SU(4) symmetry structure of the nonleptonic weak interaction

Ramesh C. Verma and M. P. Khanna Department of Physics, Panjab University, Chandigarh 160014, India (Received 27 March 1979)

Starting with the most general SU(4) weak Hamiltonian and assuming the nonexoticity of intermediate states and s-u channel symmetry, we obtain that the parity-violating (parity-conserving) Hamiltonian belongs to $\underline{15}_{A} \oplus \underline{45} \oplus \underline{45} \oplus \underline{45}^{*}$ ($\underline{15}_{S} \oplus \underline{20}^{"} \oplus \underline{84}$).

With the advent of charm and the other new flavors as indicated by recent experiments, the structure of basic weak currents has been extended. The situation is further complicated by the lack of a simple understanding of the nonleptonic decays,^{1,2} especially of the $\Delta I = \frac{1}{2}$ enhancement, making its generalization unclear. In the theory of strong interactions (quantum chromodynamics) an enhancement at short distances does occur,^{1,3} but numerical estimates are typically too small to account for the observation. Attempts have also been made to introduce a righthanded piece⁴ in the weak current which indeed seems to help in explaining weak processes, though there is not yet any experimental evidence for its existence. Two types of right-handed currents, namely $(\overline{c}d)_R$ and $(\overline{c}s)_R$, have been considered.^{5,6} Neither of these explains both the nonleptonic and the weak radiative decays simultaneously, but a linear combination of the two, i.e., $\overline{c}\gamma_{\alpha}(1-\gamma_{5})(-d\sin\theta+s\cos\theta)$, seems to improve the situation.⁷ Restricting to the charm scheme, the general current×current weak interaction belongs to the SU(4) representations present in the direct product

$$15 \otimes 15 = 1_{s} \oplus 15_{A} \oplus 20_{s}^{\prime\prime} \oplus 45_{A} \oplus 45_{A}^{*} \oplus 84_{s}.$$
(1)

Owing to the presence of a right-handed current, the weak Hamiltonian would contain an H_w^{LR} piece arising from the left×right current-current interaction in addition to the conventional Glashow-Iliopoulos-Maiani (GIM) piece H_w^{LL} originating from pure left-handed currents. H_w^{LL} belongs to the symmetric representations⁸ 20" \oplus 84 for the parity-violating (PV) as well as the parity-conserving (PC) mode, while the H_w^{LR} part transforms⁷ like

 $\underline{15}_A \oplus \underline{45}_A \oplus \underline{45}_A^*$ for the PV mode

and

 $15_s \oplus 20_s'' \oplus 84_s$ for the PC mode.

In general, therefore, all the representations present in the product (1) can contribute to the weak interactions. The most general Hamiltonian thus does not have any predictive power unless some additional assumptions are made.

In this paper, we explore the SU(4)-symmetry structure of the nonleptonic weak Hamiltonian by studying the hadronic weak decays in a dynamical consideration.^{9, 10} We start with the most general interaction and expand the decay amplitudes in terms of the reduced amplitudes corresponding to the intermediate states in all the *s*, *t*, and *u* channels. For instance, the hyperon decay process B - B' + P we write as

 $S+B \rightarrow B'+P$.

The spurion S has the same structure as the Hamiltonian and is such that the strong quantum numbers in this reaction are conserved. The transition amplitudes are then expressed in terms of the following SU(4) eigenamplitudes (reduced matrix elements):

 $\langle B' || P || m \rangle \langle m || S || B \rangle$, for s channel,

 $\langle P || \overline{S} || m \rangle \langle m || \overline{B'} || B \rangle$, for t channel,

and

 $\langle B' || \overline{S} || m \rangle \langle m || \overline{P} || B \rangle$ for *u* channel.

We obtain constraints on these reduced matrix elements by assuming

(i) *CP* invariance,

(ii) that the eigenamplitudes corresponding to the physically observed (nonexotic) intermediate states contribute dominantly to the transitions, and

(iii) symmetry¹⁰ of the weak Hamiltonian in s and u channels.

