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Current anticommutators on the null plane and their applications
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Department of Physics, Osaka City University, Osaka, Japan
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With use of the Deser-Gilbert-Sudarshan representation, the connected diagonal matrix elements of current
anticommutators taken between two stable one-particle states on the null plane are derived. It is shown that
the assumption necessary to restrict to the null plane in this case is equivalent to that in the case of current
commutators. Following Dicus, Jackiw, and Teplitz, we derive sum rules from these anticommutators. We
investigate some of them, and obtain, in the case of pion-nucleon or kaon-nucleon scattering, the
quantitative relation between the sea-quark distribution in the nucleon and the Pomeron.

I. INTRODUCTION

The Deser-Gilbert-Sudarshan (DGS) represen-
tation, ' which incorporates both causality and
spectrum conditions, has been of great value in
the investigation of one-particle matrix elements
of current commutators. " Recently the author
has postulated the validity of current anticom-
mutators restricted to the null plane with a very
brief discussion of its theoretical origin. " The
purpose of this paper is to provide a full dis-
cussion with the use of the DGS representation
and the current commutators on the null plane
derived formally through the neutral-vector-
gluon model. ' Since our concern here is the weak
and elect. romagnetic currents, the results ob-
tained hold true formally in the SU(3) color gauge
theory (quantum chromodynamics). ' In Sec. II
the main ideas are illustrated with scalar currents
to avoid the kinematical complexity due to vector
currents and to obtain a good insight into the is-
sue. A case of conserved vector currents is dis-
cussed in Sec. III. In Sec. IV the method is applied
to pion-nucleon' or kaon-nucleon scattering with
use of the partially conserved axial-vector cur-
rent hypothesis (PCAC). ' These results are sum-
marized in Sec. V.

II. SCALAR-CURRENT MODEL

First we consider the DGS representation' ' of
the current commutator taken between two sca-
lar one-particle states of momentum P,

�

&& I[d.(x), d. (0)] IP&.
oo ]

dPk" (~2, P) exp(iPp x)
0 «.]

andi�&(x,

X') is defined as

We define the null-plane commutator of the com-
plex scalar field in the usual way as'"

[~'(x), ~(0}]I. .= --'i~(x )5(x').
Then we obtain

(2.4)

[d.(x),d, (0)]I„.,
= ——'i5(x )E(x )[5.,S,(x I0)+zc, ,A, (x IO)],

(2.5}

where

So(x I 0) = rp'(x) p (0) + y (0)p (x),

&.(x
I
o}= ~'(x)'.&(o}—&'(0)T.~(x}.

(2.6)

Under a suitable assumption, the right-hand side
of Eq. (2.1) on the null plane becomes

. 1

dA. dp exp(iPp 'x)k' (A. , P)5(x )e(x ) .
0 -1

(2.'I)

Since the left-hand side of Eq. (2.1) is given by
Eq. (2.5), we obtain

oo

dp exp(ipp'x ) k"(X', P)
0

=&PI5.,S,(x Io)+i~.„~,(x Io)Ip),]„...
Following Cornwall, ' we consider next the gen-
eralization of the DGS representation in the case
of a stable one-particle matrix element given by

ia(x, X')=, d kexp(-ik x)e(k )5(k'-&').
27r

3

(2.3)

x in(x, ~'),

where c means to take the connected part, the
scalar current d,'(x) is defined as

(2.1) &p I(d.(x), d, (O}] IP),
ao j

d&' dP exp(iPP x)k" (X', P)a"'(x, x'),
0 -1

d, (x) = y'(x)~, y(x}, (2.2) (2.9)
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where &""(x,X') is defined as

~("(x,X')=, d'hexp( ih x)6{h'-~').
27r 3

(2.iO)

Then, again under a suitable assumption, we ob-
tain the null-plane restriction of Eq. (2.9) as

da
ln lx

I

= ——, exp(- iax ) .lal (2.i2)

Therefore, with the use of Eq. (2.8), we obtain

oo 1
dx' dP exp(iPp x)h" (x', P)5(x') inlx

I „2F 0 1

(2.ii)
where"

&& I«.(x» d~(0)] I».I"-.= ——2„&(x')»lx I& PI[ &~ s.&x
I
o)+i~.~.&.(x10)1I». l ...' (2.18)

Equation (2.13) will be obtained if we use Wick's decomposition theorem on the null plane, x' = 0, as

