) IX(+ 1

ImB(v, t)dv= Q
0 ~)+ 1

where P;(t) is the residue function and n, (t) is the
Regge trajectory. Among the Regge poles for the
process (3), only f and c can be considered. How-
ever, Renner and Zerwas" have found that their
contributions are very small for H -mA scatter-
ing. Assuming that these Regge poles give negli-
gibly small contributions for the process (3) also,
we get the sum rule as follows:

(10) m. CALCULAnON AND D1SCUSS1ON

where v = (s -u)/2(mc +mc*). Several other non-
trivial higher-moment superconvergence relations
can be derived. However, they are less reliable
than the zero-moment sum rules which we have
written above. This is because in the simple
saturation scheme, higher-moment sum rules
are more sensitive to a number of resonances
lying in the higher-energy region. In our cases,
since the higher-energy region lies still unexplored
for the new charmed-baryon resonances with
charm+ 1, we hope the above relations (6) and
(8)-(10) are more reliable in the saturation with
low-lying states.

For the process (3), we, write finite-energy
sum rules since no scattering amplitude satisfies
the required asymptotic bound in this case and
hence the condition for superconvergence is not
fulfilled. In order to get such sum rules, we
truncate the dispersion integral at some energy

We saturate the sum rules (6)-(10) by the known
charmed-baryon pole-term contributions. The
effective Lagrangians used are given as'

. C,C, =g.c,c,C.&sCP

g g grc1cl Cg&Clcl m lg l P . (13)

7rclcl gmclCl 1P 5 lP lP V5 lPBP~P~ ~

The pertinent isospin crossing relations are
~(1=2) ~(o) ~(l) ~~(~)3 s 2 s 6 s

for exotic exchange reactions and

A(1 = l) ~(l)

for process (3). We thus get for (6), (8), (9), and
(10) the following relations between the coupling
constants, respectively:1, 1 g' c,c", 4, mc, ,3 g~c~ —2g~c c —

2
', ' —„mc + „(mc +mc* -m~ ) — 2(mc +mc* -m„) =0,

m 3 l 3m Gmc~ lr l 1

g' cw g cw mc, ™c 1 8' c c*8' c,c, mc ™c*
3 m„o 2 2 m 2

(16)

gwc lc l gn'C lC l
2 m. ,3 [3mc*,'+ 4 c*,'~c, + 2~c~c,'+~c,' -~.'(3~c*,+~c,)]

l

m 2

+ Z3C C 11gC31C 1 3
[QPPg

43 + kg 32333 + 2~ 3333 2+~ 3
PPg 2(3~ 4+~ )] 0 (17)3 12m g2 cl cl cl cl cl cl & cl cl

. 7r mc



RAJENDRA PRASAD AND C. P. SINGH 21

] g'IICOCyg7ICOCy g&CyCyg&C F1 + 8&CyCyg&CyCy] g g &ac ]
(Sm *+m *m —m +m~)3 mr 2 m r '2 m 1r

c~ cy c& ™cy
cg

I
gwclcygwclcl w

(4m g2 m ~ +m 2 —m ') =0 (18)cy cy c] cy
7r cy

g wc )c ) g wc Ac q + g mc Oc y g Kc yc y

mar mr „(mc*,' -mc*,mc, +mc, ' -m, ')
3mc

I + Qgy + m 2

+ "'"~ ' ~ '
(4m +'-m *m +m ' m '~=0 (19)3 6 +2 c& cy cy c& m gr mc

Similarly saturating the sum rule (12) with the
known charmed-baryon resonances C, and C*, in
the narrow-width approximation we get the follow-
ing relation between the decay widths:

(20)I.,*-5.35r, =0,
where I"c (I"c*) is the decay width of C, (C*,) into
mC,

+ states.
We find that Eq. (20) compares favorably with

our previous result' using the Adler consistency
condition and also with the result obtained by Lee,
Quigg, and Rosner "Us. ing I'c*, = 20 MeV, '"we
get I'c, =3.7 MeV. We can, therefore, evaluate
the following two coupling constants:

g g2
= 0.15

4n' (21)

and

2
gncf)|."1 51 56

4m
(22)

In our previous paper, ' we obtained g,«&/4w
= 58.3. Now using Eqs. (21) and (22) we solve the
relations (16)-(19) and get the following set of
coupling constants:

2

24 56
4m

+2g7lcici 0 024
4m

Pic +2c1 1 = 16.37
4m

gl 2
g1l'c lc 1 —6 33

4m

(23)

(24)

(25)

In our previous paper, ' the reported values were
gee,c,'/4& = 28 42~ g.c,c*,'/4v = o 034~ and g wc*,c*,'/
4w = 1.43. We thus find that the values of all the
hadronic coupling constants reported here agree
well with our previous values except for g,c*c*.

1 1
The reason for this difference in g,c~c~ may

I

possibly be that we neglected the g',c c y
coupling

in our previous calculation.
In conclusion, the superconvergence and finite-

energy sum rules form a powerful tool for getting
the algebraic relations among masses and coupling
constants on being saturated with poles and re-
sonances in the narrow-width approximation.
Such relations treat stable particles and resonant
states on an equal footing. However, great care
is required in selecting the set of superconver-
gence relations to be used in a simple saturation
scheme. For example, we find that the inclusion
of higher-moment sum rules together with the re-
lations reported above modifies the values of the
couplings in an arbitrarily large way. Moreover,
the saturation scheme becomes questionable when
we have only two or three known low-Lying states.
However, no consistent prescription has been
followed in deciding the number of low-lying states
required to saturate the sum rules. " In principle,
one should take an infinite number of poles and
resonances to saturate the sum rules in order to
avoid the difficulties regarding the violation of
locality when nontrivial currents in a current
commutator are involved. " In our case, the lack
of experimental information on the existence of
other new states in the higher-energy region and
the agreement achieved in the values of the cou-
plings evaluated in two different theoretical
schemes prompt us to conclude that C„C„and
C*, are the only low-lying charmed states with the
quark combination cud. Finally we hope that
these values of the coupling constants will be of
much help in studying the strong-interaction fea-
tures of these new charmed states from both theo-
retical and experimental points of view.
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