We have earlier shown⁹ in SU(3) that with the general $(V-A) \times (V-A)$ weak Hamiltonian (8 $\oplus 27$), these assumptions give the following results:

For the PV mode, we get (i) $\Delta I = \frac{1}{2}$ rule, (ii) Lee-Sugawara sum rule, (iii) $\sum_{+}^{+} = 0$, and (iv) the s and u channels do not contribute, and so the PV decays arise through the t channel.^{11,12}

For the PC mode, our analysis led in the s and u channels to (i) $\Delta I = \frac{1}{2}$ rule, (ii) Lee-Sugawara(LS)

21

812

(2)

© 1980 The American Physical Society

sum rule, and (iii) a new sum rule

$$\sqrt{2} \Sigma_{+}^{*} - \Sigma_{0}^{*} = \sqrt{3} \Lambda_{-}^{0},$$

(14.91 ± 0.82) = (17.41 ± 0.44)

which is well satisfied experimentally. Discrepancies in these relations can be explained by the *t*-channel contributions. The experimental validity of these relations indicates, however, that the *t*channel contributions¹³ are small and the PC decays arise predominantly through *s* and *u* channels.¹¹

In order to obtain constraints on the SU(4) symmetry structure of the weak Hamiltonian, we now extend our considerations to SU(4). We start with the most general weak interaction, and expand the transition amplitudes in terms of the SU(4)-reduced matrix elements corresponding to the various possible intermediate states in the s, t, and u channels. We notice that with the assumption of the nonexoticity of the intermediate states and the s-u channel symmetry of the weak interaction, the contribution from the GIM weak Hamiltonian (20" \oplus 84) to the PV decays of the baryons, as well as of the mesons, vanishes in all the s, t, and u channels. So the PV decays occur only through H_{w}^{LR} , i.e., the $(V-A) \times (V+A)$ part of the weak interaction. For the PC decays where the representations 15, 20", and 84 can appear in general, our analysis puts important constraints on the reduced matrix elements corresponding to these representations.

 $B(\frac{1}{2}) \rightarrow B(\frac{1}{2}) + P(0)$. For the PV decays, the s-u channel symmetry together with the CP invariance makes the contribution of the GIM weak Hamiltonian (20" \oplus 84) zero for the s and u channels, whereas the nonexoticity of the intermediate states forbids the GIM Hamiltonian to contribute in the t channel. Therefore the PV weak decays, in our analysis, occur through the $(V-A) \times (V+A)$ part of the Hamiltonian, which leads to 15 dominance for the ordinary (uncharmed) decays. The Cabibbo-enhanced $\Delta C = \Delta S$ decays of charmed baryons get contributions from the $45 \oplus 45^*$ piece of the weak Hamiltonian. For PC decays, our considerations forbid the 84 Hamiltonian to contribute in the s and u channels. So we expect PC decays to arise predominantly through the 15 and 20" representations. This, of course, amounts to the octet dominance at the SU(3) sublevel for the ordinary decays. For the Cabibbo-enhanced (ΔC $=\Delta S$) mode only 20" contributes.

Decays of $\frac{3}{2}^*$ isobars. In SU(4) analysis 20'' makes no contribution to the PV $D(\frac{3}{2}^*) \rightarrow D(\frac{3}{2}) + P(0^{-})$ decays, and 84 vanishes, according to our assumptions, in all the channels. These decays also then arise from the H_w^{LR} part. This leads to the ΔI = $\frac{1}{2}$ rule for $\Omega^- + \Xi^* \pi$ decays in the PV mode. In our study, the $\Delta I = \frac{3}{2}$ piece is allowed to contribute to $\Omega^- + \Xi \pi$ decays and to the PC mode of $\Omega^- + \Xi^* \pi$. For the $\Omega^- + \Lambda K^-$ mode we get a null asymmetry parameter.⁹ Both of these features are found to be supported in a recent CERN experiment¹⁴ which indicates a more than 20% violation of the $\Delta I = \frac{1}{2}$ rule and the value 0.06 ± 0.14 for the asymmetry parameter α ($\Omega^- + \Lambda K^-$).

Pseudoscalar-meson decays. It is well known¹⁵ that the 20" Hamiltonian does not contribute to the PV, $P + \overline{2P}$ decays. In our considerations the same reduced matrix element $\langle P || P || m \rangle \langle m || S || P \rangle$ appears in s, t, and u channels. Nonexoticity of the intermediate states leads to the vanishing of the 84 part. Therefore, here again, the decays occur through the H_W^{LR} part of the Hamiltonian, the 15 representation of which allows $K + 2\pi$ decays. Cabibbo enhanced $\Delta C = \Delta S$ decays arise through the $45 \oplus 45^*$ piece. Assuming the nonexoticity of the intermediate states, we can express all the decay amplitudes in terms of a single parameter. The following relations are then obtained:

$$\langle \overline{K}^{0} \pi^{0} | D^{0} \rangle = \langle \pi^{0} \pi^{*} | F^{*} \rangle = 0 ,$$