&p I[@'(x)~,p(x)y'(0)T, y(0)+ p'(0)~, y(0) 9'p( x) Tp(x)] lp), = ——6(x') inlx l(pl[6.,S,(x I0)+i~„,A, (x I0)] lp),

+&&I[:~'(x)~.~(x)~'(0)T ~(0):

+:y'(0)T,y(0)y'(x)T, y(x):] Ip) ~ (2.14)

Since at x'=0, x'=2x'x —x"= x"~ 0, the second term on the right-hand side of Eq. (2.14) does not con-
tribute to the connected matrix element and we obtain Eq. (2.13). However, the second term does contri-
bute to the connected part in the timelike region, and it is not clear what kind of an assumption is nec-
essary to restrict to the null plane. The usefulness of the derivation with use of the DGS representation
lies in this point, together with the treatment of the Schwinger terms. Now we investigate the assumption
necessary to restrict Eqs. (2.1) or (2.9) to the null plane. First we define the Fourier transform of Eqs.
(2.1) or (2.9) as

1 ooii„=, d'xexp(iq x) dx' ddexp(il)P x)x"(x', ll) J dxexp(-lx'x)e(x* —x')f(x'), (x.(5)2v' 0 -1

where f(h') = a(h+) in the case of Eq. (2.1) and 1 in the case of Eq. (2.9). Since our concern here is not the
mathematical problem of defining restrictions of a commutator to the null plane, "we interpret 6(x') in the
following sense":

I„=lcm dq exp —,H„.(e )'
p+ oo a(po

Then we obtain

(2.16)

00 1 Wl

,„f=2wlim dX' dP exp —,, » [X' —2Pp (q'+Pp')+(q'+Pp ) ] h' (&,P). . . (2.1&)
A ~ 0 -1 4 q'+PP' 'A' 2 I q'+ Pp' I

'

except at (f'+ pp'= 0." From Eq. (2.17) we see that the part which prevents the interchange between the
A -~ limit and the integration over X' is concerned. with the behavior of h" (&', P) in the region & ~ O(A).
Thus we divide the X' integration as

os

~ ~ ~ + gg ~ ~ e (2.18)
0

where (x is some positive constant. The second term of Eq. (2.18) is rewritten as

2m lim ~& dX" dP exp — 1 q h" (vs&' P), , (2.19)4~a'+ Pf ')'& W~v2 - ' 2 I ~'+&O' I

where &"=A.'/W&. Then, if the h"(X', p) is bounded and, moreover, decreasing as & ' ' at large X', where
e is some positive constant, Eq. (2.19) becomes zero. Further, since h'~ (A. , P) is bounded we obtain

eA md~' exp ——2(~'+~)' —1 h"(~', P) ~ d~' expl-~z(~'+&)'l-l h (~' P) =0

(2.20)
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where rn and n are the appropriate constants.
Since Eq. (2.20) becomes zero in the A-~ limit,
the interchange between the ~-~ limit and the
X' integration in the first term of Eq. (2.18) is
allowed. Finally, I„becomes

d~ dP~ (~, P 2Iq'+PP'I' (2.21)

we integrate over q, change the variable from
q to v=p q, and assume that we may interchange
performing the v integration and setting q' =0."
This assumption is clear if we interpret the q
integration in the sense of Eq. (2.16). Moreover,
in the case of the commutator, this problem is
well known as the class II graph problem. ""
Then in the case of the anticommutator the prob-
lem is also regarded as the class II graph prob-
lem as was expected previously. In other words,
though both the symmetric and the antisymmetric
parts of h" contribute to Eq. (2.21), if we set
q" = 0 before the P integration one of them does
not contribute, depending on commutators or anti-
commutators. Therefore we need the condition
for the lost part to ensure the validity of the in-

Equation (2.21) is exactly the Fourier transform
of Eqs. (2.1) or (2.9) restricted to the null plane
and corresponds to that of Eqs. (2.7) or (2.11).
Therefore Eqs. (2.7) and (2.11) hold under the
same assumption. Now we derive the sum rule:
By defining C„as

c.,(p e, e*)= Jd'«*p((e «)() l(~.(~), ~, (0))lp), ,

(2.22)

terchange of setting q =0 and the P integration,
and we obtain

&p~S,(x~O)~p), =S,(p x, x ),
(p iX,(x iO) ip), =A.,(p x, x'),

and the symmetric part of C„ is defined as

(2.24)

C (.,) (v, —q") = —,
' [C.,(v, —q") + C„(v, —q")] .