$$\langle K^{-} \pi^{*} | D^{0} \rangle = \langle \overline{K}^{0} \pi^{*} | D^{*} \rangle = -\langle K^{*} \overline{K}^{0} | F^{*} \rangle$$

$$= -\sqrt{6}/4 \langle \pi^{*} \eta | F^{*} \rangle = -\sqrt{3}/2 \langle \pi^{*} \eta' | F^{*} \rangle .$$

$$(3)$$

Although the present data on these decays are rather limited, they do seem to favor these results. Experimentally,¹⁶ the branching ratios are

$$B(D^{*} \to \overline{K}^{0} + \pi^{*}) = 1.5 \pm 0.6 ,$$

$$B(D^{0} \to K^{-} + \pi^{*}) = 2.2 \pm 0.6 ,$$

$$B(D^{0} \to \overline{K}^{0} + \pi^{0}) < 6 .$$
(4)

Branching ratios for $D^0 \rightarrow K^- + \pi^+$ and $D^* \rightarrow \overline{K}^0 + \pi^+$ are nearly equal, as expected from (3) in contrast to the GIM scheme, where one gets⁸

$$\langle K^{-}\pi^{+} \left| D^{0}
ight
angle = \sqrt{2} \langle \overline{K}^{0}\pi^{0} \left| D^{0}
ight
angle$$

and

$$\langle \overline{K}^0 \pi^* \, \big| \, D^* \rangle = 0 \; .$$

Further, $D^0 \to \overline{K}^0 + \pi^0$ and $F^* \to \pi^* + \pi^0$ have not yet been seen, and thus are in accord with our expectation.

The parity-conserving decays $P \rightarrow 3P$ may acquire contributions from the <u>15</u>, <u>20</u>", and <u>84</u> parts of the weak Hamiltonian.

Finally, we conclude that for all of the processes considered, the PV decays seem to occur through the $\underline{15}_A \oplus \underline{45} \oplus \underline{45} \oplus \underline{45}^*$ components of the weak Hamiltonian H_w^{LR} arising from the $(V-A) \times (V+A)$ part of the interaction, and the PC decays get contributions from the $\underline{15}_s \oplus \underline{20}^{\prime\prime} \oplus \underline{84}$ parts of the weak Hamiltonian coming from the $(V-A) \times (V-A)$

(5)

and/or $(V-A) \times (V+A)$ interaction. We may note here that the representation (15,15) of the chiral SU(4)×SU(4) has precisely this splitting for the odd-parity and even-parity terms. This may indicate the (15,15) nature of the weak Hamiltonian H_w^{LR} in chiral SU(4)×SU(4), along with a possible term belonging to (4,4*) + (4*,4). The ordinary PV and PC decays seem to arise from the H_w^{15} and $H_w^{20''}$ parts of the weak Hamiltonian, respectively. This picture is consistent with the observation made in the current-algebra technique, where different d/f ratios are required¹⁷ to fit the experimental data for PV and PC decays. Owing to the different transformation properties of PC and PV decays, the two modes get decoupled.¹⁸ For this reason, the above structure of the weak interaction appears to be free from the criticism of Golowich and Holstein.²

One of us (R.C.V.) gratefully acknowledges the financial grant given by the Council of Scientific and Industrial Research, New Delhi.

- ¹B. W. Lee and S. B. Treiman, Phys. Rev. D <u>7</u>, 1211 (1973); M. K. Gaillard and B. W. Lee, Phys. Rev. Lett. <u>33</u>, 108 (1975); M. A. Ahmed and G. C. Ross, Phys. Lett. 61B, 287 (1976).
- ²E. Golowich and B. P. Holstein, Phys. Rev. Lett. <u>35</u>, 831 (1975); Phys. Rev. D 15, 3472 (1977).
- ³M. K. Gaillard and B. W. Lee, Ref. 1; G. Altarelli and L. Maiani, Phys. Lett. <u>52B</u>, 351 (1974); S. Weinberg, Phys. Rev. Lett. <u>31</u>, 494 (1973); H. Fritzsch and M. Gell-Mann, in *Proceedings of the XVI International Conference on High Energy Physics*, *Chicago-Batavia*, *Ill.*, 1972, edited by J. D. Jackson and A. Roberts (NAL, Batavia, Ill., 1973), Vol. 2.
- ⁴R. N. Mohapatra, Phys. Rev. D <u>6</u>, 2023 (1972);
 A. De Rújula, H. Georgi, and S. L. Glashow, *ibid*.
 <u>12</u>, 3589 (1975); J. C. Pati and A. Salam, Phys. Lett.
 <u>58B</u>, 333 (1975); G. Branco, T. Hagiwara, and R. N.
 Mohapatra, Phys. Rev. D <u>13</u>, 104 (1976); H. Fritzsch,
 M. Gell-Mann, and P. Minkowski, Phys. Lett. <u>59B</u>, 256 (1976); Y. Abe and K. Fujii, Lett. Nuovo Cimento 19, 373 (1977).
- ⁵A. De Rújula, H. Georgi, and S. L. Glashow, Phys. Rev. Lett. <u>35</u>, 59 (1975).
- ⁶H. Fritzsch and P. Minkowski, Phys. Lett. <u>61B</u>, 275 (1976).
- ⁷Y. Abe, K. Fujii, and K. Sato, Phys. Lett. <u>71B</u>, 125 (1977).
- ⁸M. B. Einhorn and C. Quigg, Phys. Rev. D <u>12</u>, 2015 (1975).
- ⁹R. C. Verma, M. Gupta, and M. P. Khanna, Phys. Rev. D <u>20</u>, 810 (1979). See also J. K. Bajaj, V. Kaushal, and
- M. P. Khanna, *ibid.* <u>10</u>, 3076 (1974).
- ¹⁰The s-u channel symmetry of the weak Hamiltonian has been earlier arrived at by Y. Kohara and K. Nishijima [Prog. Theor. Phys. <u>47</u>, 648 (1972)] using dispersion relations. etc.
- persion relations, etc. ¹¹These observations are in accordance with the results obtained in current algebra where the PC-decay amplitudes get contributions from the pole terms and the

PV from the equal-time commutator.

- ¹²This result is in accord with the findings of S. Nussinov and J. L. Rosner [Phys. Rev. Lett. <u>23</u>, 1266 (1969)] based on duality arguments that for s-wave baryonic decays, the low-energy pole contributions will be relatively small and that the Regge contribution will dominate. However, duality arguments run into difficulaties in the case of charmed-particle decays. See. J. Ellis, M. K. Gaillard, and D. V. Nanopoulos, Nucl. Phys. B100, 313 (1975).
- ¹³In fact, recent experiment on $\Xi^0 \to \Lambda \pi^0$ has indicated a $\Delta I = \frac{1}{2}$ violation [G. Bunce *et al.*, Phys. Rev. D <u>18</u>, 633 (1978)]. If *t*-channel contributions are included, discrepancies of the sum rules are related as

 $(\frac{3}{2})^{1/2}\Delta\Sigma = -(\Delta\Lambda + 2\Delta\Xi) = \Delta$ (LS).

¹⁴J. Gaillard, results of CERN experiment presented at the 6th Trieste Conference on Elementary Particles, 1978 (unpublished):

$$\frac{\Gamma(\Omega^- \to \Xi^- \circ \pi^-)}{\Gamma(\Omega^- \to \Xi^- \pi^\circ)} = 2.9 \pm 0.3.$$

 $\Delta I = \frac{1}{2}$ predicts this ratio to be 2.

- ¹⁵Y. Iwasaki, Phys. Rev. Lett. <u>34</u>, 140 (1975).
- ¹⁶I. Peruzzi et al., Phys. Rev. Lett. <u>39</u>, 1301 (1977);
 D. L. Scharre et al., ibid. <u>40</u>, 74 (1978); J. E. Wiss et al., ibid. <u>37</u>, 1531 (1976); Vuillemin et al., ibid. <u>41</u>, 1149 (1978); D. Hitlin, in Proceedings of the 19th International Conference on High Energy Physics, Tokyo, 1976, edited by S. Homma, M. Kawaguchi, and
 H. Miyazawa (Phys. Soc. of Japan, Tokyo, 1979).
- ¹⁷L. S. Brown and C. Sommerfeld, Phys. Rev. Lett. <u>16</u>, 751 (1966); R. E. Marshak, Riazuddin, and C. P. Ryan, *Theory of Weak Interaction in Particle Physics* (Wiley, New York, 1969); Y. Igarashi and M. Shin-Mura, Nucl. Phys. <u>B129</u>, 483 (1977); P. C. McNamee and M. D. Scadron, Phys. Lett. <u>63B</u>, 188 (1976).
- ¹⁸J. K. Bajaj and M. P. Khanna, Phys. Rev. D <u>18</u>, 3442 (1978).