(2.26)

We express the 6„S,(n, 0) by the Fourier-trans-
form formula of Dicus, Jackiw, and Teplitz" as

1 dc'
5,,S,(o., 0) = exp(iu)o. )F(„)((d),2z

(2.26)

where v is defined as —q'j2v and F„((d) is the
Bjorken scaling limit of W„(v, q ) similarly defined
as Eq. (2.22) in the case of the current commutator.
Note that C„(v,q') and W,, (v, q') are the same
quantity in the v ~ 0 region. By substituting Eqs.
(2.12) and (2.26) into Eq. (2.23), we obtain

J
00

d(d

0 0 (d

(2.27)

where P means to take the principal value.

1.,)(, —q")=.—) ., J da)n(a(s(a, o),
0 ~ OO

(2.23)

where n is defined as P'x, the matrix element of
the bilocal current is defined as

III. APPLICATION TO CONSERVED VECTOR CURRENTS

According to the discussion in Sec. II, we start with the connected spin-averaged nucleon matrix ele-
ment given by

C""(x)=(p~ [d, (x),J"(0)] [p), ,

where the conserved vector current d;(x) is defined as

d."(x)=q(x) y' -,'~, (q)x.

The simplest DGS representation of Eq. (3.1) is'
OQ 1

C;,"(x)= d~' dPO& ~" — g ") [()); (X', P)+iP 'sg', (X', P)]
0 «]

+[ p'p" +p s(p's" +p"s') g"(p s)']I (~', p))exp(ipp x)i~(x, ~'),

(3.1)

(3.2)

(3.3)

where the Born pole term is included. Note that this pole should be separately considered when we try to
restrict Eq. (3.3) to equal time. '" Intuitively, this fact will be explained as follows: At the Born pole,
2v+q is zero and we can freely change into —2ip s in Eq. (3.3). However, contains the time deri-
vative twice, while p 8 contains it once. Since with respect to time the even derivative of &(x) at x =0
is zero but the odd one is not, we ca.nnot have a definite result. The situation is different in the case of the
null plane, since both and P s contain &" once, which plays the role of the time derivative, and &(x) at
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x+=0 is not zero. Now the current commutator on the null plane derived formally through the neutral-
vector-gluon model is given by'

'(x'}[:(x» l(0)]=i&s'".8 [«x)G!(»Io)] 2g' g" [8 6(x}]Gl(xlo)-'" p" [~(x}Gl'(xlo)]], (3.4)

where

Gl(»IO) =d, n AB(»10)+f, ,S:(xlo), G,''=d, ,S','(xlo) f.~.A."(»IO)

S", (xlO}=-,'[q(x)y'-,''. q(O)+q(0)y' —,'X, q(x)],

A,"(x I0) = —.[q(x)y —'X, q(0) —g (0)y" —'X, q(x)],
1

(3.5)

(s.6)

(3.7)

b(x) or 8''(x) reads —a(x )5(x')5(x')/4 or —5(x )5(x')5(x+)/2, respectively, and s"" '=g"g"'+g"g'
-g"g '. By taking p=+ and v=+ or i, Eq. (3.3) onthe nullplanebecomes

1 I
C'"=P'P" dX' dPexy(iPP x)[-P'h (X', P)+(P' —P'm')h; (X', P)+P'm'g", (A.', P)]f(x)

0 1

oe

dPe~(PP )[h."-(',P) Pg, '—(~', P)]P 8(P-8".P"8')f()
0 1

1

+i dX' dpexp(ipp x)p[h (A.', p)+m'h (~', p) —pm'g", (&', p)](p'8" +p"8')f(x)
0

oo

+ dX' dpe~(ipp. x)[h (~', p)+(ip. 8 pm')g", (X', p)]8 8"f(x),
0

where

f(x) = —,'i'(x-)5(x'), 8-f(x)= —,'ix-'(x-)(8'8J ")5(x').
If we require Eq. (3.8) to agree with Eq. (3.4), we obtain the conditions

t dX'[h'(~' P) —Pg'(A. P)]=0,
0

(3.8)

(3.8)

(s.io)

dh'[ p2h", (X2, p)+~'h", (X', p}]=O,
0

l u'[h,"(X',p)~(ip 8 pm')g"(~' p)]=O
0

OO 1

G, (p x, o)= —i dX' dpexp(ipp x)h (X', p),
0 «1

where

&pIG!(»l»I'p&. -p'G. (p x x'}+x'G.(p x x'»

(s.ii)

(s.12)

(s.is)

(3.14)

and we use the letter S or A instead of G, whenever necessary, to specify whether it comes from the sym-
metric or the antisymmetric bilocal defined in Eqs. (3.6) and (3.7). Equations (3.10)-(3.13) should be
understood to hold in the sense of Eq. (2.16) when they operate on the function which satifies (EI —X')F(x)
=O. Since the DOS representation of the current anticommutator in the case of a stable one-particle state
is given by changing i~(x, A.') into ~'"(x, A.'), its null-plane restriction becomes Eq. (3.8) with

f(x) =- —lnlx- I5(x')

and

8 f(x)= —x lnlx I(x -8J8')5(x').
4m

Therefore, with use of Eqs. (3.10)-(3.13), we obtain after some algebra

&p Ip:(x),z;(0}]Ip&.«x') =&p 9"8'[~'"(x)G:&» lo}]—2g'.e,[8™'"'(x}]Gg(»I»)lp&.
where ~"'(x) or 8'6"'(x) reads —(1/2v) lnlx I5(x')5(x') or —(1/2v)P(1/x )5(x')5(x'), respectively. The
case p =+ and v=- is discussed similarly and we obtain the condition
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sC, (p x, o)
p x ' =-,' d~' dpexp(~pp x)x'[h, "(~', p)+(ip s pm') g" (~' p)]

0 -a
(3.16)

in addition to Eqs. (3.10)-(3.13). Under these conditions, we see that Eq. (3.15) holds even in the case
v= —.Finally, we derive the sum rules from Eq. (3.15): In the case of p, =v=+, we obtain

t
00 0O j.

dv W,'"(v, —q") = d„, dn P —A, (c(, 0) = P E,(")((u),
0 «00 A

where

(s.17)

I:.'"(P, e) fd='*exp(ie. x)(Pl«."(x),d (P))li).

~ )~W (,q')+ P P" .(P"q-—"+P"q")+ g'" Wl'(, q'),
« ~\I

(s.ls)

the symmetric part of W is defined similarly as Eq. (2.25), and E ((d)) is the Bjorken scaling limit of
vg, '. In the case of p. =+ and v=i, we obtain

00 1

dv vW', "'(v, —q") = —'f„, dmin— ~c(~S,(o!,0) = —,'P, E;'"((d),q" «QO Cd

where the antisymmetric part of g2 is defined as

W,"'(v, q') = —.[W", (v, q') —W", (v, q')] .1

(s.19)

(3.20)

In the ease of p. =+ and v=-, we obtain

r dv W~(")(v, q")=0.
0

Note that Eq. (3.21) can be derived from Eq. (3.12) as follows: We represent E(x) which satisfies
(~ ~')F(x) =O as

P(x) = f d'P exp(- IP x)f(P)il(P' —X'),

where f(h) is an arbitrary function. Then if we take the A-~ limit, corresponding to Eq. (2.16), Eq.
(3.12) becomes

.0O 00 1

dv dX' dp [h (X', p) + vg", (X', p)]f(q + pp)5((q+ pp)' A.') =0,
«00 0 «]

(3.21)

(3.22)

(3.23)

where the q integration is changed into the v

integration, and h~ and g', ~ are assumed to satisfy
the appropriate conditions discussed in Sec. II.
Since Eq. (3.23) holds for the arbitrary function
f(q+PP), we obtain

dv [h;"(X'(v, P), P) + vg', ~(X'(v, P), P)] = 0, (3.24)~I
b 2

t t

~

~

al
b 2

~ t
~~

~

j ~

«00

where &'(v, P) =q'(v)+2Pv+P'm'. Now if we take
f(k) =1/(2x)', Eq. (3.23) is nothing but the expres-
sion

dv —,W~'(v, q') =0. (s.25)

Therefore, if we assume the interchange of setting
q'=0 and the v integration, Eq. (3.25) becomes
Eq. (3.21).

The generalization to the polarized target is
straightforward and implicitly included in Ref. 4.

IV. THE RELATION BETWEEN THE SEA-QUARK
DISTRIBUTION AND THE POMERON

There is essentially no difficulty in generalizing
the discussions in Secs. II and III to the axial-
veetor current except the symmetry-breaking
effects which might occur in the case of p, =+ and
v=i or —.Now we consider the connected diagonal
matrix element of the anticommutator of axial-
vector currents taken between the spin-averaged
proton state with momentum p, defined as'

c""(p,q)= fd xexp(ie x)(pl{d''."(x),d', "(p))lp),

pp.pv grab pp ~v grab pv~IJ grab

~ qfkqv grab g Q v grab

By applying the same method in Secs. II and III,
we obtain the sum rule in the ease of p, = v =+,
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~ a —F
v

(4.3)

where a is the complex conjugate of b, F„,,
= &2f,, E, =f, and f„ is the pion decay constant.
By substituting Eq. (4.3) into Eq. (4.2), we obtain

g„'(0) + [a'—(v) + o (v)]
2f' "

dv
7F p V

= ~ P —[E", (x)+Ev2~(x)], (4.4)
p X

where ~ denotes the charge of the pion and the
Born term is separated out at the left-hand side.
Expressing the right-hand side of Eq. (4.4) by the
quark-distribution function in the proton, taking
into account the fact that there are two valence u
quarks and one valence d quark in the proton, we
obtain

' dxP —[E2~(x)+Ev2~(x)] =6+SP dx &(x),
0 0

(4.6)

where X(x) denotes the sea-quark distribution in
the nucleon. According to the usual parametri-
zation, "we take &(x) as

dv W,""(v,—q")=d.„P A, (n, 0)
0 «oo

' dx F,'"'(x), (4.2)
p X

where & (x) is the same as the one defined in
Sec. III and x=-q'/2v. At q'=q~=0, ~ is related
to the off-shell pion-nucleon total cross section
through the PCAC relation as'

ax "(1-x)". (4.8)

Then the sum rule (4.4) can be estimated and the
divergent piece as E -0 appears as the simple
pole I/e. Therefore, if the sum rule is meaning-
ful, the coefficient of this simple pole should be
equal on both sides. Thus we obtain the condition

a =4f, 'Pv . (4.10)

Under the condition (4.10), the limit E-0 can be
taken and we obtain the sum rule which deter-
mines the power n in the sea-quark distribution. '
The condition (4.10) is the relation between the
residue of the Pomeron and the coefficient a of
the sea-quark distribution in the nucleon, and a
is estimated as 0.15 with use of the experimental
value off =0.094 (GeV) and P~ =4.2. The value
0.15 is about the same as the one currently
used. " The same analysis in the kaon-nucleon
scattering gives

a =4f»'Pv (4.11)

where the kaon decay constant f» and P~ are de-
fined similarly as the f and the Pv in Eq. (4.7),
respectively. From Eqs. (4.10) and (4.11) we ob-
tain

(4.12)

If we use the experimental value of P~ and P~,
"

we obtain

where & is a small positive constant. Accordingly,
we change the sea-quark distribution as

( )
a(1 —x)"

(4.6)
(4.13)

Now at the left-hand side of Eq. (4.4), we assume
the smooth extrapolation of the off-shell pion-
nucleon total cross section to the on-shell one and
approximate it at high energy by the Regge para-
metrization as"

If we substitute Eqs. (4.6) and (4.7) into Eq. (4.4),
both sides diverge logarithmically as far as
av(0) =1. Since the behavior 1/x of the sea-quark
distribution near x =0 is assumed to be due to the
Pomeron exchange, '" the sum rule (4.4) inter-
relates the sea-quark distribution with the Pom-
eron. In order to see the fact clearly we first
assume o.'~(0) as

o. (0)=1 —~, (4.8)

(v' m 'm ')' '(a'+a)

=Sv(Pvv v"'+Pp, v'~'"'). (4.7)

This value is in good agreement with the experi-
mental value 1.3 obtained by the decay rate for
the kaon and nearer to the symmetric value 1.

V. SUMMARY

We have studied the assumption necessary to
restrict current anticommutators to the null
plane. We find that this assumption is the same as
that which restricts current commutators to the
null plane. Moreover, when applied to sum rules
the problem is reduced to the class II graph prob-
lem discussed previously. Here the DGS rep-
resentation is powerful, but very complex. Ef-
fectively, sum rules can be derived by the ones
derived through the canonical null-plane quanti-
zation. However, as we often emphasize, their
applications should be restricted to the case where
the DGS representation holds, such as the stable-
one-particle matrix element. Though the many
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sum rules derived are concerned with the diver-
gent quantities, the one method to treat these
quantities is given, and we find the quantitative
relation between the sea-quark distribution and

the Pomeron, Eqs. (4.10) and (4.11), makes the
sum rules meaningful. Further, the fr/f ratio
is related to the residues of the Pomeron in pion-
nucleon and kaon-nucleon scattering, Eq. (4.12).
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